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PREFACE

Relativistic Astrophysics Group (RAG) at the Institute of Physics, the Faculty of Philosophy
and Science of the Silesian University in Opava, started a series of Workshops on Black
Holes and Neutron Stars called RAGtime in 1999. The purpose of the workshops was
to provide an opportunity for the presentation and discussion of recent developments in
the field of relativistic astrophysics related to accretion processes onto black holes and
neutron stars, and to general physical phenomena connected to the properties of black
holes and their vicinity, and the internal structure of neutron stars or quark stars, as they
were obtained by collaborating research groups at the Silesian University in Opava, the
Faculty of Mathematics and Physics of Charles University in Prague, the International
School forAdvancedStudies inTrieste, the Institute ofAstrophysics atUniversity ofOxford,
the Department of Astrophysics of Göteborg University, the Institute of Physics at the
University of Bergen, the Institute of Astronomy of the Polish Academy of Science, and
other remarkable institutes.
The RAGtime workshops are also vitally important for students of theoretical physics

and/or astrophysics at the Silesian University in Opava, because they have a unique op-
portunity to be regularly in direct contact with the most recent results of relativistic astro-
physics and they also have a possibility to discuss problems with leading astrophysicists of
worldwide reputation like Marek Abramowicz, John Miller, Jeff McClintock, Ron Remil-
lard, Włodzimierz Kluźniak, Shoji Kato, Luciano Rezzolla, Vladimír Karas, Petr Hadrava
and others.
We would like to thank all the authors for careful preparation of their contributions. We

are also indebted to theMinistry of Education of the Czech Republic for providing financial
support in the framework of the Grant MSM 4781305903, and all other sponsors for their
contributions to the successful course of the last RAGtimemeetings.

Opava, December 2007 S. Hledík and Z. Stuchlík
editors
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Dipolemagnetic field on a Schwarzschild
background and related epicyclic frequencies

Pavel Bakala,a Eva Šrámková, Zdeněk Stuchlík
and Gabriel Török
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic
apavel.bakala@fpf.slu.cz

ABSTRACT
Severalmodels of the X-ray fluxmodulation observed in the low-massX-ray binaries
(LMXBs), in particular the neutron star LMXBs, deal with Keplerian and epicyc-
lic frequencies of geodesic orbital motion. We discuss non-geodesic corrections to
the orbital and epicyclic frequencies of charged test particles caused by presence
of a neutron star magnetic field. The magnetic field is considered to be generated
by an intrinsic static dipole magnetic moment of a neutron star represented by the
Schwarzschild geometry. We present fully general relativistic formulae for the or-
bital and epicyclic frequencies, obtained using the appropriate equations governing
perturbations of the circular motion. The most significant correction arises for the
radial epicyclic frequency. The zero point of the corrected radial epicyclic frequency
defines radius of the effective innermost stable circular orbit “(EISCO).” The dipole
magnetic field also violates equality of the orbital and vertical epicyclic frequencies
corresponding to the spherical symmetry of the Schwarzschild geometry.

Keywords: X-ray – neutron stars – binaries – accretion discs – QPOs – magnetic
field

1 INTRODUCTION

The RXTE earth satellite has provided during the past decade a large amount of the X-ray
timing measurements to the astrophysical community. Among other facts these measure-
ments have revealed existence of nearly periodic modulations of X-ray flux detected from
several low-mass X-ray binaries (LMXBs), so called quasi-periodic oscillations (QPOs).
Two main branches of oscillations are observed in LMXBs – the low (∼ 1–10 Hz) and

high (∼ 200–1200 Hz), named also “kHz” frequency QPOs (see van der Klis, 2006 for a
review). The kHzoscillations often come in pairs consisting of the so called lower and upper
QPOmode with frequencies νL, νU. Notably, the frequencies νL, νU roughly correspond to
Keplerian periods in the close vicinity of the binary compact object.
Miscellaneous orbital QPO models have been proposed. In particular, the relativistic

precession model (in next RP model) introduced by Stella and Vietri (1998) relates the

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.



2 P. Bakala et al.

upper and lower kHz QPOs to the Keplerian and periastron precession frequency on a
geodesic orbit inside the inner part of the accretion disc.1

In neutron star sources the frequencies νL, νU vary in a range of hundreds of Hertzs
on time scales of several hours. The observed frequencies νL, νU are rather well correl-
ated, always keeping a nearly linear pattern in a frequency-frequency plane. The pattern
(frequency correlation) is specific for a given source. It has been noticed that, in general,
correlation νU(νL) is qualitativelywell fitted by theRPmodel prediction (see, e.g., Stella and
Vietri, 1999, 2002; Belloni et al., 2007; Török et al., 2007b).
Nevertheless, when modelling individual frequency relations from the RP model or

its generalization to the total precession model in the framework of Hartle–Thorne geo-
metry (Stuchlík et al., 2007b), the mass and angularmomentum relevant to the best fits are
questionably high (M ∼ 2–3 M⊙, j ∼ 0.2–0.4; e.g., Stella and Vietri, 2002; Boutloukos
et al., 2006; Török et al., 2007a).
Also the quality of the fits is not satisfactory with χ2 indicating a systematic deviation

between the expected and empirical trend.
It has been discussedwithin the framework of the RPmodel that the above discrepancies

could be connected to non-geodesic corrections to the orbital and epicyclic frequencies,
most likely originating in the presence of a neutron star magnetic field (Stella and Vietri,
1999, 2002; Stuchlík et al., 2007a; Török et al., 2007a). Notice that the formulae describing
the orbital motion appear in several QPO models, and the corrections should therefore be
valid also to these models, and not only to the particular RP model. When considering a
dominant influence of the central compact object magnetic field, two main kinds of such
corrections play a role. The first kind is connected to diamagnetic effects in hot plasma (see,
e.g., Stella and Vietri, 1999), while the second kind arises when assuming a specific charge
of the accreted plasma, caused, e.g., by interaction of a binary partner stellar wind with the
magnetic field.
In the present paper we discuss in detail the latter kind of non-geodesic corrections using

a fully general relativistic approach. We consider a magnetic field generated by an intrinsic
static dipole magnetic moment of a neutron star on a background of the Schwarzschild
geometry. We calculate the relevant frequencies of the non-geodesic charged test particle
motion, anddiscuss some implications following for thehot spot anddisc oscillationmodels
of the X-ray fluxmodulation.

2 CIRCULARORBITALMOTION INADIPOLEMAGNETIC FIELDONTHE
SCHWARZSCHILDBACKGROUND

The line element in the Schwarzschild spacetime has the familiar form

ds2 = −η(r)2 dt2 +
dr2

η(r)2 + r2(dθ2 + sin2 θ dφ2) , (1)

1 The samemodel relates the low frequencyQPO branch to the “Lense–Thirring” orbit precession.



Dipolemagnetic field on a Schwarzschild background 3

where η(r) is given by

η(r) ≡
(

1−
2M
r

)1/2
.

Wehave adopted here geometric units, c = G = 1, that we use throughout the paper, if not
stated otherwise.
Solving the vacuumMaxwell equations

Fµν
;µ = 0 , (∗Fµν

;µ = 0) ,

on the background of the spacetime geometry (1) for a static magnetic dipole moment µ,
parallel to the rotational axis of the star, one obtains formula for an exterior (r > R,
where R is the neutron star radius) electromagnetic four-potential Aµ (e.g., Wasserman
and Shapiro, 1982; Braje andRomani, 2001),

Aα = −δφα f (r)
µ sin2 θ

r
, (2)

which has the form of the flat space result, multiplied by a “relativistic correction” func-
tion f (r) given by

f (r) =
3r3

8M3

[
log η(r)2 +

2M
r

(
1 +

M
r

)]
. (3)

In case of potential (2), theMaxwell tensor Fµν , connected to the four-potential Aµ through
the relation

Fµν =
∂Aν
∂xµ
−
∂Aµ

∂xν
,

has only two independent non-vanishing components,

Frφ =
µ sin2 θ ( f (r)− r f ′(r))

r2 , Fθφ = −
µ f (r) sin 2θ

r
, (4)

which are related to the components of the magnetic field three-vector B as follows:

Frφ = Bθ , Fθφ = −Br .

Note that “coma” inEq. (4) denotes partial derivativewith respect to the radial coordinate r .
In a curved spacetime with the presence of an electromagnetic field, the equation of

motion for a charged test particle of massm and charge q reads

dUµ

dτ
+ Γ

µ
αβU

αUβ = q̃ Fµ
ν U

ν , (5)

whereUµ is the four-velocity and q̃ ≡ q/m is the specific charge of the particle.
Symmetry properties of the spacetime geometry (1) and electromagnetic field (2) allow

charged test particle motion which is restricted to the equatorial plane θ = π/2. Through-
out this paper we confine ourselves to studying only circular equatorial motion.2 The

2 See (Kovář et al., 2007) for a discussion of the existence of non-equatorial, so called “halo,” orbits.
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four-velocity then has only two non-vanishing components,Uµ = (Ut , 0, 0,Uφ). Solving
the radial component of Eq. (5) together with the normalization conditionUµUµ = −1 for
metric (1) and potential (2) we obtain the non-zero components ofUµ in the form

Ut =

√
r − q̃µΦ(r)Uφ

(r − 3M)
, (6)

Uφ =
Υ (r, q̃,µ)

2r3 (r − 3M)
, (7)

and the angular velocity defined asΩ = Uφ/Ut then reads

Ω =
Υ (r, q̃,µ)

r3/2
√

4r4 (r − 3M)− 2q̃µΦ(r)Υ (r, q̃,µ)
. (8)

HereΦ(r), χ(r),Ψ (r) andΥ (r, q̃,µ) are given by

Φ(r) ≡ f (r)− r f ′(r) ,

χ(r) ≡ (r − 2M)Φ(r)

Ψ (r) ≡
√

4Mr4(r − 3M) + (q̃µχ(r))2 ,

Υ (r, q̃,µ) ≡ Ψ (r)− q̃µχ (r) .

2.1 Epicyclic frequencies

The nodal precession, precession of periastron, and associated phenomena can be under-
stood in terms of the epicyclic frequencies of a test particle in a stable circular orbit.
Formulae for the radial and vertical epicyclic frequencies of a charged test particle in

the presence of a general electromagnetic field have been derived by Aliev and Galtsov
(1981); Aliev (2006). One may obtain the formulae by perturbing the particle’s position
around the circular orbit (r, θ) = (r0,π/2), i.e., by presuming that xµ(τ ) = zµ(τ ) + ξµ(τ )

where ξµ(τ ) is a small perturbation. Substituting this into the equation of motion (5) and
restricting to first order terms in ξµ one arrives at the relation for ξµ that takes the form of
an equation for a linear harmonic oscillator,

d2ξa

dt2
+ ω2

aξ
a = 0 , a ∈ (r, θ) .

Using the general formulae (Aliev, 2006), the explicit expressions for the epicyclic fre-
quencies in the spacetime geometry (1) andmagnetic field (2) are given by

ω2
r =

{ (
Uφ
)2 r6(3r − 8M) + 2M(M − r)r3 (Ut)2 + q̃µ

[
Φ(r)

(
2Uφr3(3r − 7M)+

+ q̃µχ(r)
)

+Uφr5(r − 2M) f ′′(r)
]}/

r7 (Ut )2 , (9)

ω2
θ =

Uφ
(
Uφr3 − 2q̃µ f (r)

)

(Ut )2 r3
. (10)
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One can easily check that in the absence of the Lorentz force (µ = 0 or q̃ = 0) the
expressions for the orbital (8) and epicyclic (9), (10) frequenciesmerge into thewell-known
formulae for geodesic motion in the Schwarzschild geometry:

Ω = ωθ =
√
M/r3 , ωr =

√
M(r − 6M)/r2 .

3 MAGNETICFIELD CORRECTIONSTOORBITALANDEPICYCLIC
FREQUENCIES

Consider now an astrophysically relevant situation of a rather slowly rotating neutron star
described by the Schwarzschild geometry that possesses a dipole magnetic field. Our
interest is focused to LMXBs with evidence of an accretion disc exhibiting the kHz QPOs.
We restrict our consideration to the approach of a thin accretion disc that is assumed to
consist of test particlesmoving along nearly circular geodesics in the equatorial plane.
Intrinsic magnetic dipole moment of the star can be obtained from the presumed mag-

netic field strength at the star surface. A locallymeasuredmagnetic field strength is defined
as a projection of the Maxwell tensor into an orthonormal basis of a static observer on the
surface of the star. For such an observer located at the equator of the star with radius R, the

Figure 1. Intrinsic magnetic dipole moment µ of the star as a function of the star radius R and
mass M for a fixed magnetic field strength B at the star surface. The z-axis is scaled in relative units
of µ/B, while the colour scaling at the 3D-plot surface shows values of µ for B = 107 Gauss =
2.875 × 10−16 m−1.
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magnetic field three-vector has only one non-zero component,

B θ̂ = Fr̂ φ̂ =
η(R)

R
Frφ .

Therefore, using Eqs (3) and (4), onemaywrite

µ =
4M3R3/2√R − 2M

6M(R − M) + 3R(R − 2M) log η (R)2 B
θ̂ .

The behaviour of µ as a function of M and R for fixed B on the star equator is illustrated
in Fig. 1. For a neutron star with a rather weak magnetic field strength, B = 107 Gauss =
2.875×10−16 m−1,massM = 1.5 M⊙ and radius R = 4M , wehaveµ = 1.06×10−4 m−2.
We have investigated behaviour of the orbital and epicyclic frequencies for various para-

meters of the considered magnetic field, and present the resulted frequencies for the above
value ofµ and two different values of q̃, q̃ = 5.555× 1010 and q̃ = 1.111× 1012. Both of
these values are still very low in comparisonwith the value q̃ = 1.111×1018 corresponding
to matter purely consisting of ions of hydrogen. Note that the Lorentz force in the con-
sidered equation of motion, and consequently the described effects, depend on the product
ofµ and q̃, and therefore varyingµ results in a similar effect on the investigated properties
as varying the specific charge q̃.
The left panel of Fig. 2, made for q̃ = 5.555× 1010, shows a high sensitivity of the radial

epicyclic frequency keeping qualitatively the same profile that is however shifted to lower
values and away from the central object. The influence on the orbital and vertical epicyclic
frequency is considerably smaller, and becomes more relevant for higher values of q̃ (see
the right panel of Fig. 2 corresponding to q̃ = 1.111 × 1012). Generally speaking, in the
presence of the assumedLorentz force the radial epicyclic frequencydramatically decreases,

Figure 2.Left: An illustration of the radial epicyclic, ν0
r = ω0

r /(2π), vertical epicyclic, ν0
θ = ω0

θ/(2π),
and orbital, ν0

K = ΩK/(2π) = νθ0 , frequency behaviour in the Schwarzschild geometry in a pure
geodesic case compared to case with a presence of an intrinsic external dipole magnetic field B =
107 Gauss on the surface of the star withM = 1.5 M⊙ and R = 4M (quantities νK, νθ and νr without
a superscript). Right: The same comparison but for a higher value of the specific charge q̃. Note
the much larger difference between the geodesic and corrected frequencies and the major shift of the
point where the radial frequency goes to zero, compared to the left panel.
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while the orbital and vertical epicyclic frequencies rather slightly increase. Described beha-
viour is qualitatively in accordance with what one would expect, as the considered Lorentz
force acting on the particles moving in the equatorial plane has only radial non-zero com-
ponent.

4 EFFECTIVE INNERMOSTSTABLECIRCULARORBIT (EISCO)

The presence of the Lorentz force naturally alters the location of a charged test particle’s
innermost stable circular orbit. For such an effective innermost stable circular orbit we

Figure 3. Top: Location of EISCO as a function of the test particle specific charge q̃ and the intrinsic
magnetic dipole moment µ of the star. The curves at the 3D-plot surface and their projections into
the µ-q̃ plane denote rEISCO = 10 M, 100 M, 1000 M . Bottom: Astrophysically relevant region of
theµ-q̃ planewith distinctive values of rEISCO.
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introduce a new abbreviation term – “EISCO” – as an equivalent to a commonly used
term “ISCO” in the purely geodesic case. Standard methods for obtaining the location
of the innermost stable circular orbit are based on investigation of the properties of the
particle’s effective potential (e.g.,Misner et al., 1973). Onemay aswell use the requirement
that the radial epicyclic frequency defined at this location must go to zero, as a small
radial perturbation of such particle’s position would induce its direct infall towards the
gravitational centre. Therefore the condition for rEISCO may be written as

ωr (rEISCO) = 0 . (11)

We present a numerical solution of the above equation in Fig. 3, which shows a high
sensitivity of rEISCO to q̃ . With growing values of q̃ it rapidly draws apart from the well-
known radius of ISCO in the Schwarzschild geometry, rISCO = 6 M . In case of µ =
1.06×10−4 m−2 corresponding to Fig. 2wefind that for q̃ = 5.555×1010 there is rEISCO =
7.39 M , while for q̃ = 1.111 × 1012 we obtain rEISCO = 22.16 M . For the extremal
specific charge q̃ = 1.111 × 1018 the location of EISCO orbit flies away onto rEISCO =
177864.76 M .

5 CONCLUSIONS

Orbitalmotion and the related epicyclic frequencies havebeen considered by several authors
as a key agent in their models of the high frequency QPOs. These models mostly assume
geodesic motion, although some non-geodesic corrections have been studied in the past,
e.g., due to pressure gradient forces (Blaes et al., 2007), or due to diamagnetic forces in
hot plasma interacting with a central compact object magnetic field (e.g., Stella and Vietri,
1999).
Non-geodesic corrections arising from the interaction of the central magnetic field with

a test particle specific charge (i.e., the Lorentz force) have, however, not been considered
in this context so far, and the formulae derived above therefore represent a first attempt to
describe the appropriate problemwithin a fully general relativistic regime. 3

As demonstrated in Figs 2 and 3, the magnetic field influence on the orbital motion may
be very significant. Even for astrophysically very low values of q̃ the calculated correction
to the radial epicyclic frequency and the associated location of the effective innermost stable
circular orbit (EISCO) is notably large, see Fig. 3. In other words, presence of the Lorentz
force strongly affects the location of the inner edge of the thin accretion disc.
Thepresence of thedipolemagnetic field also violates theνK = νθ equality corresponding

to spherical symmetry of the background Schwarzschild geometry. However, as seen in
Fig. 3, the corrections to the orbital and vertical epicyclic frequency aremuch less significant
than the correction to the radial epicyclic frequency. In fact, these two “vertical” corrections
become relevant only for q̃ matching a situation with a shift of ISCO inconsistent with the
present astrophysical view of LMXBs. Notice that the vertical epicyclic frequency exceeds

3 We restrict here ourselves by the following assumptions: the frame-dragging effects are not considered; the
neutron star magnetic field is fully dominant over themagnetic field generated by the currents in the disc.
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the Keplerian frequency, contrary to the case of rotating axially symmetric spacetimes,
e.g., Kerr spacetimes (Aliev and Galtsov, 1981). Hence, in the lowest approximation, the
influence of the specific charge of the accreted matter should enter the orbital QPOmodels
in the form of a corrected radial epicyclic frequency (9).

ACKNOWLEDGEMENTS

This work has been supported by the Czech grants LC06014 (P. B., E. S.) and MSM
4781305903 (Z. S., G. T.). The authors (G. T., P. B., E. S.) would like to thank the fishermen
community inDerítő-Tó, Tata, Hungary for a royal hospitality and inspiring atmosphere for
the research.

REFERENCES

Aliev, A. N. (2006), Epicyclic Frequencies and Resonant PhenomenaNear Black Holes: The Current
Status, arXiv: astro-ph/0612730.

Aliev, A. N. and Galtsov, D. V. (1981), Radiation from relativistic particles in non-geodesicmotion in
a strong gravitational field, Gen. Relativity Gravitation,13, pp. 899–912.

Belloni, T., Méndez, M. and Homan, J. (2007), On the kHz QPO frequency correlations in bright
neutron star X-ray binaries, Monthly Notices Roy. Astronom. Soc., 376(3), pp. 1133–1138, arXiv:
astro-ph/0702157.

Blaes, O. M., Šrámková, E., Abramowicz, M. A., Kluźniak, W. and Torkelsson, U. (2007), Epicyclic
Oscillations of FluidBodies. Paper III. NewtonianNon-Slender Torus, Astrophys. J., 665, pp. 642–
653, arXiv: 0706.4483, URL http://adsabs.harvard.edu/abs/2007ApJ...665..642B.

Boutloukos, S., van der Klis, M., Altamirano, D., Klein-Wolt, M., Wijnands, R., Jonker, P. G. and
Fender, R. P. (2006), Discovery of twin kHz QPOs in the peculiar X-ray binary Circinus X-1,
Astrophys. J., 653, pp. 1435–1444, arXiv: astro-ph/0608089v2.

Braje, T. M. and Romani, R. W. (2001), Magnetospheric scattering and emission in millisecond
pulsars, Astrophys. J., 550, pp. 392–396.

Kovář, J., Stuchlík, Z. and Karas, V. (2007), On existence of halo orbits in Kerr–Newman spacetimes,
pp. 125–138, this volume.

Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation, W. H. Freeman and Co, New
York, San Francisco.

Stella, L. and Vietri, M. (1998), Lense–Thirring Precession and Quasi-periodic Oscillations in Low-
Mass X-Ray Binaries, Astrophys. J. Lett., 492, pp. L59–L62, arXiv: astro-ph/9709085.

Stella, L. and Vietri, M. (1999), kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries as
Probes of GeneralRelativity in the Strong-FieldRegime, Phys. Rev. Lett., 82(1), pp. 17–20.

Stella, L. and Vietri, M. (2002), Strong Field Gravity andQuasi-Periodic Oscillations from LowMass
X-Ray Binaries, in V. G. Gurzadyan, R. T. Jantzen and R. Ruffini, editors, The Ninth Marcel
Grossmann Meeting. Proceedings of the MGIXMM Meeting held at The University of Rome “La
Sapienza,” 2–8 July 2000, volume A, p. 426,World ScientificPublishing.

Stuchlík, Z., Bakala, P. and Török, G. (2007a), in preparation.
Stuchlík, Z., Török, G. and Bakala, P. (2007b), On a multi-resonant origin of high frequency qua-

siperiodic oscillations in the neutron-star X-ray binary 4U 1636−53, submitted to Astronomy and
Astrophysics, arXiv: 0704.2318.



10 P. Bakala et al.

Török, G., Bakala, P., Stuchlík, Z. and Šrámková, E. (2007a), On a multi-resonant
origin of high frequency QPOs in the atoll source 4U 1636−53, pp. 489–499,
this volume, URL http://xmm.esac.esa.int/external/xmm_science/workshops/2007_
science/presentations/P2.6.pdf.

Török, G., Stuchlík, Z. and Bakala, P. (2007b), A remark about possible unity of the neutron star and
black hole high frequencyQPOs, Central European J. Phys., 5(4), pp. 457–462.

van der Klis, M. (2006), Rapid X-ray Variability, in W. H. G. Lewin and M. van der Klis, editors,
Compact Stellar X-Ray Sources, pp. 39–112, CambridgeUniversity Press, Cambridge.

Wasserman, I. andShapiro, S. L. (1982),Masses, radii andmagnetic fields of pulsatingX-ray sources:
Is the standardmodel self-consistent?, Astrophys. J., 265, p. 1036.



Proceedings ofRAGtime 8/9, 15–19/19–21September, 2006/2007,Hradec nadMoravicí, Opava, Czech Republic 11
S.Hledík and Z. Stuchlík, editors, SilesianUniversity inOpava, 2007, pp. 11–20

Modulation of high-frequencyQPOs

Michal Bursa
Astronomical Institute, Czech Academy of Sciences, Boční II 1401/1a, CZ-141 31 Praha 4,
CzechRepublic
bursa@astro.cas.cz

ABSTRACT
We study strong-gravity effects onmodulation of radiation emerging from accreting
compact objects as a possiblemechanism for fluxmodulation inQPOs. We construct
a toy model of an oscillating torus in the slender approximation assuming thermal
bremsstrahlung for the intrinsic emissivity of the medium andwe compute observed
(predicted) radiation signal including contribution of indirect (higher-order) images
and caustics in the Schwarzschild spacetime. We show that the simplest oscillation
mode in an accretion flow, axisymmetric up-and-down motion at the meridional
epicyclic frequency, may be directly observable when it occurs in the inner parts of
accretion flow around black holes. Together with the second oscillation mode, an
in-and-outmotion at the radial epicyclic frequency, itmay then be responsible for the
high-frequency modulations of the X-ray flux observed at two distinct frequencies
(twinHF-QPOs) inmicro-quasars.

Keywords: black hole physics – gravitation – X-rays: variability – quasi-periodic
oscillations (high frequency) – ray-tracing

1 INTRODUCTION

X-ray radiation coming from accreting black hole binary sources can show quasi-periodic
modulations at two distinct high frequencies (>30 Hz), which appear in the 3 :2 ratio (Mc-
Clintock and Remillard, 2004). Observations show that the solely presence of a thin accre-
tiondisk isnot sufficient toproduce theseHFQPOmodulations, because theyare exclusively
connected to the spectral state, where the energy spectrum is dominated by a steep power
lawwith some weak thermal disk component. We have shown recently (Bursa et al., 2004)
that significant temporal variations in the observed flux canbe accomplished by oscillations
in the geometrically thick flows, fluid tori, even if they are axially symmetric. Here we
propose that the QPO variations in the energetic part of the spectrummay come from such
very hot and optically thin torus terminating the accretion flow, which exhibits two basic
oscillatingmodes.
Relativistic tori will generally oscillate in amixture of internal and globalmodes. Internal

modes cause oscillations of the pressure and density profiles within the torus. The outgoing
flux is therefore directly modulated by changes in the thermodynamical properties of the
gas, while the shape of the torus is nearly unchanged, which is off our interest here. Global
modes, on the other hand, altermainly the spatial distribution of thematerial. Because light

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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rays do not follow straight lines in a curved spacetime, these changes can be displayed out
by effects of gravitational lensing and light bending.
In this paper we summarize extended results of numerical calculations and show how

simple global oscillation modes of a gaseous torus affect the outgoing flux received by an
static distant observer in the asymptotically flat spacetime and how the flux modulation
depends on the geometry and various parameters of the torus. In Section 2 we briefly sum-
marise the idea of the slender torus model and the equations, which are used to construct
the torus and to set its radiative properties. In Section 3we let the torus to execute global os-
cillations and using a numerical ray-tracing we inspect how these oscillationsmodulate the
observedflux. Thenweprovide a comparisonof ourmodelwith complexMHDsimulations.
If not stated otherwise, we use geometrical units c = G = 1 throughout this paper.

2 SLENDERTORUSMODEL

Observations show that the solely presence of a thin accretion disc is not sufficient to
produce the HFQPO oscillations, because they are exclusively connected to the spectral
state,where the energy spectrum is dominated by a steeppower lawwith someweak thermal
disc component. A model is more appropriate, where an outer cool disc is continuously
transitioned into or sandwiched by a hot, thick, but optically thin flow (Esin et al., 1998).
An optically thin advectiondominated accretion flow (ADAF) is mostly transparent for
photons, and therefore general relativistic light bending and lensing effects may gain a
particular importance. Significant temporal variations in the observed flux can then be
accomplished by global oscillations of such geometrically thick flow, fluid tori.
In order to explore, whether it is possible to obtain some flux modulation just by effects

of strong gravity, we set up a model of a possible accretion configuration, largely simplified
to a presence of a hot and optically thin luminous torus, optionally surrounded by a cool
opaque disc. The torus is considered in a slender approximation.
The equipotential structure of a torus is given by the solution of the Euler equation, for

which we assume a polytropic flow with purely azimuthal motion and an uniform specific
angular momentum ℓ. In the slender approximation, the solution can be expressed in
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Figure 1. Left: An illustration of the equipotential structure of a real relativistic torus (lower part) and
of our circular slender torus model (upper part) surrounding a black hole. Right: The density and
temperature profiles of a polytropic gas forming an accretion torus with the centre at r0 = 10.8 M .
Solid lines represent the slendermodelwith radius R0 = 2 M anddashed lines represent the real torus
filling the potentialwell of the same depth.
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terms of second derivatives of the effective potential and it turns out that the torus has
an elliptical cross-section with semi-axes in the ratio of epicyclic frequencies (Abramowicz
et al., 2006). For the model used here, wemake even greater simplification and use only the
expansion at r = r0 in the z-direction to obtain a slender torus with a circular cross-section
of equipotential surfaces (Fig. 1). For the emissivity we assume the torus to be filled with an
optically thin gas radiating by the bremsstrahlung cooling.

3 STRONGGRAVITYEFFECTSONLIGHTMODULATION FROMAN
OSCILLATINGSLENDERTORUS

Relativistic tori can generally oscillate in a mixture of internal and global modes. Internal
modes invoke pressure and density waves within the torus, while its shape remains nearly
unchanged. The outgoing flux is therefore directlymodulated by variations in the profiles of
thermodynamical properties and by the corresponding change of the local emissivity in the
optically thin medium. In this case, lensing or any general relativistic effect on the radiation
transport is not important, which is off our interest here. Global modes, on the other hand,
alter mainly the topological structure and spatial distribution of the material. Because light
rays do not follow straight lines in a curved spacetime, these changes can be displayed out
by effects of gravitational lensing and light bending.
So far, a certain level of non-axisymmetry has been preferred in proposed models, as it

was thought that a non-axisymmetry is a necessary condition for the X-ray fluxmodulation
in black-hole QPOs. Here we show that gravitational bending of the photon trajectories in
the vicinity of a black hole suffices to appreciablymodulate the flux observed at infinity even
if the source of radiation is axially symmetric.

3.1 Oscillation of a slender torus

We impose on the slender torus rigid and axisymmetric (m = 0) sinusoidal oscillations in
the vertical direction, i.e., parallel to its axis, as well as in the perpendicular radial direction.
Such assumptionwill serve us tomodel the possible basic globalmodes found byAbramow-
icz et al. (2006). In ourmodel, the torus is rigidly displaced from its equilibrium, so that the
position of the central circle of maximal pressure varies in time as

r(t) = r0 + δr sin(ωr t) , z(t) = δz sin(ωz t) ,

where ωz = ΩK =
(
M/r3

0
)1/2

is the vertical epicyclic frequency, in Schwarzschild geo-
metry equal to the Keplerian orbital frequency, and ωr = ΩK

(
1− 6rg/r0

)1/2 is the radial
epicyclic frequency. The torus is placed at the distance r0 = 10.8 M so that the oscillation
frequency ratio ωz :ωr is 3 :2, but the choice is arbitrary and only serves to mimic the ob-
served frequency ratio. In the default configuration, the cross-section radius is R0 = 2.0 M
and amplitudes of the both vertical and radialmotion are set to δz = δr = 0.1R0.
Two modes are assumed in numerical calculations: incompressible and compressible

mode. In the incompressible mode, the equipotential structure, the thermodynamical
quantities describing the torus and in particular its size are fixed and do not vary in time
as the torus moves. This helps to identify and fully understand the effects of light bending



14 M.Bursa

10−10

10−9

10−8

10−7

10−6

10−5

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 10 20 30 40 50 60 70 80 90
Inclination [deg]

Minkowski

10−10

10−9

10−8

10−7

10−6

10−5

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 10 20 30 40 50 60 70 80 90
Inclination [deg]

Schwarzschild

10−10

10−9

10−8

10−7

10−6

10−5

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 10 20 30 40 50 60 70 80 90
Inclination [deg]

Minkowski

10−10

10−9

10−8

10−7

10−6

10−5

P
ow

er
[(

rm
s/

m
ea

n
)2
/H

z]

0 10 20 30 40 50 60 70 80 90
Inclination [deg]

Schwarzschild

Figure 2. The inclination dependence of powers in the radial (red) and the vertical (blue) oscillations.
Top panel shows calculations in the flat spacetime, bottom panel shows powers as computed in the
curved Schwarzschild spacetime. Dashed lines represent the same calculations done with switched-
off g-factor (g ≡ 1).

on observed lightcurves and power spectra. The compressible mode, which ismore close to
a real situation, allows for the redistribution of gas in the torus in a response to changes in
the radial distance of the torus centre.
Figure 2 compares the dependence of the radial and vertical oscillation powers on chan-

ging inclination if the torus is incompressible (left) or compressible (right). We can see
that the power in the vertical oscillation stays unchanged, while the radial power is largely
affected, particularly if inclination is changed. There is a clear difference between the red
curve progression in the left and right panel in Fig. 2. It is caused by the inversion of the
luminosity dependence on the torus displacement, which in combination with the effect of
g-factor results in a reverse trend of theωr power.

3.2 Effect of spacetime geometry

In the Newtonian limit and when the speed of light c→∞, the only observable periodicity
is the radial oscillation (illustrated in Fig. 3). There is no sign of any modulation at the ωz
frequency in the lightcurve, although the torus is moving vertically. This is clear and easy to
understand, because the c→∞ limit suppresses the time delay effects and causes photons
from all parts of the torus to reach an observer at the same instant of time, so it is really seen
as rigidlymoving up and down giving no reason for modulation at the vertical frequency.
When the condition of the infinite light speed is relaxed, the torus is no longer seen as a

rigid body. The delays between photons, which originate at different parts of the torus body,
significantly alter its image. Those emerging from the front and back at the same coordinate
time will be detected at different instants separated by some short amount of time, which is
maximal for an edge-on view (i = π/2) and compared to the Keplerian orbital it canmake
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Figure 3. Power spectra of an oscillating torus calculated in the Newtonian limit (left), Minkowski
spacetime (middle) and the Schwarzschild spacetime (right). Viewing angle is 70◦.

up to about 10% at r0 = 10.8 M. The torus is seen from distance as an elastic ring, which
modulates its brightness also at the vertical oscillation frequency ωz due to the time delay
effect and the seeming volume change.
Curved spacetime adds the effect of light bending. Photons are focused by the central

mass’ gravity, which leads to a magnification of any vertical movement. Black hole is not a
perfect lens, so that parallel rays do not cross in a single point, but rather forma narrow focal
furrow behind it. When the torus trench the furrow (at high viewing angles), its oscillations
are greatly magnified by the lensing effect. This is especially significant in the case of the
vertical oscillation, as the bright centre of the torus periodically passes through the focal
line.

3.3 Effects of changing inclination, torus size, distance, and surrounding disc
position

The effect of inclination is probably the most featured, in spite of it is difficult to be directly
observationally determined. Changing the line of sight affect thepower in the radial/vertical
oscillation frequencies, because different effects are important at different angles. When
the torus is viewed face-on (i.e., from the top),we expect the amplitudeofωr to bedominant,
as the radial pulsations of the torus can be nicely seen and light rays passing through the
gas are not yet strongly bent. When viewed almost edge-on, the Doppler effect reduces
the power of ωr , while gravitational lensing amplifies the power in ωz . Thus we expect
the vertical oscillation to overpower the radial one. Figure 2 (left) shows the inclination
dependence of oscillation powers in theMinkowski spacetime (top panel) and in the curved
Schwarzschild spacetime (bottom panel).
The effect of the size of the torus is important to study, because it can be directly tested

against observational data. Other free model parameters tend to be fixed for a given source
(like inclination), but the torus size may well vary for a single source as a response to
temporal changes in the accretion rate. The power in the radial oscillation is correlated
with its amplitude, which is set to δr = 0.1R0 and grows with the torus size. It is therefore
evident, that the radial power will be proportional to R0 squared. If the amplitude was
constant or at least independent of R0, the ωr power would be independent of R0 too. Thus
the non-trivial part of the torus size dependence will be incurred by vertical movements
of the torus. Figure 4 (left) shows the PDS power profiles of both the radial and vertical
oscillations for several different inclinations. Indeed, the radial power has a quadratic
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Figure 4. Powers in the radial and vertical oscillations and their ratio as a function of the torus
size (top), distance from the graviting centre (middle) and as a function of an opaque disc distance
(bottom). Different viewing angles are plotted.

profile and is more dominant for lower viewing angles, which follows from the previous
paragraph. The power in the vertical oscillation is at low inclinations also quadratic and
similar to the radial one, but the reason is different. The time delay effect causes apparent
deformations from the circular cross-section as the torus moves up and down, i.e., to and
from the observer in the case of a face-on view. The torus is squeezed along the line of sight
at the turning points and stretched when passing the equatorial plane.
The distance of the torus from the gravity centre also affects the intensity ofmodulation in

observed lightcurves (Fig. 4,middle). The power in the radial oscillation is either increasing
or decreasing, depending on the inclination. Looking face-on, the g-factor is dominated by
the redshift component and the power inωr is increasing with the torus distance being less
dumped. When the view is more inclined, the Doppler component starts to be important
and the oscillation looses power with the torus distance. The critical inclination is about
70◦. The power of vertical oscillation generally decreaseswith the torus distance. It ismade
visible mainly by the time delay effect and because with the increasing distance of the torus
the oscillation period also increases, the effect is loosing on importance. An exception is
when the inclination is very high. The large portion of visible relativistic images causes the
vertical power first to increase up to some radius, beyond which it then decays. Both small
and large tori do not have much of visible secondary images, because they are either too
compact or they are too far. The ideal distance is about 11 rg – this is the radius, where the
torus has the largest portion of higher-order images, corresponding to the maximum of the
vertical power.
There can likely be an outer cool disc surrounding the torus, from which the torus is

formed, and which can as well have a substantial effect on light modulation. The Shakura–
–Sunyaev disc is optically thick and blocks propagation of photons crossing the equatorial
plane beyond its terminal radius. Most of the stopped photons has been strongly bent and
has carried information predominantly about the vertical mode, thus the presence or not-
presence of an opaque disc may be important for the power distribution in QPO modes,
namely the vertical one. The disc is considered as a geometrically thin and non-transparent
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body. It lies in the the equatorial plane (at z = 0) and goes from infinity down to some
terminal radius rd, which is a parameter of the model. For the purpose of this example,
the torus is put somewhat closer to the black hole, with its inner edge near the marginally
stable orbit. Its centre is at r0 = 9.4 rg, its size is R0 = 3.0 rg, and oscillation amplitudes
are δr = δz = 0.2 rg. The disc can extend as close as to the torus, but does not penetrate
into it (rd > r0 + R0 + δr). Figure 4 (right) shows how powers in the oscillationmodes are
changed if an opaque disc is present. The presence of a thin disc is important, if the disc
does not end far from the torus, but rather within a distance of ∼5 gravitational radii from
it, andwhen the viewing angle is moderate to high. Under these conditions the effect of the
torus obscuration by an optically thickmedium is capable to substantially change powers in
oscillations, and in particular in the vertical mode.

3.4 Comparison with numerical 3DMHDaccretion flow simulations

Although the model of an oscillating slender torus is greatly simplified, it shows the pos-
sibility of radiation modulation by acting of strong gravity on emerging photons. Due to
the level of abstraction, the obtained results are only qualitative. Nonetheless, they may
be compared with results obtained by numerical ray-tracing from a more realistic three-
dimensional magneto-hydrodynamic simulation of an accretion flow. Such a simulation
has been performed byM.Machida (Machida et al., 2005, 2006).
The initial state of the magnetohydrodynamical simulation is an equilibrium polytropic

(γ = 5/3) torus located at r0 = 70 rg with a nearly Keplerian distribution of angular
momentum, L = L0(r0) (r/r0)0.46. The torus is threaded by a weak toroidal magnetic
field (Okada et al., 1989) with the initial gas to magnetic pressure ratio β ≃ 100. The
presence of the strong gravitational field is simulated by using the pseudo-Newtonian po-
tential (Paczyński and Wiita, 1980) of a 10 M⊙ black hole. The self-gravity of the gas and
the radiative cooling are neglected.
The initial torus is lead to evolve and after several orbital periods the magnetic field is

amplified by number of MHD instabilities together with the differential rotation. The mag-
netorotational instability (MRI) driven turbulence develops and the torus deforms itself into
an accretion disc by transporting angular momentum outwards by Maxwell stress. In the
inner part, the matter accretes to the centre, while the disc is expanded radially by gaining
some angular momentum in the outer part. The radial angular momentum distribution
is very slightly sub-Keplerian, but because the efficiency of the angular momentum trans-
port rate is α ! 0.01, it becomes almost constant in the region 10 rg < r < 22 rg and
a small transitional constant angular momentum torus is created at about 16 rg. The ex-
istence of such tori appears to be a robust feature of many global magnetohydrodynamic
simulations (cf. DeVilliers et al., 2003).
The inner torus is an eccentric and time-varying structure. As a response to an event of

enhancedmass accretion, a crescent-like density fluctuation develops in the torus sustained
by a strong magnetic field. The fluctuation can persist several rotational periods, but is
finally destroyed by amagnetic reconnection between the lower and higher density regions.
The degree of eccentricity of the torus fluctuates in the response to variations in the mass
accretion rate being more pronounced after an increased mass inflow and the development
of the crescent.
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Figure 5. Instant snapshots and power spectra of a MHD accretion flow simulation by M. Machida
viewed from different positions (from top): 5◦, 30◦, 60◦ and 85◦.
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Figure 6. Instant snapshots and power spectra of a slender torusmodel at 16 rg viewed from different
positions (from top): 5◦, 30◦, 60◦ and 85◦.
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Theoutputs of the simulation areused to analyse theX-ray emission from the inner region
of the simulated accretion flow within 40 rg from the central black hole. Figure 5 shows the
resulting power spectra and instant snapshot images of the transient torus calculated for
several different inclinations. They may be compared with similar panels in Fig. 6, where
power spectra and snapshots of a slender torus model are shown. The parameters of the
model are chosen such that they resemble the size and distance of the torus in the MHD
simulation. The model, however, stays axi-symmetric and oscillates radially and vertically
at epicyclic frequencies, as it has been considered throughout this chapter. Despite of this
difference, the power spectra reflect a similar pattern of changing power of different peaks
depending on the observer’s inclination. An additional similarity between the model and
the simulated flow may be found, namely that the transient torus oscillates in the vertical
direction as well, but not in the rigid mode as the model does. The vertical oscillation
frequency is equal to the orbital frequency in the spherically symmetric spacetime, so that
the vertical oscillation consequently tilts the torus a little off the equatorial plane. This effect
may be seen in the bottom panel in Fig. 5.
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ABSTRACT
We show that in some astronomical sources containing black holes, the signature of
the circular photon orbit may be detected by searching for the shortest timescale in
the variability data. A positive detection would provide the direct empirical support
for Einstein’s general relativity in its super-strong field limit, relevant to black holes.

Keywords: Kerr–deSitter spacetime–blackhole–nakedsingularity– test particle–
cosmological constant – spin dynamics – equilibrium

1 INTRODUCTION

Whenever a possibly relativistic object is discovered, one of the first questions astrophysi-
cists ask iswhat is its compactness, i.e., whatmass is enclosed inwhat volume. While several
methods can be used tomeasure themass, knowing the object size is a greater challenge and
observers often deduce it from observed variability of the object, providing an upper limit to
its physical dimensions from the shortest characteristic timescale found in the lightcurve (or
using other approaches like, e.g., a cross-correlation analysis). Thus, the related question to
the one given above is what is the shortest time scale of strong gravity that may be measured
by astronomical observations?
In the context of thin-disk black hole accretion, a well known timescale is that connected

to themarginally stable orbit (ISCO). At this boundary, the almost circularmotion ofmatter
changes into an almost free-fall and the matter looses contact with the outer accretion
flow. The Keplerian orbital period at the ISCO is therefore the shortest timescale that may
be associated with the orbital motion in thin accretion disks. In the case of non-rotating
neutron stars and black holes, the ISCO is characterised by1

Rms = 6 , Tms = 2π
√

63 ≃ 92.3 . (1)

1 For an object with themassM, gravity defines natural scales for length, RG = GM/c2 , and time, TG = RG/c,
which are conveniently used throughout this paper to express any length or time of interest, e.g., radius, orbital
time, etc. To recover physical units, one only needs to multiply by RG = 1.477 × 103 (M/M⊙) meters, or by
TG = 4.926× 10−6 (M/M⊙) seconds.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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When hydrodynamical stresses in the accretion flow are important, accretion forms a
thick disk and the inner edge of the flow may move closer to the black hole, up to the
marginally bound orbit. Again, in the Schwarzschild spacetime this boundary is character-
ised by

Rmb = 4 , Tmb = 2π
√

43 ≃ 50.3 . (2)

Thus, formally, Tmb gives a (much) shorter time scale than Tms; it is, however, not clear
whether Tmb actually defines any observable time scale. In a more physically realistic
picture of thick accretion flows, magnetic stresses and in particular the MHD turbulence
are far more important than those of hydrodynamical origin, and the situation is very much
different. On the basis of numerical simulations, Krolik and Hawley (2002) argue that
the location of the inner edge in the MHD thick disks cannot be well defined, the flow is
non-axisymmetric and unsteady, so that no characteristic timescale could be identified.
For these reasons, it is generally believed that in the case of thin steady accretion disks,

Tms is a relevant observable time scale of strong gravity, while shorter scales, like Tmb, are
not practically observable.
But there is still another, yet much shorter and more fundamental, timescale that is

not connected to the accretion flow, but to the strong gravity itself. Close to the black
hole horizon, spacetime curvature becomes so strong that photons are able to make loops
around the black hole. For a static black hole, the timescale corresponding to the photon
orbit loop is

Rph = 3 , Tph = 6πg(Rph) ≃ 32.6 , (3)

where g(Rph) = (1− 2/Rph)−1/2 is the relevant g-factor for an observer at infinity.
If the conditions are right, signal from some transient events in accretion disk, e.g.,

random short-lived flares, may reach the observer repeatedly with delays corresponding to
the travel time around the photon orbit and still with a sufficient intensity to be practically
detected. In this articlewe report about an ongoing theoretical research on the conditions of
detectability of photon orbit patterns by the cross-correlation analysis of the variability data.

2 THESHORTESTVARIABILITY

Radiation from flaring events, which occur close to the black hole, can reach a distant
observer following several different paths. Depending on the source geometry, properties
and the surrounding environment, some of these possible ways may be obscured or light
can be scattered or absorbed and re-emitted. Most of the radiation is usually concentrated
in the direct image, but due to the light bending effect of strong gravity, the same event may
also be seen somewhat delayed in the indirect image (on the opposite side of the black hole)
or in higher-order images, which make at least one full loop around the photon orbit. The
interval between the arrival of individual images depends on geometry and on the mass of
the central object only (for themomentwe assume zero or small spin of the black hole), thus
providing uswith a possibility of direct massmeasurements.
In the next section we take a closer look at one possible scenario – a thin accretion disk

with flares on its surface.
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3 DISK FLARES

In systems, in which the thermal-dominated central black hole is surrounded by a thin
steady accretion disk terminated near the marginally stable orbit, the geometry is such that
first and second order photons from an event come to an observer with a delay that is in
most cases close to the photon orbital timescale Tph.
We consider flares above the surface of the accretion disk,whichmay spring up as a result

of magnetic reconnection similar to solar eruptions. Flares arise on both sides of the disk,
but since the accretion flow is opaque, radiation from the reverse side can only reach the
observer through looped photons and therefore much weakened. Thus we consider merely
flares on the side of the disk facing the observer (see Fig. 1). Light from those will reach the
observer’s eye directly, but hewill have a chance to see also photons, whichwind around the
black hole once and only after that escape to infinity. The delay between these two arrivals
can then be recovered from the lightcurve, as described in the following section.
Figure 2 shows calculated time delays between photons following the two distinct tra-

jectories, and how this delay depends on the orientation of the system with respect to the
observer. We can see that in the area close to ISCO, from which we get the strongest re-
sponse in the looped image, the delay stays in the narrow interval ∼35–45 TG, and thus the
time of arrival depends only a little on the place of emission.

4 SIGNALDETECTABILITY&ANALYSIS

Important factors for the detectability of the looped events are the signal-to-noise ratio,
timing resolution of the detector, and the ratio of observed intensities between first, second,
and higher order images.
While not much can be done about the detector resolution, an appropriate source selec-

tionmaybe crucial for a successful detection. Table 1 summarises the relevant observational
properties of different types of black-holes sources. Active galactic nuclei come out far best
from the comparison, followed by galacticmicroquasars and intermediate-massULXs. The

Table 1. A summary of typical luminosities, distances, count rates, short variability timescales, and
expected detection rate of counts per timescale period for various types of compact sources: active
galactic nuclei, ultra-luminous X-ray sources, and galactic black holes. Since the physical picture of
ULXs is not known, this type of sources is listed twice with different assumed masses: lines 1 and 2

represent intermediate-massand stellar-mass black holes, respectively.

luminosity distance count rate timescale cts/timescale
[erg/s] [kpc] [cts/s] [s] [cts]

AGN 1041–1043 103–104 100 –102 102 –104 102 –105

ULX1 1039–1041 103–104 10−2–100 10−2–10−1 10−4–10−1

ULX2 1039–1041 103–104 10−2–100 10−4–10−3 10−6–10−3

GBH 1036–1038 100–101 101 –103 10−4–10−3 10−3–100
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Figure1.Trajectories of direct and loopedphotons emerging fromaflare on the surface of anaccretion
disk.
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Figure 2. Map of time delay between direct and looped next order image in the disk geometry.
Different panels show different inclinations.
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situation is much worse for stellar-mass ULXs not only because of low signal level but also
due to strong beaming of outgoing radiation and short photon mean free path.
The ratio of observed intensities of looped images can be deduced from the asymptotic

expansion of the elliptic function driving the photon trajectory with periastron close to the
critical photon orbit (Luminet, 1979),

In+1/In ∝ e−2π ≃ 1 :500 . (4)

Thus, only the first higher order image is sufficiently strong to be practically detected. Its
intensity ratio with respect to the direct image can be up to 1 :100.
Due to the fact that we can detect at most two images from each flare that are shifted

in time by approximately the interval of photon loop period Tph, the suggested tool for
the lightcurve analysis is the autocorrelation function (ACF). Autocorrelation is useful for
finding repeating patterns in a signal, such as determining the presence of a periodic signal,
which has been buried under noise, or to quantifying howmuch is an observation related to
an adjacent observation. By a convolution of the signal with the time-shifted copy of itself
over a sufficiently long time interval, we can obtain a sign of the photon-orbit variability
manifested as an excess in ACF at very small time-shifts. Integration over a long interval
will erase all randomness in the lightcurve, while looped events will sum up and unfold.
The more narrow the spread of photon delays is, the more significant the excess in the
autocorrelation will be.

5 CONCLUSIONS

If the delay in arrival time from the vicinity of a black hole between “direct” and “looped”
photons (see Fig. 2) could indeed be found in the light curves of AGNs or microquasars, it
would not only provide an excellent tool to measure the mass and spin of the black hole, but
it would also provide direct evidence for the existence of (nearly) circular photon orbits. In
this way one would demonstrate the validity of an important prediction of general relativity
in the regime of extremely strong gravitational field.
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ABSTRACT
As first shown by Urpin (1984), thin accretion disks exhibit backflows. Using the
expansion formalism of Kluźniak and Kita (2000), we investigate the structure of a
thin polytropic disk in the Paczyński–Wiita pseudo-potential. Close to the equatorial
plane the radial velocity changes sign at a certain distance from the black hole. As
expected, the velocity profile corresponds to backflow at large distances and a strong
inflow close to the inner edge of the disk. The inner edge of the accretion disk turns
out to be at three Schwarzschild radii (r = 6MG/c2).

Keywords: Black holes – accretion disks – hydrodynamics –equilibrium

1 THINACCRETIONDISKS

Thin accretion disks are present in many astronomical systems, but cannot at present be
described by MHD simulations. However, they are fluid systems very nearly in hydrostatic
equilibrium, and this makes them amenable to an approximate description in hydrodynam-
ics. Here, we present an analytic solution to the three-dimensional structure of an accretion
disk in the Paczyński–Wiita Newtonian model of the Schwarzschild metric (Paczyński and
Wiita, 1980).
Mathematical treatment of thin accretion disks around black holes began with the paper

of Shakura and Sunyaev (1973), who solved a system of (simplified) equations of hydro-
dynamics for a viscous fluid assumed to be very close to hydrostatic equilibrium in the
Newtonian gravitational field of a point mass. Self-gravity of the disk can safely be neg-
lected for accreting white dwarfs, neutron stars, and black holes in binary systems. We
are not going to concern ourselves here with the treatment of radiation, which was also
discussed extensively by Shakura and Sunyaev. However, we assume a state of radiative
efficiency, which allows the disk to be cool (relative to the virial temperature), and hence to
be thin in the direction perpendicular to the equatorial plane.
The Shakura and Sunyaev (SS) thin disk is rotationally supported by orbital motion, and

is in vertical hydrostatic equilibrium. Shakura and Sunyaev showed that the latter condition
relates the ratio of disk thickness, h, to the radius r (of a given annulus) to the ratio of
the speed of sound cs to the Keplerian velocity rΩK. This ratio, ε ≡ cs/(rΩK) ≈ h/r
defines a small parameter in the problem, which we will exploit later. The presence of

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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dissipation leads to the transport of angularmomentum outwards (away from the source of
gravity), and a concomitant inflow of matter (accretion) on a timescale much longer than
the orbital timescale.
Postulating that the leading viscous stress term, the r -φ component of the stress tensor,

ηr ∂Ω/∂r , is proportional to the pressure, Shakura and Sunyaev were able to solve the ver-
tically integrated equations ofmotion, under the boundary condition that the viscous torque
vanishes at a certain radius, taken to be equal to the radius of the innermost stable circular
orbit around a black hole, 6GM/c2 in the Schwarzschild metric. Later, this boundary con-
dition in aNewtonian calculationwas shown (Muchotrzeb andPaczyński, 1982) tobe a very
good approximation to the correct one of transonic flow in the Kerr metric (Stoeger, 1976).
The nature of accretion flow through the inner boundary in the Kerr metric was elucidated
in a study of the differential topology of accretion disks by Abramowicz et al. (1978) who
found that one of the isobaric surfaces has an inner cusp.
Urpin (1984) showed that asymptotically (at large radial distances from the inner edge)

the velocity field in a thin disk is qualitatively different from its average over the disk thick-
ness. In particular, close to the equatorial plane the flow is directedmore or less radially out-
wards. Only further away from thediskmid-plane (i.e., at higher values of the z co-ordinate)
is the flow directed radially inwards, as one may expect for an accreting black hole. The
global flow pattern in a thin disk was found by Kluźniak andKita (2000), see Fig. 1, below.

Figure 1. The general character of flow in a thin accretion disk. This figure (Fig. 6a of Kluźniak and
Kita, 2000) shows themeridional cross-section of the inner parts of an accretion disk. The abscissa is
the cylindrical radial r co-ordinate in units of the inner edge of the disk, the ordinate is the cylindrical
z co-ordinate in the same units. Note that the vertical scale is greatly expanded, the actual z/r ratio is
less than 0.1. The direction of velocity vectors is indicated. Close to the surface of the disk, the velocity
of the fluid is directed towards the inner edge of the disk. The continuous line is the locus of points
where the direction of flow is vertical (perpendicular to the plane of the disk, and directed towards
it). To the left of this line, the flow is inwards, to the right of this line the flow is directed outwards.
A stagnation point (here at an abscissa of ∼ 3.5) is present in the equatorial plane. Note that the
magnitude of velocity is not plotted, i.e., the velocity vectors are normalized to unity in the figure.
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Kluźniak and Kita’s (KK) analytic calculation, just like Shakura and Sunyaev’s, was
carried out for a Newtonian 1/R potential, and with the same inner boundary condition of
vanishing torque at a certain prescribed radius. This leads to well known divergencies at
the inner edge, which are an artifact of the boundary condition. As a first step to finding
the three-dimensional structure of an accretion disk in the Kerr metric, we repeat the KK
calculation in the Paczyński–Wiita (PW) pseudopotential. This will allow us discard the
inner boundary condition of the SS disk.
Formotion in the PWpotential

ψ = −
GM
R − rS

, (1)

where rS = 2GM/c2 is the Schwarzschild radius, the role of Keplerian angular velocity
is played by Ωg ≡ ΩK/(1 − r/rS), with r the cylindrical radial co-ordinate, and R =
(r2 + z2)1/2. However, the correct Schwarzschild radial position of the ISCO is reproduced,
rms = 6MG/c2 (Paczyński andWiita, 1980).

2 THEEQUATIONSANDTHEKKEXPANSION

To obtain the structure of a thin accretion disk, we solve the equation of continuity and the
(generalized)Navier–Stokes equation

∂ρ

∂ t
+ ∇ · (ρV ) = 0 , (2)

∂V
∂ t

+ (V · ∇)V = −
1
ρ

∇P −∇ψ +
1
ρ

∇ · σ (3)

with a viscous stress tensor

σik = η

(
∂vi
∂xk

+
∂vk
∂xi
−

2
3
δik
∂vl
∂xl

)
+ ξδik

∂vl
∂xl

, (4)

under the following assumptions. The system (disk) is

1. time independent,
2. azimuthally symmetric,
3. reflection-symmetric in z = 0 plane,
4. thin, z/r ≪ 1,
5. subject to an alpha-like viscosity,
6. described by a polytropic e.o.s., n = 3,
7. in the Paczyński–Wiita potential.

Assumption 5 requires a comment. For comparison with the SS solution of the height-
integrated equations, we would like to have a similar viscosity model. However, unlike SS,
we use all the components of the stress tensor, and we need to specify the coefficient of
viscosity, η = νρ. To lowest order (the only one we need for this coefficient) we use

ν0(r, z) = α

(
1 +

1
n

)−1 c2
s0(r, z)
Ω0

, (5)
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which yields an r -φ component of the stress tensor similar in value to the SS one. As it turns
out, all terms involving the bulk viscosity, ξ , are third order or higher in ε, so we do not need
to specify the bulk viscosity, except to say that it is of the same order as η, or higher.
Assumption 6 is one of convenience only. We model an efficiently cooled disk with

a polytrope. However, the effects we describe are dynamic. As shown by Regev and
Gitelman (2002), the KK results for the flow pattern are reproduced when the polytrope of
assumption 6 is replaced by an ideal-gas e.o.s., with radiative transfer treated numerically.
Assumption 7 is the only new ingredient of the calculation, which otherwise follows

closely the KK paper. The method of solution is the Kluźniak and Kita expansion in z/r ,
whereby the equations are solved order by order in the small parameter, after all quantities
are scaledwith their characteristic values and then expanded systematically:

u ≡
vr
c̃s

= u0 + εu1 + ε2u2 + · · · , (6)

v ≡
vz
c̃s

= v0 + εv1 + ε2v2 + · · · , (7)

cs
c̃s

= cs0 + εcs1 + ε2cs2 + · · · , (8)

Ω

Ωg
= Ω0 + εΩ1 + ε2Ω2 + · · · , (9)

ρ

ρ̃
= ρ0 + ερ1 + ε2ρ2 + · · · , (10)

η

η̃
= η0 + εη1 + ε2η2 + · · · . (11)

For example, the equation of continuity will now have the form

ε

r
∂

∂r
(rρu) +

∂

∂z
(ρv) = 0 , (12)

reflecting the fact that in a thin disk radial gradients are suppressed by a factor of ε relative
to the vertical ones. An immediate consequence of Eq. (12) is that the z component of
velocity is of higher order in ε than the radial component. However, “higher order” is not
the same as “always smaller.” The KK solution to the e.o.m. reveals a surface within the
disk throughwhichflow is purely vertical (perpendicular to the equatorial plane), see Fig. 1,
and the same is true for the solution discussed here.

3 BOUNDARYCONDITIONS

We take the density to vanish sufficiently far above (or below) the mid-plane of the disk.
For a polytrope, of course, the density goes to zero at a definite height. With this b.c., the
azimuthal component of the e.o.m.,

ρ
vr
r2
∂

∂r
(r2Ω) + ρvz

∂Ω

∂z
=

1
r3
∂

∂r

(
ηr3 ∂Ω

∂r

)
+
∂

∂z

(
η
∂Ω

∂z

)
,
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can be integrated vertically and radially to yield

ṁ( j − j+) = −r3
∫ +∞

−∞
η dz

∂Ω

∂r
, (13)

where, ṁ is the (scaled)mass accretion rate, j is the vertical average of angularmomentum
per unit mass, r2Ω , and j+ is a constant of integration. The SS and KK disks (in the
Newtonian 1/R potential) extend down to a radius where j = j+, and hence the height of
the disk goes to zero there. This is the zero-torque assumption of SS, discussed in Section 1
above. Here, in the PWpotential this assumption is no longer necessary.

4 THESOLUTION

To present the flavour of the calculation, let us discuss the radial component of the e.o.m.

vr
∂vr
∂r

+ vz
∂vr
∂z
−Ω2r = −

∂ψ

∂r
−

1
ρ

∂P
∂r

+
1
ρ
Fr , (14)

with

Fr =
2
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∂r
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−
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[
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]
.

The scaled version is
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. (15)

In zeroth order all terms disappear, except for the last term on the left side and for the first
term on the RHS of Eq. (14), with the solution

Ω0 = r−3/2
(

1−
rg

r

)−1
. (16)

To this order, the equation simply states that the lowest order azimuthal velocity is equal to
the orbital velocity of a test particle in circular orbit,Ω = Ωg.
In higher orders we are not so lucky. The second order (in ε) equations form a system

as complicated as can be – we have to solve coupled, partial, second order differential
equations. Luckily, an ansatz may be used (KK), which converts the system to algebraic
equations.
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The solution for angular velocity is qualitatively similar to that of KK. Close to the inner
edge of the diskΩ is superKeplerian, while for r ≫ rS it is subKeplerian. The solution for
radial velocity is considerablymore interesting:

u1(r, z) = αΩ0
h2

r

⎧
⎨

⎩

11
8 + rS

r
(
1− rS

r
)−1

[
7
3 + rS

r
(
1− rS

r
)−1

]

72α2
25 +

[
1
2 −

rS
r
(
1− rS

r
)−1

]

×

[
6
5

(
1−

z2

h2

)
+

72α2

25
1
2 −

rS
r
(
1− rS

r
)−1

]

−
d ln h
d ln r

[
3
2 + rS

r
(
1− rS

r
)−1

1
2 −

rS
r
(
1− rS

r
)−1

]⎫⎬

⎭ . (17)

The radial velocity is of the order ε2Ωr and proportional to the viscosity coefficient. In the
limit of rS → 0 the solution goes over to that of KK, as the PW potential goes over to the
Newtonian one. However, for rS ̸= 0 the last two denominators in Eq. (17) go to zero at
r = 3 rS, and so the radial velocity becomes divergent (and negative), indicating supersonic
inflow close to the position of the ISCO, at r = 3 rS = 6MG/c2. On the other hand, for
r ≫ rS, where dh/dr ∼ h/r , the last term is no longer dominant in the mid-plane of the
disk and the radial velocity is positive, corresponding to outflow near the midplane of the
disk, as in Fig. 1.

5 CONCLUSIONS

It is possible to solve equations of viscous hydrodynamics in 3D analytically for the vertical
structure of an accretion disk. A non-trivial flow pattern in the meridional plane appears
even for an axisymmetric disk, including a backflow. Close to the inner edge of the disk the
fluid flows inwards at all heights within the disk. In the mid-plane of the disk a stagnation
point separates the region of inflow and backflow (Kluźniak and Kita, 2000).
We have obtained an analytic solution for a thin accretion disk in the Paczyński–Wiita

Newtonian model of black-hole gravity, without imposing an inner boundary condition.
The solution exhibits supersonic inflow close to the radius of the innermost (marginally)
stable circular orbit, i.e., at r = 6MG/c2.
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ABSTRACT
SgrA∗ is a source of strongly variable emission in several energy bands. It is generally
agreed that this emission comes from the material surrounding the black hole which
is either falling in or flowing out. The activity must be driven by accretion but the
character of accretion flow in this object is an open question. We suggest that the
inflow is dominated by the relatively low angular momentum material originating
in one of the nearby group of stars. Such material flows in directly towards the
black hole up to the distance of order of ten Schwarzschild radii or less, where it
hits the angular momentum barrier which leads naturally to a flow variability. We
study both the analytical and the numerical solutions for the flow dynamics, and we
analyze the radiation spectra in both cases using the Monte Carlo code to simulate
the synchrotron, bremsstrahlung and the Compton scattering. Our model roughly
reproduces the broad band spectrum of Sgr A∗ and its variability if we allow for
a small fraction of energy to be converted to non-thermal population of electrons.
It is also consistent (for a range of viewing angles) with the strong constraints on
the amount of circumnuclear material imposed by the measurements of the Faraday
rotation.

Keywords: SgrA∗ – black hole – accretion – radiation spectra

1 INTRODUCTION

The character of the accretion flow onto a black hole depends on the initial angular mo-
mentum of the material. This angularmomentum is specified by the outer boundary condi-
tions which depend on the relative motion of the donor with respect to the black hole. This
angular momentum corresponds to a certain circularization radius, i.e., the radius where
this angularmomentum is equal to the local Keplerian value. In binary systems the material

1 See Introduction for specification of whatwemean by low angular momentum.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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comes from the secondary star and in general is possess high angularmomentum due to the
orbital motion. In Low mass X-ray binaries the flow proceeds through an inner Lagrange
point and the circularization radius is a significant fraction of a Roche radius around a
black hole, of order of 104 Rg (Rg = GM/c2). In high mass X-ray binaries the accretion
flow comes from the intercepted focused wind, so the circularization radius is smaller but
still large, of order of 103 Rg. In such case the inflowing material form an accretion disk
around a black hole and the inflow proceeds due to the angular momentum transfer. Apart
from the outermost region and the region close to the ISCO (innermost stable circular or-
bit), the distribution of the angular momentum is relatively smooth and not much different
from the Keplerian law. The exact departures from Keplerian motion depends on the disk
temperature (or more exactly, on the pressure distribution).
In active galactic nuclei (AGN) the source of material is less specified. The material

comes either from the stars (in the form of stellar winds) or from the gaseous phase of the
galacticmaterial. Bright AGN (quasars, Seyfert 1 galaxies) show the presence of accretion
disks similar to the disks in binary systems so we can conclude that the angularmomentum
reaching the galactic center is high. In sources showing water maser activity we observe
the outer parts of the disk directly, and in most sources the motion of the disk material is
Keplerian. However, in weakly active galaxies like SgrA∗ or giant elliptical galaxies we see
no direct evidence of a disk. In SgrA∗ the presence of the cold disk is actually excluded
by the lack of eclipses of the stars which move very close to the central black hole and are
systematically monitored since several years.
Since in weakly active galaxies there are no direct observational arguments for any value

of the angular momentum of the donated material and the location of material sources,
three types of models are being considered:

• high angular momentum flow, with circularization radius of order of hundreds-thou-
sands of Rg;
• low angularmomentum flow, with circularization radius of order of a few Rg;
• spherical and quasi-spherical accretion, without angularmomentum barrier.

The high angular momentum flow solutions for weakly active galaxies generally belong
to ADAF (advection dominated accretion flow) family (Ichimaru, 1977; Narayan and Yi,
1994), with possibly additional effects like outflows (Blandford and Begelman, 1999) and
convection. In this case the flow is not exactlyKeplerian since the pressure gradients are im-
portant, but the local ratio of the angular momentum to the Keplerian angular momentum
in most part of the flow is not wildly different from unity, and the angular momentum
transfer (through viscosity) or angularmomentum loss (throughmagnetic wind) at all radii
is essential. Stationary solutions usually exist, and asymptotically the density of the flow
approaches zero at infinity.
In spherical and quasi-spherical flow there is no angular momentum barrier so the loss

of angular momentum is not the necessary condition for the accretion to occur. Examples
of such solutions are: purely spherical Bondi flow or flows where the angular momentum
density is below the minimum angular momentum at the circular orbit around a black hole
which is given by

lmin = 3
√

3GM/c2 (1)
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in case of Schwarzschild black hole; more general formula for a Kerr black hole can be
found in Bardeen et al. (1972). In Bondi solution (Bondi, 1952; Baganoff et al., 2003) the
outer boundary condition are specified by the density and the temperature of the uniform
medium surrounding black hole at large distances. The flow velocity is zero at infinity, the
inflow becomes transonic at the Bondi radius, and the supersonic flow reaches the black
hole horizon. The Bondi radius depends significantly on the gas properties (e.g., polytropic
index; Bondi radius is of order of thousands of Rg for relativistic flow with γ = 4/3 but
is approaches zero if γ → 5/3, typical for perfect fluid non-relativistic solution), but the
accretion rate is much less sensitive to those assumptions. Purely Bondi flow has generally
very low radiative efficiency so it cannot reproduce the observed luminosity in most weakly
active galaxies (Moscibrodzka, 2006). If the accreting material at the outer boundary
condition has certain angular momentum l < lmin, the dynamics of the flow is slightly
modified in comparisonwith Bondi flow and the flow is not spherically symmetric anymore
but the stationary solution for the flow always exists.
The intermediate case of low angular momentum the situation is the most complex as

initially the flow behaves as the Bondi flow but close to the black hole the flow starts
suddenly to feel the angular momentum barrier (Abramowicz and Zurek, 1981). In this
case analytical stationary solutions frequently do not exist. In numerical solutions the flow
is variable and does not reach a stationary solution in the computing time. If the angular
momentum of the donatedmaterial is also a subject of changes (e.g., the result of the stellar
motion), a truly stationary solution indeed can never be reached for physical reasons.
In the case of SgrA∗ the available spatial resolution is the highest and we can have

the best insight into the sources of material (Genzel and Karas, 2007). Therefore, in the
present paper we concentrate specifically on this source and we argue that the low angular
momentum flow is an interesting and promising option for the flow description.

2 SGRA∗ SURROUNDINGANDTHESOURCEOFMATERIAL

At the central parts of our Galaxy there are a few stellar populations and each of them
provides stellar winds. The closest O/B stars (at distances of a small fraction of a parsec)
used for the mass measurements have moderate winds; much stronger winds come from
more evolved stars being at distances up to a few parsecs. If a single star dominates as a
donor star, and the wind velocity is larger than the stellar orbital velocity, there is a zero
angular momentum line joining the donor star and the black hole, so the net angular mo-
mentum flowing in is likely to be low (Loeb, 2004; Mościbrodzka et al., 2006). Estimates of
the ram pressure indicate that a single source, IRS 13E (the compact group of Wolf–Rayet
stars) with the strongest wind (e.g., Rockefeller et al., 2004) indeed dominates independ-
ently from the relatively large distance from the central black hole (Mościbrodzka et al.,
2006).
Although the ram pressure argument strongly depends on the adopted wind outflow rate

and wind velocity, the additional argument against the dominance of the nearby young
O/B stars comes from the lack of obvious correlation between the activity level and stellar
passages. On the other hand, un-modulated flow can come from stars forming amysterious
ring-like structure at a distance of a parsec scale (Paumard et al., 2006). In this case the
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material might have very large angular momentum, and even a cold disk may form, as
postulated by Nayakshin and Sunyaev (2003). However, the periodicity seemed to be seen
in the NIR and X-ray flares (Genzel et al., 2003; Bélanger et al., 2006) and the absence
of eclipses does not seem to support cold disk scenario. The motion of IRS 13E differs
from that of other stars and seems to be significantly eccentric. Detailed studies of the
observational consequences of all scenarios are necessary to solve the issue.

3 ANALYTICALSOLUTIONSFORTHEDYNAMICS

Analytical solutions can be obtained if the description of the flow is simplified: outflow
and viscosity are neglected, the flow is polytropic and the gravity is described by pseudo-
Newtonian potential. The problem was studied in numerous papers following the idea
of Abramowicz and Zurek (1981).

3.1 Transonic solutionswith and without shocks

The existence and the character of solution depends critically on the interplay of the solution
parameters: polytropic index, energy density and angular momentum density (e.g., Das
et al., 2003). The equations usually show the presence of three critical points: the outer one
is direct generalization of the Bondi radius, the inner one describes the expected transition
to the supersonic flow below the ISCO and the intermediate point is unphysical (in a sense
it is not of the saddle type and the flow cannot pass there smoothly from subsonic to
supersonic solution). Usually the flow passes from subsonic flow at infinity to supersonic
flow close to horizon either at the outer or at the inner critical point. For a certain range
of the parameters, it is also possible to find a second solution, with a shock (satisfying
the standard Rankine–Hugoniot conditions) located between the outer and the inner sonic
point. Such a shockmay, but not must, form.
The eventual shock development is likely to be related to the past state of the accretion

flow. For a fixed value of polytropic index and energy, there is a specific value of the angular
momentum density at which the solution changes from transonic at outer to transonic
at inner critical points. This change of flow properties is dramatic, and therefore the
flow slowly crossing this angular momentum border is likely to develop a shock instead of
following a new shock-less solution since this allows for a slow and continuous change in
the flow properties (shock is initially weak). The discussion of this issue will be presented
elsewhere (Das, Czerny &Mościbrodzka, in preparation).
For large enough angularmomentum there is no analytical solution which extends down

to the black hole even if a shock is allowed, and in this case the dynamics can be described
analytically only, e.g., down to a fewa a few tens of Rg (Mościbrodzka et al., 2006). This part
of the flow is likely to be stationary while the inner part must form a kind of unstable ring.

3.2 Exemplary spectra

The radiation spectra were calculated with the code described in Moscibrodzka (2006)
and later generalized to non-spherical distribution of the inflowingmaterial (Mościbrodzka
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Figure 1. The two exemplary spectra models of Sgr A∗ for two values of the angular momentum
density in analyticalmodel. One of the solutions extends only down to 20 Rg and correspondnaturally
to the weakly variable part of the flow. Thermal distribution of electrons was assumed. Dots mark the
data points or upper limits in radio and NIR, and three representative levels of radio emission from
Chandra aremarked as power lawswith slope errors.

et al., 2006). The emission processes taken into account include synchrotron radiation,
bremsstrahlung and Compton scattering.
Two examples of the spectra are shown in Fig. 1. The spectra reproduce the NIR peak

although are short of the data points at long wavelengths. The level of the continuous
emission in X-rays is reproduced by the higher angular momentum model, so we can
speculate that the emission of the innermost unstable ring, not described by a stationary
solution, may account for the strongly variable part of the X-ray flux.

4 MHDSIMULATIONSOFTHE FLOWDYNAMICS

4.1 Flowdescription

Exploratory phase of the use of MHD simulations for modelling SgrA∗ time-dependent
spectra made use of the simulations which were performed by Proga andBegelman (2003).
The setup assumed the almost Bondi flow. The input of material was set at 1.2 RB (where
RB is the Bondi radius), which in turn was equal to 2× 103 Rg, and the angularmomentum
of the new material was 4Rgc at the equatorial plane. The time-dependent computations
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were performed for a few dynamical timescales at the outer radius which gave the time-
dependent distribution of the energy density, velocity and the magnetic field. The flow was
strongly time-dependent, with large scale fluctuations seen at the end of the computer run
as well. The inflow was accompanied by a significant outflow. The computations never
fully reached the exact stationarity condition in a sense that the inflow rate was not quite
balanced by the outflow and accretion rate. However, in reality the flow also may not have
time to reach equilibrium since the donor starmoves (long termeffects) and theWolf–Rayet
stellar winds show considerable clumpiness and overall variability (short timescale effects).
Time-dependent electron temperature distribution was obtained by assuming several

channels of energy transmission: (i) Coulomb coupling between the ions and electrons,
(ii) direct heating of electrons due to compression, (iii) electron radiative cooling, and
(iv) electron advection. Optionally, we also allowed a fraction of energy to be in a form of
non-thermal electrons. In order to simplify the computations, at eachmoment the flow was
assumed to be stationary, i.e., time-dependent solutions for the flow dynamics were treated
as frozen frames (for a detailed description, seeMościbrodzka et al., 2007).

4.2 Spectral variability

Flow variability was reflected in variability of the broad band spectra. Exemplary states
are shown in Fig. 2. We see that the pure thermal electron distribution cannot represent
the X-ray variability. The variable emission comes from the inner region of the flow in the
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Figure 2. MHD simulations: the exemplary broad band spectra of Sgr A∗ for four different time
moments labelled as A,B,C and D. Dots mark the data points or upper limits in radio and NIR,
and three representative levels of radio emission from Chandra are marked as power laws with slope
errors. Lower lines represent solutionswith only thermal electrons, upper lines show solutions with a
fraction of energy in a population of non-thermal electrons.
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form of synchrotron emission, and for thermal electrons this component does not extend
to X-rays. Bremsstrahlung emission, and Compton scattered emission comes from more
extended region where variability is weaker and/or smeared. Therefore, the presence of
non-thermal population is essential.
The amplitude of the variability in the timescales recorded in MHD simulations (a day)

was very large, over an order ofmagnitude so the variability in the overall accretion rate (one
order of magnitude) is additionally enhanced at some wavelengths (particularly at NIR) by
the spectral effects.
The relation between the dynamics and the spectra is rather complex as it is strongly non-

linear. There is no one-to-one correspondence between the accretion state and the predicted
spectrum. For example, two states with similar accretion rates at the inner edge can have
different spectra, or two states with different accretion rates can have similar spectra.
The specific issue is the description of the outer parts of the flow. Bremsstrahlung

dominates there, and the measured flux depends on the size of the emitting region. Since
the spatial resolution available inX-ray band is low in comparisonwith the modelled region
(even in SgrA∗) this is an additional problem in comparing the models to the data.

4.3 Faraday rotationmeasure

The strongest observational constraint for the models comes from the estimates of the
Faraday rotation measure towards SgrA∗. The observed polarization and the change of
its angle indicate very low density plasma along the line of sight to the source. Our MHD
model allows to calculate the integrated expected rotation measure as a function of the line
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Figure 3. The determination of the Faraday rotation measure from the model, as a function of the
viewing angle of an observer, for the same four different time moments labelled as A,B,C and D.
Horizontal lines show the upper and the lower limit from themeasurements ofMarrone et al. (2006).
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of sight. The result is shown in Fig. 3. For some inclination angles the model is consistent
with the observational limits.

5 RECENTDEVELOPMENTS

5.1 GR effects

The computations presented in previous sections did not include the effects of General
Relativityproperly– eitherpurelyNewtonianapproachwasused (withGReffectsmimicked
by the flow cut-off at 6Rg) or pseudo-Newtonian potential was adopted. Since the black
hole in Sgr A∗ is likely to be rotating, more appropriate approachwould be useful, or at least
some estimates must be performed of an error to the spectrum due to the negligence of GR
effects.
Analytical solutions for the low angular momentum flow in the Kerr metric are well

known (Barai et al., 2004) and can be used to determine the flow dynamics. Spectral
computations using the Monte Carlo code require computing millions of photons so ray
tracing for each of them is too time consuming if a number of models is to be calculated.
However, we can calculate the escape probability of a photon as a function of radius, for a
given Kerr parameter and we can test whether it depends significantly on the motion of the
emitter (i.e., the solution for the flow dynamics).
The computations are done in a standard way (see, e.g., Schee et al., 2005 and the ref-

erences therein) by integrating the photon paths for 100,000 photons emitted isotropically
within the frame of the emitter at a given radius, and the calculations are performed for
several radial points.
This work is still in progress, but in Fig. 4 we show an example for a specific dynamical

solution with a shock. For a comparison, in the lower panel we also show the result for the
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Figure 4. The radial dependence of the Mach number for a solution with the shock and the corres-
ponding escape probability; Kerr parameter a = 0.3. Dashed line in the lower panel shows the
escape probability for a solutionwithout a shock, withmuch larger radial velocity of the emitter in the
innermost part of the flow.
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solutionwithout a shock (dashed line). We see that thematerial effective emissivity ismuch
higher in the casewith shock, even without the shock emission included. Therefore, the GR
effects should be estimated separately for each dynamical solution.

5.2 New dynamical simulations

Also the dynamical MHD simulations used in the previous study was not fully satisfactory
from the point of view of SgrA∗ modelling. First of all, the results of the simulations
were not recorded densely enough in time to allow us to follow as fast time variability
as 17 minutes seen in QPO-like events. New simulations, better suited for the centre
of our Galaxy, are currently being performed (Mościbrodzka & Proga, in preparation).
The preliminary results show that indeed the shortest timescale variability is seen in the
dynamical simulations.

6 CONCLUSIONS

Lowangularmomentumaccretionflowisapromising scenario for the accretionontoSgr A∗

due to its natural variability pattern. The flow is slightlymore energetically efficient than the
purely spherical Bondi flow and can reproduce both the required level of the luminosity and
is consistent with the data on Faraday rotation measure. The overall broad band spectra are
also roughly reproduced if a fraction of energy is allowed to be converted the non-thermal
population of electrons. The current results are therefore encouraging, and the furtherwork
is in progress.

ACKNOWLEDGEMENTS

The present work was supported by the Polish Grant 1P03D 008 29 and the Polish Astro-
particleNetwork 621/E-78/SN-0068/2007.

REFERENCES

Abramowicz,M. A. and Zurek,W.H. (1981), Rotation-inducedbistability of transonic accretion onto
a black hole, Astrophys. J., 246, pp. 314–320.

Baganoff, F. K., Maeda, Y., Morris, M., Bautz, M. W., Cui, W., Doty, J. P., Brandt, W. N., Feigelson,
E. D., Garmire, G. P., Pravdo, S. H., Ricker, G. R. and Townsley, L. K. (2003), Chandra X-Ray
Spectroscopic Imaging of SagittariusA∗ and the Central Parsec of the Galaxy, Astrophys. J., 591,
pp. 891–915, arXiv: astro-ph/0102151.

Barai, P., Das, T. K. andWiita, P. J. (2004), TheDependence ofGeneral Relativistic Accretion onBlack
Hole Spin, Astrophys. J. Lett., 613, pp. L49–L52, arXiv: astro-ph/0408170.

Bardeen, J. M., Press, W. H. and Teukolsky, S. A. (1972), Rotating black holes: locally nonrotating
frames, energy extraction, and scalar synchrotron radiation, Astrophys. J., 178, pp. 347–369.

Bélanger, G., Terrier, R., De Jager, O., Goldwurm, A. and Melia, F. (2006), Periodic modulations
in an X-ray flare from SagittariusA∗, Journal of Physics: Conf. Series, 54, pp. 420–426, arXiv:
astro-ph/0604337.



44 B. Czerny et al.

Blandford, R. D. and Begelman,M. C. (1999), On the fate of gas accreting at a low rate on to a black
hole, Monthly Notices Roy. Astronom. Soc., 303, pp. L1–L5, arXiv: astro-ph/9809083.

Bondi, H. (1952), On spherically symmetrical accretion, Monthly Notices Roy. Astronom. Soc., 112,
p. 195.

Das, T. K., Pendharkar, J. K. and Mitra, S. (2003), Multitransonic Black Hole Accretion Disks with
Isothermal Standing Shocks, Astrophys. J., 592, pp. 1078–1088, arXiv: astro-ph/0301189.

Genzel, R. and Karas, V. (2007), The Galactic Center, in V. Karas and G. Matt, editors, Black Holes
fromStars toGalaxies –Across theRange ofMasses, volume 238 of Proceedings of IAUSymposium,
pp. 173–180, International Astronomical Union, Cambridge University Press, Cambridge, UK,
ISSN 1743-9213.

Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan,D. andAschenbach, B.
(2003), Near-infrared flares from accreting gas around the supermassive black hole at the Galactic
Centre, Nature, 425, pp. 934–937, arXiv: astro-ph/0310821.

Ichimaru, S. (1977), Bimodal behavior of accretion disks – Theory and application to Cygnus X-1
transitions, Astrophys. J., 214, pp. 840–855.

Loeb, A. (2004), Direct feeding of the black hole at the Galactic Centre with radial gas streams from
close-in stellar winds, Monthly Notices Roy. Astronom. Soc., 350, pp. 725–728, arXiv: astro-ph/
0311512.

Marrone, D. P., Moran, J. M., Zhao, J.-H. and Rao, R. (2006), Interferometric Measurements of
Variable 340 GHz Linear Polarization in SagittariusA∗, Astrophys. J., 640, pp. 308–318, arXiv:
astro-ph/0511653.

Moscibrodzka, M. (2006), Spherical accretion in nearby weakly active galaxies, Astronomy and
Astrophysics, 450, pp. 93–103, arXiv: astro-ph/0512527.

Mościbrodzka, M., Das, T. K. and Czerny, B. (2006), The pattern of accretion flow on to Sgr A∗,
Monthly Notices Roy. Astronom. Soc., 370, pp. 219–228, arXiv: astro-ph/0604516.

Mościbrodzka,M., Proga,D., Czerny, B. andSiemiginowska, A. (2007), Accretion of low angularmo-
mentum material onto black holes: radiation properties of axisymmetric MHD flows, Astronomy
andAstrophysics, 474, p. 1, arXiv: 0707.1403.

Narayan, R. and Yi, I. (1994), Advection-dominated accretion: A self-similar solution, Astrophys. J.,
428, pp. L13–L16, arXiv: astro-ph/9403052.

Nayakshin, S. and Sunyaev, R. (2003), Close stars and an inactive accretion disc in Sgr A∗: eclipses
and flares, Monthly Notices Roy. Astronom. Soc., 343, pp. L15–L19, arXiv: astro-ph/0302084.

Paumard, T., Genzel, R., Martins, F., Nayakshin, S., Beloborodov, A. M., Levin, Y., Trippe, S.,
Eisenhauer, F., Ott, T., Gillessen, S., Abuter, R., Cuadra, J., Alexander, T. and Sternberg, A.
(2006), The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and
Formation, Astrophys. J., 643, pp. 1011–1035, arXiv: astro-ph/0601268.

Proga, D. and Begelman, M. C. (2003), Accretion of low angular momentum material onto black
holes: two-dimensional magnetohydrodynamic case, Astrophys. J., 592, pp. 767–781, arXiv:
astro-ph/0303093.

Rockefeller, G., Fryer, C. L., Melia, F. and Warren, M. S. (2004), Diffuse X-Rays from the Inner
3 Parsecs of the Galaxy, Astrophys. J., 604, pp. 662–670, arXiv: astro-ph/0309497.

Schee, J., Stuchlík, Z. and Juráň, J. (2005), Light escape cones and raytracing in Kerr geometry, in
S. Hledík and Z. Stuchlík, editors, Proceedings of RAGtime 6/7: Workshops on black holes and
neutron stars, Opava, 16–18/18–20 September 2004/2005, pp. 143–155, Silesian University in
Opava, Opava, ISBN 80-7248-334-X.



Proceedings ofRAGtime 8/9, 15–19/19–21September, 2006/2007,Hradec nadMoravicí, Opava, Czech Republic 45
S.Hledík and Z. Stuchlík, editors, SilesianUniversity inOpava, 2007, pp. 45–59

Variation of the primary and reprocessed
radiation in the flare-spot model

Michal Dovčiak,1,a Vladimír Karas,1 Giorgio Matt2

and RenéW. Goosmann1

1Astronomical Institute, Czech Academy of Sciences, Boční II 1401/1a, CZ-141 31 Praha 4,
Czech Republic

2Dipartimento di Fisica, Università degli Studi “RomaTre,” Via della VascaNavale 84,
I-00146 Roma, Italy

adovciak@astro.cas.cz

ABSTRACT
We study light curves and spectra (equivalent widths of the iron line and some other
spectral characteristics) which arise by reprocessing on the surface of an accretion
disc, following its illumination by a primary off-axis source – an X-ray “flare,” as-
sumed to be a point-like source just above the accretion disc. We consider all general
relativity effects (energy shifts, light bending, time delays, delay amplification due to
the spotmotion) near a rotating black hole. For some sets of parameters the observed
reflected flux exceeds the observed flux from the primary component. We show that
the orbit-induced variations of the equivalent width with respect to its mean value
can be as high as 30% for an observer’s inclination of 30◦, and muchmore at higher
inclinations. We calculate the ratio of the reflected flux to the primary flux and the
hardness ratio which we find to vary significantly with the spot phase mainly for
small orbital radii. This offers the chance to estimate the lower limit of the black hole
spin if the flare arises close to the black hole. We show the results for different values
of the flare orbital radius.

Keywords: Line: profiles – relativity – galaxies: active –X-rays: galaxies

1 INTRODUCTION

X-ray spectral measurements of the iron line and the underlying continuum provide a
powerful tool to study accretion discs in active galactic nuclei (AGN) and Galactic black
holes (for a review, see Fabian et al., 2000; Reynolds and Nowak, 2003). If a line originates
by reflection of the primary continuum, then its observed characteristics may reveal rapid
orbital motion and light bending near the central black hole. Spectral characteristics can
be employed to constrain the black hole mass and angular momentum. A particularly
important role is played by the equivalent width (EW), which reflects the intensity of the
line versus the continuum flux as well as the role of general relativity effects in the source.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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In order to reduce the ambiguity of the results one needs to perform spectral fitting with
self-consistent models of both the line and continuum.
Some AGN are known to exhibit iron lines with an EW greater than expected for a

“classical” accretion disc. Enhanced values for the EWcan be obtained by assuming an an-
isotropical distribution of the primary X-rays (Ghisellini et al., 1991), significant ionization
of the disc matter (Matt et al., 1993) or iron overabundance (George and Fabian, 1991).
Martocchia and Matt (1996) and Martocchia et al. (2000) found, using an axisymmetric
lamp-post scheme, an anticorrelation between the intensity of the reflection features and
the primary flux. When the primary source is at a low height on the disc axis, the EW can
be increased by up to an order of magnitude with respect to calculations neglecting general
relativity effects. When allowing the source to be located off the axis of rotation, an even
stronger enhancement is expected (Dabrowski and Lasenby, 2001). Miniutti et al. (2003)
and Miniutti and Fabian (2004) have realised that this so-called light bending model can
naturally explain the puzzling behaviour of the iron line of MCG-6-30-15, when the line
saturates at a certain flux level and then its EW starts decreasing as the continuum flux in-
creases further. Niedźwiecki and Życki (2007) point out that the illumination by radiation
which returns to the disc (following the previous reflection of the primary emission) also
contributes significantly to formation of the line profile in some cases. This results into the
line profile with a pronounced blue peak unless the reflecting material is absent within the
innermost 2–3 gravitational radii.
In our previous paper (Dovčiak, 2004), we have proposed that the orbiting spot model

could explain the origin of transient narrow lines,whichhavebeen reported in someAGNX-
ray spectra (Turner et al., 2002; Guainazzi, 2003; Yaqoob et al., 2003) andwidely discussed
since then. The main purpose of the current paper is to present accurate computations of
time-dependent EWs and other spectral characteristics within the framework of the flare-
spot model, taking into account a consistent scheme for the local spectrum reprocessing.
The main difference from previous papers is that the current one combines the primary
source power-law continuumwith the reprocessed spectral features. Both components are
further modified by relativistic effects as the signal propagates towards an observer.
In a parallel paper (Dovčiak et al., 2007), we study general relativistic effects and spectral

characteristics (EWs, hardness ratio, etc.) for the flare-spot model in two model setups –
the Schwarzschild black hole with a flare arising at radius7 rg and extremally rotating black
hole with a flare at 3 rg. In the current paper we would like to present the results of our
computations for more values of the flare orbital radius. We also show that for a given flare
radius the resultant spectra do not differ much for different spins of the black hole.
In Section 2 we describe the model and the approximation used and in Section 3 we

present the results of our calculations. For a more detailed description of the model and for
the equations used we refer the reader to the paper Dovčiak et al. (2007).

2 MODELAPPROXIMATIONSANDLIMITATIONS

We examine a system composed by a black hole, an accretion disc and a co-rotating flare
with the spot underneath (Collin et al., 2003), see Fig. 1. The gravitational field is described
in terms of the Kerr metric (Misner et al., 1973). Both static Schwarzschild and rotating
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flare

accretion
discspot

black hole

to the
observer

Figure 1. A sketch of the model geometry (not to scale). A localized flare occurs above the disc, pos-
sibly due to magnetic reconnection, and creates a spot by illuminating the disc surface. The resulting
“hot spot” co-rotates with the disc and contributes to the final observed signal by reprocessing the
primaryX-rays.

Kerr black holes are considered. The co-rotating Keplerian accretion disc is geometrically
thin and optically thick, therefore we take into account only photons coming from the
equatorial plane directly to the observer. We further assume that the matter in the accretion
disc is cold and neutral.
A flare is supposed to arise in the disc corona due to a magnetic reconnection

event (Galeev et al., 1979; Poutanen and Fabian, 1999; Merloni and Fabian, 2001). De-
tails of the formation of the flare and its structure are not the subject of the present paper,
instead we assume that the flare is an isotropic stationary point source with a power-law
spectrum, located very near above the disc. It co-rotates with the accretion disc. We also
assume that a single flare dominates the intrinsic emission for a certain period of time.
The spot represents the flare-illuminated part of the disc surface. We consider the spot

to be a rigid two dimensional circular feature, with its centre directly below the flare. Thus
the spot does not share the differential rotation with the disc material. However, the matter
in the disc lit by the flare is in Keplerian motion at the corresponding radii, and so it
has different velocities at different parts of the spot (which is important when calculating
the transfer function for the observer in the infinity). Because the flare is very close to
the disc, the spot does not extend far from below the flare. We approximate the photon
trajectories between the flare and the spot by straight lines and we do not consider the
energy shift and abberation due to the different motion of the flare and matter illuminated
by it. Furthermore we neglect the time delay between the photon’s emission from the flare
and its later re-emission from the spot.
The intrinsic (local) spectra from the spot were computed by Monte Carlo simulations

considering multiple Compton scattering and iron line fluorescence in a cold, neutral, con-
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stant density slab with solar iron abundance. We used the NOAR code for these computa-
tions, see Section 5 of Dumont et al. (2000) and Chapter 5 of Goosmann (2006). The local
flux depends on the local incident and local emission angles, hence the flux changes across
the spot. Here and elsewhere in the text we refer to the quantities measured in the local
frame co-moving with the matter in the disc as “local.”
The local flux consists of only two components – the flux from the primary source (the

flare) and the reflectedflux from the spot. The latter one consists of the reflection continuum
(with the Compton hump and the iron edge as the main features) and the neutral Kα and
Kβ iron lines. No other emission is taken into account. The spectral properties of the local
emission (the local EW, ratio of the reflected flux to the primary one and hardness ratio) are
shown in Figs 2 and 3.
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Figure 2. Left: The local equivalent width without taking the primary flux into account as a function
of the direction of emission. Right: The same as in the left panel but with the flux from the primary
source included.
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As far as the photon trajectories from the spot to the observer are concerned, all general
relativistic effects – energy shift, aberration, light bending, lensing and relative timedelays–
are taken into account. We assume that only the gravity of the central black hole influences
the photons on their path from the disc to the observer. This allows us to define a relatively
simple scheme in which different intervening effects remain under full control and can be
well identified.

3 SPECTRALCHARACTERISTICSOF THEOBSERVEDSIGNAL

The observed light curves computed for the spot in the vicinity of the extremally spinning
Kerr black hole (a = 0.998GM/c3) and the Schwarzschild black hole (a = 0GM/c3)
in the 3–10 keV energy range for different orbital radius can be seen in Figs 4 and 5. The
light curves are influenced mainly by the overall amplification factor, consisting of transfer
function and delay amplification (see paper Dovčiak et al., 2007 for details), and by the
dependence of the local flux on the emission angle. The primary emission dominates
the observed flux as expected, meanwhile the reflected flux in the Fe lines from the spot
contributes less. There is an exception in this behaviour, though, for some parts of the orbit
close to the black hole (see top row of Fig. 4). The reflected flux from the spot exceeds the
flux of the primary for the orbital radius r = 3GM/c2 and for the inclinations θo = 60◦ and
85◦. The variations of the flux decrease with the orbital radius as expected. Note, that the
amplification of the emission due to the lensing effect is still relevant as far as 100GM/c2

for large inclination angles (85◦).
Figures 6 and 7 shows the mean spectra taken over the whole orbit. The line is smeared

when taken over the whole orbit. As it is well known (Iwasawa et al., 1996) in the Schwar-
zschild case, if we assume that the emission comes mainly from above the innermost stable
orbit, the line stays above 3 keV, while in the Kerr case it can be shifted even below this
energy (as is the case for all shown inclinations for the spot orbit below 4GM/c2). The
iron edge is smeared in all studied cases and the dominance of the primary emission is
evident. As we expect the line is less shifted with the increasing orbital radius but it is still
substantially broadened even at the radius 100GM/c2 due to the large orbital velocity of
the spot.
In order to quantify the properties of the observed spectra let us look at the equivalent

width, ratio of the observed reflected and primary components, and the hardness ratio
(Figs 8 and 9).
A closer look at the EW, see the left panels in Figs 8 and 9, reveals that it does not much

differ from its local value (Fig. 2), i.e., EW (t) ≈ EWloc(µe(t)) (for the dependence µe(t)
for some radii see Dovčiak et al., 2007). This is not, however, true for the case of the low
orbital radius with an observer inclination of 85◦ when the EW is magnified due to the
lensing effect. For the spot close to the black hole (r = 3GM/c2) the EW is changing
with respect to its mean value by 30% even for a low inclination angle 30◦. For an almost
edge-on disc it can vary by as much as 200%. Similar to the flux variations at the larger
radii the variation of the EW decreases. This is true also for all the other studied spectral
characteristics.
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Figure 4. The light curves of the observed emission from the flare and the spot for the energy range
3–10 keV for theKerr black holewith the spin 0.998GM/c3, the spot orbital radii 3, 4, 5 and7GM/c2

(from top to bottom) and the observer’s inclination angles 30◦, 60◦ and 85◦ (from left to right). The
primary emission, spot’s continuum emission and spot’s emission in Kα and Kβ lines are denoted by
solid, dashed and dotted graphs, respectively.
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Figure 5.The same as in Fig. 4 but for the Schwarzschild black hole and the spot orbital radii 7, 20, 50
and 100GM/c2 (from top to bottom).
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Figure 6. The observed spectra averaged over one orbit computed for the same set of parameters as in
Fig. 4. Here, the observed line flux is shown on top of the spot continuum emission.
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Figure 7. The observed spectra averaged over one orbit computed for the same set of parameters as in
Fig. 5. Here, the observed line flux is shown on top of the spot continuum emission.
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Figure 8. Left: The time variation of the observed EW of the Kα line. The integrated EW is shown
in horizontal lines. Middle: The ratio of the observed reflected emission to the observed primary
emission. The fluxes are integrated in the 3–10 keV energy range. Right: The hardness ratio of the
hard flux Fh (6.5–10 keV) to the soft flux Fs (3–6.5 keV). The flux in the Fe lines is also included. The
dashed, dotted and solid lines correspond to the inclinations30◦, 60◦ and 85◦.
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Figure 9.The same as in Fig. 8 but for the Schwarzschild black hole and the spot orbital radii 7, 20, 50
and 100GM/c2 (from top to bottom).
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The observed ratio of the reflected flux to the primary flux is amplified when compared
to the local one, see the middle panels in Figs 8 and 9 and the left panel in Fig. 3. The
amplification is the highest for the lowest orbital radius and highest inclination angle –
the ratio in this case is increased by more than one order of magnitude. Note that in the
Kerr case with the orbital radius 3GM/c2 and for the inclinations 60◦ and 85◦ the ratio of
the observed reflected flux to the observed primary flux is larger than unity, meaning the
reflected component prevails over the primary one in a certain part of the orbit.
To evaluate the hardness ratio we compared the fluxes in between 3–6.5 keV (soft com-

ponent, Fs) and 6.5–10 keV (hard component, Fh). The hardness ratio is also amplified
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Figure 10. The same as in Figs 4, 6, and 8 top rows (i.e., the spot orbital radius 3GM/c2) but for the
Kerr black hole with the spin 0.93GM/c3.
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when we compare it with the local hardness ratio (the right panels in Figs 8, 9 and 3). As in
other spectral characteristics, the amplification and the variation of the hardness ratio is the
largest for the lowest orbital radius in the extremally rotating Kerr case and they decrease
with the increasing orbital radius.
To see how the different values of the spin parameter influence the studied properties

of the observed signal we can compare the results for the same radius, see the bottom
panels of Figs 4, 6 and 8 for the extremally rotating Kerr black hole and compare them with
the top panels of Figs 5, 6 and 9 for the Schwarzschild black hole. For the closer radius,
r = 3GM/c2, we have computed the results for the spin a = 0.93GM/c3 (the spin cannot
be lower if the spot should be above the innermost stable circular orbit), see Fig. 10 and
compare it with the top panels in Figs 4, 6 and 8. It is clear from all of these comparisons
that if we fix the orbital radius our results do not depend on the spin of the black hole.

4 CONCLUSIONS

Wehave studied the light curves, spectra and several spectral characteristics in theflare-spot
model for different orbital radii of the flare. The primary flux was included and the mutual
normalizations of the primary and reflected emission were treated within the framework of
a simple yet self-consistent scheme. About half of the isotropic primary flux hits the disc
below the flare and is reprocessed there, creating a radiating spot. A part of the reprocessed
radiation is re-emitted towards the observer. The radiation is influenced by the relativistic
effects before reaching the observer.
We can sum up our results in several conclusions:

(1) TheEW, apart for the extreme cases of high inclinations, does not differ significantly
from the local EW. However, close to the black hole it varies even for low inclination of 30◦
by up to 30% when compared with its mean value for the whole orbit. The EW could be
significantly amplified in our model only if the primary emission were beamed towards the
disc, thus decreasing the observed primary emission.
(2) Both the ratio of the observed reflected to the observedprimaryflux and thehardness

ratio are amplified when compared to the values for the intrinsic (local) emission.
(3) The variations of all of the studied spectral characteristics are the highest for close

orbits and higher inclination angles.
(4) The spin of the black hole affects significantly our results only as far as it determines

the location of the marginal stable orbit.

Here, wewould like to remind the reader, that these results apply for a flare arising very near
above the disc and thus they can heavily differ from the results of the light-bending model
by Miniutti and Fabian (2004) where the flare orbits far above the disc and the resulting
spot is much larger.
It follows from our results that the studied flux ratios could be used for estimating the

lower limit of possible values of the spin parameter if the flare arises in the close vicinity of
the black hole.
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ABSTRACT
I present polarization modelling of Active Galactic Nuclei in the optical/UV range.
The modelling is conducted using the Monte-Carlo radiative transfer code Stokes,
which self-consistently models the polarization signature of a complex model ar-
rangement for an active nucleus. In this work I include three different scattering re-
gions around the central source: an equatorial electron scattering disk, an equatorial
obscuring dusty torus, and polar electron scattering cones. I investigate the resulting
dependencies of the V-band polarization for different optical depths of the scattering
cones, different dust compositions inside the torus, and various half-opening angles
of the torus/polar cones. The observed polarization dichotomy can be successfully
reproduced by themodel.

Keywords: Galaxies: active – radiative transfer – polarization

1 INTRODUCTION

The research of Active Galactic Nuclei (AGN) started with the discovery of separate types
of objects that nowadays we gather under the AGN-class: Seyfert galaxies, radio galaxies,
quasars, blazars, etc. . . An important commonproperty among the various types is the very
strong luminosity produced inside a small spatial region at the centre of the host galaxy. The
standardmodel of theAGNphenomenon assumes accretion onto a supermassive black hole
as the fundamental mechanism for producing the strong radiation. The central black hole
and the accretion flow are surrounded by several additional media such as the broad line
and narrow line regions. A key assumption of this so-called unified scheme for AGN is the
existence of a dusty torus (see, e.g., Antonucci, 1993). It divides AGN into two classes:
“type-1” objects, which are seen close to face-on, and “type-2” objects seen rather edge-on.
In type-1 AGN the central energy source and the broad line region can be seen directly,
whilst in type-2 AGN the torus blocks the view toward the centre.
Current observational technology in the optical and UV waveband does not allow to

resolve the inner regions of AGN. However, the light of AGN is polarized over a broad
wavelength range, which allows to put important constraints on the geometry of the emit-
ting and scattering regions. When light is scattered, the angle of polarization depends on

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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the direction of the last scattering, so one expects the angle of polarization to be related
to the structure of the AGN. Stockman et al. (1979) made the seminal discovery that for
low-polarization, high optical luminosity, radio-loudAGN, the optical polarization position
angles tend to align parallel to the large-scale radio structure. Antonucci (1982) pointed
out that whilst many radio galaxies showed a similar parallel alignment of the polarization
and radio axes, therewas, unexpectedly, a population showing a perpendicular relationship.
It was subsequently shown (Antonucci, 1983) that relatively-radio-quiet Seyfert galaxies
show a similar dichotomy between the predominantly, but not exclusively, parallel polariz-
ation in face-on type-1 Seyferts and the perpendicular polarization of type-2 Seyferts (see
Antonucci, 1993, 2002 for reviews).
Applying the radiative transfer code Stokes, we have presented theoretical modelling

of individual scattering regions in AGN (Goosmann and Gaskell, 2007; Goosmann et al.,
2007a,b). In these papers, we considered dusty torii, polar electron cones, and equatorial
scattering wedges individually calculating their polarization signatures for various viewing
angles. For the present proceedings note I expand on this type of modelling combining the
individual regions to obtain an approach to the unified scheme of AGN. With Stokes such
modelling is done consistently as the code automatically includes the effects of multiple
scattering. In Section 2, I briefly summarize the basic properties of Stokes. In Section 3,
I describe the model setup. The modelling results are then presented in Section 4 and
discussed in Section 5.

2 THERADIATIVETRANSFERCODE“STOKES”

The computer program Stokes performs simulations of radiative transfer, including the
treatment of polarization, for AGN and related objects. The code is publicly available and
100% shareware.1 It is based on the Monte Carlo method and follows single photons
inside the source region through various scattering processes until they become absorbed
or escape from the model region (Fig. 1).
Photons are created inside the source regions, which can be defined by different geo-

metries. The continuum radiation is set by the index α of an Fν ∝ ν−α power law. The
Stokes vectors of the emitted photons are initially set to the values of completely unpolarized
light. Various scattering regions can be arranged around the source regions. The program
offers, e.g., toroidal, cylindrical, spherical or conical shapes. These regions can contain free
electrons or dust consisting of “astronomical silicate” and graphite. A photonworks its way
through the model region and generally undergoes several scattering events. The emission
directions, path lengths between scattering events, and the scattering angles are sampled
by Monte Carlo routines based on classical intensity distributions. During each scattering
event the Stokes vector is changed bymultiplicationwith the correspondingMuellermatrix.
For dust scattering, absorption is important, and a large fraction of the photons does not
reach the virtual observer. The relevant cross sections andmatrix elements for dust scatter-
ing and absorption are computed on the basis of Mie theory applied to size distributions of
spherical graphite and silicate grains.

1 http://www.stokes-program.info/
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Figure 1.A photonworking its way through themodel space.

Whenaphotonescapes fromthemodel region, it is registered by awebof virtual detectors
arranged in a spherical geometry around the source. The flux and polarization information
of each detector is obtained by adding up the Stokes parameters of all detected photons. If
the model is completely axially symmetric these can be azimuthally integrated and, if there
is plane symmetry, the top and bottom halves are combined. The object can be analyzed
in total flux, in polarized flux, percentage of polarization, and the position angle at each
viewing angle.

3 MODELLINGTHEUNIFIEDSCHEME

Our setup for the united model of AGN is shown in Fig. 2. We include the equatorial dusty
torus and the polar electron scattering cones. In addition to that an equatorial electron
scattering wedge is defined. Such a region produces the correct (parallel) polarization
of type-1 AGN. The polarization properties of flat equatorial scattering disks have been
investigated in a series of papers by Young (2000) and Smith et al. (2002, 2004, 2005) as
well as in Goosmann andGaskell (2007).
We assume that the central source of the AGN is point-like and emits a flat intrinsic

spectrum around λ = 5500Å. We define a half-opening angle, θdisk, of the flared electron
disk of θdisk = 25◦. For this half-opening angle a high percentage of type-1 polarization is
expected (Goosmann and Gaskell, 2007). The radial Thomson optical depth of the wedge



64 R.W. Goosmann

Figure 2. Illustration of the setup for a unified schememodel of AGN. The central source is surroun-
ded by a flared electron scattering disk (wedge), a dusty torus, and by polar electron cones.

Table 1. Parameterization of the dust models.

Type Graphite Silicate amin amax αs

Galactic 62.5% 37.5% 0.005µm 0.250µm −3.5
AGN 85% 15% 0.005µm 0.200µm −2.05

is set to unity. The half-opening angles θ0 of the torus and the cone are set equal, which
corresponds to the interpretation that the ionized outflow is collimated by the torus. We
consider two cases for theThomsonoptical depthof the scattering cones,which ismeasured
along the symmetry axis of a single cone and set to τcone = 0.01 and τcone = 0.1 respectively.
The radial optical depth of the dusty torus in the equatorial plane is set to 750 for theV-band.
The dust models (Table 1) assume a mixture of graphite and “astronomical silicate” and a
grain radii distribution n(a) ∝ aαs between amin and amax.
The “Galactic dust” model reproduces the interstellar extinction for RV = 3.1whilst the

“AGN dust” parameterization is obtained from quasar extinction curves derived by Gaskell
et al. (2004). This latter dust type favours larger grain sizes. Using Stokeswe consistently
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model the resulting polarization spectrum of the entire model setup for various inclina-
tions, i , of the observer and for four different values of θ0 between 30◦ and 45◦.

4 RESULTS

We investigate the dependence of the polarization in the visual band on the half-opening
angle of the dusty torus/polar cones. In Fig. 3 and Fig. 4 we show the resulting percentage
of polarization, P, versus i for the two values of τ and for the two types of dust. The
relation has a similar shape for all cases shown and reproduces the observed type-1/type-2
polarization dichotomy: the polarization position angle is oriented parallel to the projected
symmetry axis when the line of sight is above the horizon of the torus, i.e., for i < θ0,
and switches to a perpendicular orientation for i > θ0. In the figures, the two different
orientations of the polarization vector are denoted by negative (type-1) and positive (type-
2) values of P. The type-1 values of P aremoderate and reachmaximum absolute values of
∼2.5 %. They rise with i until the polarization vector switches to the type-2 orientation. In
the type-2 case P continues to increase with i and saturates for edge-on viewing angles at a
level that depends on θ0.
The combined effect of all scattering regions on the total polarization value can be partly

understood from the results we obtained when modelling the individual regions in Goos-
mann and Gaskell (2007). However, the fact that all regions are radiatively coupled adds
more complexity to the model. The polar scattering regions have a strong impact on the
result, in particular for type-2 viewing angles. With increasing θ0 the resulting type-2
polarization becomes lower because it is averaged over a broader distribution of polariza-
tion position angles. An increasing optical depth of the cones raises P for the type-2 case
becausemore photons are scattered by the cones.
For nearly face-on viewing directions, the polar cones have less impact as they cause

mainly forward or backward scattering producing low polarization. In these cases the res-
ulting polarization ismainly determined by the geometry and optical depth of the equatorial
scattering disk. However, these two regions compete against each other, as they produce
different orientations of the polarization vector. For higher optical depth the impact of the
polar cones becomes stronger and lowers the resulting type-1 polarization, as can be seen
when comparing the top with the bottom panels in Figs 3 and 4.
In the central parts of the model region, the optically thick torus, and the scattering

wedge are strongly interconnected bymulti-scattering. This explains the significant impact
of the dust composition and grain size distribution on the resulting polarization profile. For
AGN dust the obtained type-2 polarization percentages for intermediate viewing angles are
lower than for the Galactic dust torus. For this range of i the reflection off the torus has
an important influence while toward edge-on values of i the polar scattering is again more
important.

5 SUMMARYANDDISCUSSION

In this proceedings note, we have investigated the optical polarization imprint of an active
nucleus. Our model is geared toward the unified scheme of AGN including equatorial and
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Figure 3. Polarization degree P at 5500Å as a function of the disk inclination i . The upper panels
denote an optical depth τ = 0.01 of the polar electron cones, the lower ones denote τ = 0.1. On the
left side, the results for a torus with Galactic dust are given, on the right side the results are for AGN
dust. From left to write the four curves of each panel mark increasing half-opening angles θ0 of the
system. Positive values of the polarization degree denote an orientation of the polarization position
angle,which is perpendicular to the symmetry axis, negative values stand for parallel polarization.

polar electron scattering regions and an obscuring dusty torus. Evaluating the polarization
percentage and position angle for various disk inclinations we succeed to reproduce the
observed polarization dichotomy between type-1 and type-2 AGN. However, the presence
of the dichotomy is sensitive to the model parameters, as it is the result of the competing
type-1 polarization produced by the equatorial wedge on the one hand, and the type-2
polarization caused by the torus and the polar cones on the other.
Smith et al. (2004) pointed out that the competition between the equatorial and polar

scattering explains the special population of Seyfert-1 galaxies that shows type-2 polariza-
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Figure 4. Same as in Fig. 3 but zoomed in and limited to disk inclinations of 60◦.

tion. They are considered to be dominated by polar instead of equatorial scattering. In our
model, we have set the half-opening angle and the optical depth of the equatorial wedge in
such a way that a maximum type-1 polarization percentage is obtained. We then vary the
optical depth of the polar scattering cones. The resulting distribution of the polarization
position angle as a function of the inclination must correspond to the observed number
densities of Seyfert-1 galaxies that are dominated by polar and by equatorial scattering. In
principle, it is thus possible to put constraints on the optical depth of the polar cones.
But our modelling shows that there is also a significant impact of the dusty torus on the

resulting polarization, especially for intermediate viewing angles. The resulting polariza-
tion changes with the dust type. From the given number density of AGN with different
spectral and polarization types it is thus not straightforward to find relations between the
properties of the various scattering regions. It rather requiresmore detailedmodelling over
a broader spectral range and within a larger parameter space than presented here. We
intend to conduct such investigations in the future.
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ABSTRACT
The star HDE 226868 known as an optical counterpart of the black hole candid-
ate Cyg X-1 has been observed in Hα region using spectrograph at Ondřejov 2-m
telescope. The orbital parameters are determined from He I-line by means of the
author’s method of Fourier disentangling. Preliminary results are also presented
of disentangling the Hα-line into a P-Cyg profile of the (optical) primary and an
emission profile of the circumstellarmatter (and a telluric component).

1 INTRODUCTION

The bright X-ray source Cyg X-1 has been identified with the star denoted as HDE 226868,
V1357 Cyg or BD+34◦3815 etc. An improvement of instrumentation of the Ondřejov 2-m
telescope enabled to start with systematic observations of this target of magnitudeV ≃ 8.9,
B ≃ 9.6. With coordinates α2000 = 19h58m21.7s, δ2000 = +35◦12′6′′ it is well observable
fromOndřejovmainly at summer.
It is known to be an interacting binary with period P ≃ 5.6 d. The primary component is

a supergiant of spectral type classified asB0 (orO9.7) Iabwith temperature Teff = 30400±
500 K and log g = 3.31 ± 0.07. This primary, which nearly fills its Roche lobe, shows signs
of variable strong stellar wind and an overabundace of He and heavier elements (cf., e.g.,
Karitskaya et al., 2007).
The secondary component invisible in optical radiation is a compact object, most prob-

ably a black hole. This companion, or its neighborhood emits a variable X-radiation, which
is supposed to originate from an accretion disk fed by the stellar wind from the primary.
The X-radiation switches chaotically between two states. In the low/hard state the total

X-ray flux is low and the spectrum is flat, so that the hard tail of X-radiation prevails. In
the high/soft state the soft radiation is enhanced more, and consequently the spectrum has
a steeper decrease toward the higher energies and hence the radiation is softer in the mean.
Some intermediate states may also appear temporarily.
TheX-rayflux is anticorrelatedwith the strengthof emission in theHα -lineof theprimary:

in the X-low/hard state the Hα emission is strong, while in the X-high/soft state the Hα

emission is weak.
The aim of the observational campaign at Ondřejov observatory was to improve orbital

parameters of the system, to check a possible spectroscopic features connected with the

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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circumstellarmatter (either accretion disk around the black hole, gaseous streams or stellar
wind) or with a possible third body, and to get line-profiles enabling a quantitative com-
parison with a model of the atmosphere and stellar wind of the primary. The first part of
obtained spectra was provided for a study on Cyg X-1 organized in a wide international
collaboration, the results of which should appear inGies et al. (2007). In the present contri-
bution, results obtained using the author’s method of spectra disentangling from the same
set of Ondřejov spectra are given. A more detailed study taking into account also recently
obtained spectra is in progress.

2 OBSERVATIONALDATA

The set of spectra used here consists of 24 exposures obtained with CCD in the focus of
700 mm camera of Coudé spectrograph of the Ondřejov 2-m telescope between April 1st
and September 21st, 2003. A typical resolution is about 0.25Å per pixel. The rough data
have been processed byM. Šlechta according to Škoda and Šlechta (2002).
The observational period covers a transition of Cyg X-1 from the low to high state and

back, as it can be seen from the RXTEX-ray light-curve in Fig. 1.
Examples of obtained spectra in both states are given in Fig. 2. It is obvious here that

the upper spectrum taken at April before the high-state episode has a strong emission in the
whole Hα line profile, while in August the emission remains in the long-wavelength wing of
the line only and the short-wavelength side of the line-profiles reveals an absorption, as it is
typical in the P-Cyg line-profiles of stars losing mass via a stellar wind. The strength of the
emission can be quantified by the equivalent width of the line, i.e., by an integral across the

III IV V VI VII VIII IX X

0

50

100

FXEW

0

1

Figure 1. The equivalent width of Hα emission (in Å, crosses) in 2003 and ASM/RXTE one-day
averages of sum-band intensity (in counts/s, error-bars).
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Figure 2. Spectra of Cyg X-1 taken with Ondřejov 2-m telescope on April 1st (upper curve) and
August 5th (lower curve), 2003.

line of the intensity rectified to the continuum. These values are plotted for each exposure
in Fig. 1 which confirms the abovementioned anticorrelationwith the X-ray flux.
The He I-line 6678Å is practically free of emission in both states. It means that this line

may enable tomeasure reliably radial velocities of the primary component to get a constraint
on the orbital parameters of the system.

3 SPECTRADISENTANGLING

Despite the radial velocities of the He I-line 6678Å could be measured using some standard
method, it is advantageous to use the author’s method of Fourier spectra disentangling (cf.
Hadrava, 1995, 1997, 2004), whichmakes the procedure efficient and provides directly the
orbital parameters. The principle of the method (in the version of 1997 used here) consists
in least-squares fitting of all the spectra I observed at various times t as a superposition of
unknown spectra Ij of the components in the form

I (x, t; p) =
n∑

j=1
Ij (x) ∗ sj (t)δ(x − vj (t; p)) . (1)
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Figure 3. Hierarchical structure of a multiple stellar system supposed in KOREL-code (left) and its
use forHα-line of Cyg X-1 (right).

Here x = c ln λ is a logarithmic wavelength, vj are instantaneous radial velocities of each
component (or logarithms of redshift g-factors for a general relativistic case), sj are factors
fitting possibly variable strengths of lines, p are the orbital parameters to be found. Fourier
transform

Ĩ (y, t; p) =
n∑

j=1
Ĩj (y) ∆̃j (y, t, p) (2)

of Eq. (1) separates the solving for Ij into individual modes; similarly for sj one gets a
set of linear equations, while p can be found by some numerical method of optimization
(e.g., simplex method in the author’s code KOREL). Here∆j = sj δ(x − vj ) in the present
calculation, but generally it could also characterize some general broadening function.
The method can generally provide intrinsic spectra of n sources, if more than n observed

spectra taken at different values vj are on input. Karas and Kraus (1996) suggested a
possibility to disentangle in this way contributions of several spots to a line-profile of an
accretion disk. The author’s code KOREL should be modified for such a purpose, because
it is designed for applications to systems of binary ormultiple stars. A hierarchical structure
of the system is supposed (cf. Fig. 3, left), inwhich twopairs of close binaries (denoted 1+2
and 3 + 4) are orbiting around their common centre of mass, which may be on an even
wider orbit with respect to another component (Nr. 5). To be able to treat simpler systems,
spectrum of each component can be switched on or off, and the higher orbits (denoted by
numbers in parenthesis in Fig. 3) may be chosen degenerated. At the same time, this model
is general enough to enable solving some more complicated cases, e.g., just like a presence
of circumstellarmatter in a binary.
As already mentioned, there are seen no traces of the companion or of the circumstellar

matter in the He I-line for CygX-1. Consequently, one could take the extremally simple case
n = 1 of the disentangling (with only the component 1 and orbit (0) switched on – cf. Fig. 3,
right) for the spectral region around 6678Å. However, because some weak telluric lines are
also present in this region, n = 2 was used instead, with the component 5 corresponding
to the telluric lines and orbit (3) to the annual motion. Results of the disentangling are
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Figure 4.Disentangled lineHe I 6678Å.

Table 1.Disentangledorbital parameters of Cyg X-1.

Line He I Hα Hα –wind

Period 5.599829 d
Periastron epoch 52872.83 52873.01 52875.41
Eccentricity 0.0
Periastron long. −90◦
K1 [km/s] 71.94 71.26 60.78

shown in Fig. 4. In the upper part of this standard output from the KOREL-code, we
can see superimposed the 24 observed line-profiles (rectified to the continuum) and their
reconstructions from the disentangled line-profiles, which are plotted as the two bottom
curves. The disentangled values of orbital parameters (the epoch and the amplitude of the
radial-velocity curve) are given in Table 1.

4 DOPPLERMAPPINGANDDISENTANGLINGOF CIRCUMSTELLARMATTER

Unlike theHe I-line, theHα shows the abovementioned irregular emission, revealing a pres-
ence of strongly variable circumstellar matter in the system. The variability of line-profile
of the emission component, which is frequent in many emission-line systems, obviously
violates the assumption on constancy of component spectra Ij in Eq. (1) andmakes the use
of disentangling for such systems questionable. On the other hand, one can always try, if
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a violation of underlying assumptions is not an effect of second order, and if a mean beha-
viour of the system cannot be approximated neglecting this effect, or if the effect cannot be
modelled as some additional perturbation.
If the distribution of emissivity of the circumstellar matter in the velocity space is stable

on a time-scale longer than the orbital period, it can be mapped by methods of Doppler
tomography. The links between this method and the spectra disentangling have been
discussed byHadrava (2001). Unlike the disentangling,where a few components may have
a general intrinsic spectrum and changes of velocity, the Doppler imaging assumes locally
delta-function line-profile of a smooth distribution of matter in a rigidly rotating velocity-
space. However, in some cases both methods can provide an equivalent description of the
observed phase-locked line-profile variations of binaries.
Several attempts have been done by the author to fit discrepancies between observed

spectra of different binaries with circumstellar matter (e.g., Be-stars or algols) and their
reconstructions from disentangled spectra. The method consists in fixing the period of
orbit (1) equal to that of orbit (0) but converging either epochs or periastron longitudes
of both orbits together with the radial-velocity amplitudes (K ) as independent quantities.
If the component 1 and 2 correspond to the primary and secondary star, the component 3
may also be switched on, to correspond to (either emission or absorption) features of the
circumstellarmatter. The amplitude and phase-shift of this component are then correspond
to the absolute value and orientation of the superposition of the orbital and intrinsic velocity
of the circumstellar matter with respect to the center of mass of the system. In principle, up
to five component spectra corresponding to different features corotating in the orbital plane
of a binary may be treated using KOREL, if the periods of all four orbits are fixed equal.
Such a disentangling always improved formally the fit, but usually it did not provide a fully
satisfactory explanation of a long-lasting series of line-profiles. This may be explained by
variations of the motion and emissivity of the circumstellar matter on time-scales shorter
then the orbital period.
Sowers et al. (1998) used the method of Doppler mapping to interpret the line-profiles

of the Hα line of Cyg X-1. They found a good agreement with observations if an emission
source attributed to a focused stellar wind is involved. Recently Jingzhi Yan (2007) sugges-
ted to disentangle this focused stellar wind and the primary component from the Hα line of
Cyg X-1. The preliminary results reported here are obtained by switching on the compon-
ents 1, 3 and 5 for the primary, the focused wind and telluric water-vapor lines (which are
quite strong here), resp. The period of orbit (1) is set equal to that of orbit (0), orbit (3) is
the annualmotion and orbit (2) is degenerated (cf. Fig. 3, right).
The results are shown in Fig. 5 and Table 1. The profiles reconstructed from the disen-

tangled components are again superimposed on the observed 24 line-profiles plotted in the
chronological order from the top. The agreement of these curves is surprisingly better than
the one obtained for some other interacting binaries with much less pronounced variability.
The agreement is a bit worse for the first two exposures taken before the X-high episode,
also compared to the last exposures, where X-emission was low again and Hα emission
high (cf. Fig. 4), but still with the P-Cyg profile. The mean line-profile of the primary has
a P-Cyg shape, the component attributed to the focused stellar wind is a broad emission.
The disentangled spectrum of telluric lines is partly contamined with the Hα emission, but
again much less than for many other emission-line binaries. Both the primary and wind
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Figure 5.DisentangledHα-line.

components are varying in strength, but the analysis of this variability is postponed to a next
study based onmore spectra disentangledwith constrained telluric component as described
by Hadrava (2006a,b).
The orbital parameters for the primary disentangled fromHα are in good agreement with

those obtained from He-line here as well as in other studies. The radial-velocity amplitude
Kwind = 60.78 km s−1 and the phase shift φ0 = 0.46 (with respect to the He-line) of the
wind component is not in a complete agreement with results given in text of (Sowers et al.,
1998, p. 428) who obtained Kwind = 68 km s−1 and φ0 = 0.86 using the tomographic
method. Such a disagreement is not surprising, because in spite of some similarities, both
methods are different, particularly in taking into account the line-strength variability or the
telluric lines. Also the long-term stability of the focused-wind component should be tested
by additional spectra. However, the present results indicate, that the velocity-distribution
of this component does not vary substantially before and during the episode od high X-ray
state.
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Disc instability as an energy source
for quasi-periodic oscillations

Jiří Horák
Astronomical Institute, Czech Academy of Sciences, Boční II 1401/1a, CZ-141 31 Praha 4,
CzechRepublic

ABSTRACT
Wediscuss a scenario, inwhich the energy for quasi-periodic oscillations comes from
instabilities of the accretion disc. We demonstrate thismechanism on the interaction
among stable and unstable modes of oscillations in slender accretion tori. In our
model, the unstable non-axisymmetric corotation modes are nonlinearly coupled to
stable acoustic modes of torus oscillations. The increasing energy of corotation
modes is advected to the acoustic modes by the means of parametric instability. The
stablemodes may reach substantial amplitudes even if they are damped according to
the linear theory.

Keywords: Black hole physics – accretion discs – instabilities

1 INTRODUCTION

It has been proposed that a nonlinear resonance among two accretion disc oscillations is
responsible for observed quasiperiodic oscillations (QPOs) in both black-hole and neutron-
star sources (see Kluźniak, 2005 for a review). In earlier versions of the resonance model,
the two QPOs were connected to the orbital and radial epicyclic motion. More recently,
QPOshas been interpreted as radial and vertical epicyclic oscillations of the accretedmatter
at the position of the 3:2 parametric resonance (Kluzniak and Abramowicz, 2002).
The source of energy for the oscillations has not been identified yet. In the parametric-

resonancemodels the vertical oscillations are excited and fed by the radial oscillations. If the
feedback of vertical to radial oscillations is taken into account, the two modes periodically
exchange the energy keeping the total energy constant. In order to solve this problem,
two possible sources of energy has been proposed: (1) external periodic forcing, e.g.,
by spinning central neutron star and (2) internal stochastic forcing by hydrodynamic or
magnetohydrodynamic turbulence. The former process was proposed by Lee et al. (2004)
and was largely motivated by an observation that in the two millisecond pulsars showing
QPOs the QPO frequency difference is always close to the observed spin frequency or
half of it (Wijnands et al., 2003; Linares et al., 2005). The latter was recently examined
by Brandenburg (2005) and Arras et al. (2006) in the shearing-box simulations and by Vio
et al. (2006) in the simplifiedmodel of stochastic excitation of test-particle epicyclicmotion.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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In this work we propose an alternative mechanism in addition to these two scenarios. In
our view the QPOs are fed by a linear instability of the accretion disc through a nonlinear
modal coupling. As an example of this process we start to examine nonlinear interac-
tions among stable and unstable modes of slender accretion tori. The source of the energy
is Papaloizou-Pringle instability. The plan of the paper is the following. Growth rates and
eigen-functions of theunstablemodes are summarized inSection2. Themechanismofnon-
linear interactions among stable and unstable modes is outlined in Section 3. In Section 4
we show that the two necessary conditions for these interactions (a particular combination
of eigenfrequencies of the modes and non-zero coupling coefficient) are satisfied in slender
tori. Finally, Section 5 is devoted to a discussion and conclusions.

2 LINEAR INSTABILITYOF SLENDERTORI

An important class of torus oscillations is represented by corotation modes, for which the
mode pattern corotates with the fluid at a particular radius inside the torus (corotation
radius). According to classical works in the subject (e.g., Goldreich et al., 1986), these
modes are suspected tobeunstable. Indeed, in the limit of infinitely slender tori thesemodes
are justmarginally stable. They are described by eigenfunctions and eigenfrequencies of the
form

W0 = C0eim0φ , w0 = m0Ω0 , (1)

where C0 is a normalization constant, m0 is an integer azimuthal wavenumber and Ω0
is the flow angular velocity at the maximal pressure radius that coincides with the local
Keplerian frequency, Ω0 = ΩK(r0). The perturbation quantity W is connected to the
Eulerian pressure perturbation by δp = (w − m0Ω)ρW . The slender torus corresponds to
the limit β ∼ ∆r/r → 0 (∆r is the radial size of the torus).
The modal eigenfrequencies and eigenfunctions of larger tori can be found using a per-

turbative expansion in β (Blaes, 1985; Blaes et al., 2007). For tori with constant angular
momentum distribution this procedure gives

w0 = m0Ω0 + i
√

2m0bβ + O(β2) ,

W0 = C0eim0φ

{

1 + m2
0β

2

[

a2x̄2 − b2 ȳ2 4
√

2 ib
ω̄2
r

x̄ +
ω̄2
r b2 − ω̄2

z a2

2(n + 1)ω̄2
r ω̄

2
z

]

+ O(β3)

}

, (2)

where the coefficients a and b are given by

a2 ≡
4(1 + 2n) + ω̄2

r
4(1 + n)ω̄2

r
, b2 ≡

4− ω̄2
r

4(1 + n)ω̄2
r

. (3)

The eigenfunctions are expressed using “slender” coordinates x̄ and ȳ contracting with
the torus as β → 0 (see Blaes et al., 2006 for a definition). The corotation mode of the
slender torus splits into two modes. The positive or negative values of b give the unstable
or stable mode, respectively, where the unstablemode corresponds to the principalmode of
the Papaloizou–Pringle instability (Blaes, 1985).
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Figure 1. The growth-rate of the Papaloizou–Pringle instability normalized by the local Keplerian
angular velocityΩ0 as function of the location of the torus centre for different values of the polytropic
index (left) and of the torus thickness β (right). The limiting cases of the torus with cusp are denoted
by the dashed line.

The external gravitational potential comes into the above formulae only through the
normalized radial and vertical epicyclic frequencies ω̄r = ωr/Ω0 and ω̄z = ωz/Ω0. In
the spherically symmetric Newtonian gravitation field both epicyclic frequencies equal to
the Keplerian orbital frequency, ω̄r = ω̄z = 1 and we recover Eqs (4.11) and (4.13)
of Blaes (1985).
The growth-rates of the instability (given by the imaginary part of w0) as functions of

the location of the torus are shown in Fig. 1 for different values of the polytropic index n
and the thickness of the torus β. In this case, we consider the pseudo-Newtonian po-
tential (Paczyński and Wiita, 1980) Φ = GM/(r − rs) with rs ≡ 2GM/c2 being the
Schwarzschild gravitational radius. The instability is stronger when the torus approaches
the location of themarginally stable circular orbit rms. For a given value ofβ, however, there
exists a limiting radius bellow which the matter in the torus starts to accrete onto the black
hole and the assumption about stationary equilibriumbreaks down.
Our results have been obtained for constant angular momentum tori that are violently

unstable. The instability is largely reduced for steep angularmomentum distributions (e.g.,
if q >

√
3, where the flow angular velocity is parameterized asΩ ∝ r−q ).

3 INTERACTIONSAMONGSTABLEANDUNSTABLEMODES

When the amplitude of the corotation mode is sufficiently large, nonlinear processes be-
come important. In principle, growth of the instability can be even halted by nonlinear
interaction with other oscillation modes, if they are damped significantly. The energy of
the unstable mode is advected to the damped modes, where it is dissipated. This process
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likely plays a key role in limiting amplitudes of the pulsations of ZZ Ceti stars, dwarf-type
variables and some δ Scuti stars (Dziembowski, 1982; Nowakowski, 2005; and references
therein). It also seems to be important for the saturation of the r -mode instability in neutron
stars (Arras et al., 2003).
The mechanism of this process is as follows. Let us consider two stable damped modes

(“daughter” modes) whose eigenfrequencies and excitation rates areω1,ω2 and γ1, γ2 < 0
(the complex eigenfrequencies are given by wi = ωi + iγi ). They will form a resonant
triple with the unstable (“parent”) mode with frequencyω0 and excitation rate γ0 > 0 if the
condition of a combination resonance,

ω1 + ω2 + ω0 ≡ δω ≈ 0 , (4)

is satisfied. Neglecting any influence of the other modes, the oscillations can be described
by the Lagrangiandisplacement

ξ (t, x) = ℜ
[
A0(t)e−iω0tξ0(x) + A1(t)e−iω1tξ1(x) + A2(t)e−iω2tξ2(x)

]
, (5)

where ξ i (x) are the Lagrangian eigenfunctions of the interacting modes. The resonance
causes a slow modulation of the phases φi and amplitudes ai of the oscillations that can
be described by slowly varying dimensionless complex amplitudes Ai = aieiφi . Their
time-behaviour is given by the amplitude equations of the form

Ȧ1 = γ1A1 + iω1κ
∗A∗2A

∗
0eiδωt , (6)

Ȧ2 = γ2A2 + iω2κ
∗A∗1A

∗
0eiδωt , (7)

Ȧ0 = γ0A0 + iω0κ
∗A∗1A

∗
2eiδωt , (8)

where κ is the three-mode coupling coefficient determined by the eigenfunctions of the
modes.
The generic behaviour of the amplitudes is illustrated by three examples in Fig. 2. The

solutions are obtained by numerical integration of Eqs (6)–(8) for different values of the
parametersγi and δω. Initially, theybehave according to the linear theory– the amplitudeof
the parent mode grows exponentially while the daughter modes are exponentially damped.
Nonlinear effects become important after the amplitude A0 overcomes certain threshold.
The energy accumulated in the parent mode is then transferred to the daughter modes
by means of the parametric instability. The threshold can be derived from Eqs (6)–(8)
assuming that the amplitudes A1 and A2 aremuch smaller than the amplitude of the parent
mode, so that their influence on the parent mode can be neglected (Dziembowski, 1982;
Nowakowski, 2005). In that case we may suppose that A0(t) ∝ eγ0t and both A1(t)
and A2(t) are proportional to eνt . The real part of ν is positive when

A0 " Acrit =
1

Q1Q2|κ |2

[

1 +
(
δω + γ0
γ1 + γ2

)2
]

, (9)

with Qi ≡ ωi/γi being quality factors of the daughter modes.
Some fraction of the energy transferred from the parent mode is dissipated in the daugh-

ter modes, the rest of it flows back to the parentmode. Depending on the excitation rate γ0,
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Figure 2. Evolution of the amplitudes in a resonant triple. While the parent mode is unstable, the
two daughter modes are damped. Three types of possible evolution are shown: Top: The damping
rates are too small compared to the growth-rate of the instability so that the daughter modes are not
able to saturate the unstable parentmode. Middle: The energy from the instability is dissipated by the
daughter modes and the system reach a steady state. Bottom: The accumulated energy of the parent
mode is periodically advected to the daughtermodes where it is dissipated.

damping rates γ1, γ2 and on the frequency detuning δω, the whole process may lead to an
unsaturated growth of all three modes, to a steady state or to periodic limit cycles. The
unsaturated grow (Fig. 2a) occurs when γ1 + γ2 ! γ0, e.g., when the daughter modes are
not able to dissipate the energy coming to the system from the instability. The instability is
saturated by reaching the steady state (Fig. 2b) or by executing periodic limit cycles (Fig. 2c)
when the total damping slightly overcome the excitation. The typeof the saturationdepends
on the frequency detuning δω (Wersinger et al., 1980; Dziembowski, 1982). Properties of
the limit cycles in dependence of the system parameters were discussed in great details
by Moskalik (1985). In particular, the period of the cycles is mostly influenced by the
excitation rate, T ∼ |γ0|−1.
In practical situations, there can be several pairs of modes that satisfy the resonance

condition (4). Recently, the resonant interactions among the unstable parent mode and N
pairs of damped daughter modes have been studied by Nowakowski (2005). In this case,
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the necessary condition for the saturation is natural generalization of that for the single pair,

N∑

i=1
(γi,1 + γi,2) ≥ γ0 , (10)

where γi,1 and γi,2 are the damping rates of the daughter modes in i -th pair. When N > 2
it is impossible to reach the steady-state and the amplitudes are always strongly variable.
For large N the amplitude of the parentmode suffers random changes and the system reach
some kind of a statistical equilibrium.

4 PARAMETRIC INSTABILITY IN SLENDERTORI

Is the scenario described in the previous section relevant for the nonlinear behaviour of the
Papaloizou–Pringle instability of accretion tori? Essential is a presence of the daughter
modes that are resonantly coupled to the unstable corotation mode. In this section we
examine the necessary conditions for the existence of the coupled modes. The important
question whether they are able to saturate the instability or not will be addressed in future.
Let us consider tori with β = 0. The eigenfunctions and eigenfrequencies of the non-

axisymmetric modes can be expressed as

Wα = W̃αeimαφ , ωα = mαΩ0 + ω̃α , (11)

where W̃α and ω̃α are the eigenfunction and eigenfrequency of the axisymmetric mode
with mα = 0 (Blaes et al., 2006). The pattern speed of the mode is given by ωp,α =
ωα/m = Ω0 + ω̃α/mα. The daughter modes may be identified with modes whose patterns
propagate with the same speed in the opposite directionwith respect to the flow

ω1 = m1Ω0 + ω̃ , ω2 = m2Ω0 − ω̃ . (12)

The azimuthal wavenumbersm1 andm2 may be different. Combining the Eqs (1) and (12),
we find that

δω ≡ ω1 + ω2 + ω0 = 0 ⇔ m1 + m2 + m0 = 0 . (13)

Our discussion may be extended to thicker tori by means of the perturbative expansion
in β-parameter. The main effect is change of the eigenfrequencies due to the pressure
corrections. These corrections are of the order of β2 and depends also on the azimuthal
wavenumber, because the pressure gradients in the azimuthal direction become important.
The result is detuning of the perfect resonance whose magnitude is δω ∼ β2.
Next, we examine a coupling among these modes. The coupling coefficient for the

interaction is given by the integral over the volume of the torus,

κ =
∫

V
f (ξ0, ξ1, ξ2) dV , (14)

where f is a multi-linear function in all its arguments. Except for eigenfunctions ξ i , f
depends only on the quantities describing the equilibrium and there is no explicit depend-
ence on the coordinates (Schenk et al., 2002). Because the equilibrium configuration is
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axially and equatorial-plane symmetric and the eigenfunctions depend on the azimuthal
angle as ξα ∝ exp(imαφ), we find that the coupling coefficient may be nonzero only when

m1 + m2 + m0 = 0 . (15)

We obtain the same selection rule as it is needed by the resonance condition (13), which
implies that the resonant interaction is indeed possible. Finally, let us examine effects of
two other symmetries. Because the corotation mode eigenfunction is even with respect to
reflection and ȳ ↔ −ȳ the daughtermodes have to have the same parity with respect to this
symmetry. Otherwise f is an odd function of z and the coupling coefficient vanishes.

5 DISCUSSION&CONCLUSIONS

According to the general discussion given in Section 3 stable oscillation modes of a fluid
bodymay reach substantial amplitudes if they are nonlinearly coupled to a linearly unstable
mode. In this work we have examined this process for the particular case of slender tori
that are unstable with respect to the Papaloizou–Pringle instability. We have demonstrated
that two necessary conditions for the resonance coupling: the frequency condition of a
combination resonance and the selection rule imposed on the azimuthal wavenumbers are
satisfied by many pairs of torus modes in the infinitely slender tori. A finite thickness of the
torus cause a detuning of the perfect resonance which is of order of β2. Careful analysis
of the modal eigenfrequencies and eigenfunctions similar to that of (Blaes et al., 2007) for
epicyclicmodes is needed in order to decidewhatmodes are in the resonance in thicker tori.
Themechanismdescribed above is unable to saturate the instability if the daughtermodes

arenot sufficientlydamped. Thisoccurs in inviscid slender tori,where the instability leads to
a fragmentation (Goodman et al., 1987). One possible source of dampingmaybe a viscosity
of the flow. Preliminary study shows that if the standard α-prescription is assumed the
modes with significant pressure gradients are damped on the time-scale tdamp ∼ (αΩ0)−1

(the timescale for the epicyclicmodes is comparable with that of the secular evolution of the
torus β−2(αΩ0)−1). Comparing it with the timescale of the instability growth, we realize
that the corotationmodemay be saturated if β ! α.
The other possible source of damping is accretion. It has been shown that the growth of

the instability is reduced significantly because the reflection of the waves at the inner edge
of the torus is not perfect (Blaes, 1987). Likely, the same effect causes damping of other
oscillationmodes.
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ABSTRACT
We investigate the non-vacuum gyraton metric in 4-dimensional spacetime. We
show that it belongs to the Kundt class of spacetimes (generalized pp-waves). We
demostrate that the gyraton metric belongs also to the VSI spacetimes which are
special subclasses of the Kundt class of spacetimes. Thanks to that fact we have
showed that algebraical type of the gyratonmetric in flat spacetime and thosemetrics
which are conformally related to them is III or more special.

Keywords: Kundt’s class – curvature invariants – generalized pp-waves – spin
coefficients – gyratons

1 INTRODUCTION

The history of studies of gravitational fields of beams and pulses of light is quite long.
Tolman (1934) obtained solutions for the gravitational field of beams of radiation and
pulses of light in the linear approximation. The exact solutions of the non-linear Einstein
equations were found by Peres (1959, 1960) and Bonnor (1969). These solutions belong to
the pp-wave class and reduce to Aichelburg–Sexl metric (Aichelburg and Sexl, 1971) when
we consider the infinitely small cross-section of the beam and the delta-type distribution
of the light-pulse in time. Furthermore, Bonnor (1970) generalized these 4-dimensional
solutions to the case the matter of beam (null fluid) is charged or spinning.
Recently, Frolov and Fursaev (2005) and Frolov et al. (2005) found higher dimensional

generalization of previous solutions to the case where the beam of radiation carries angu-
lar momentum. The solution describes a pulsed beam of radiation with negligible radius
of cross-section, finite duration in time and with finite both energy E and angular mo-
mentum J . The ultra-relativistic source with these characteristics is called a gyraton.
Typical example of a gyraton is a pulse of circular polarized light or a modulated beam of

ultrarelativistic particles with spin. The gravitational field of the gyraton is determined by
a number of arbitrary functions of the retarded time u. They describe profiles of the energy
density and angular momenta distributions of the gyraton. The gyratons propagating in
asymptotically flat D-dimensional spacetimewere published in Frolov and Fursaev (2005);
Frolov et al. (2005). In these papers, it was shown that gyratons propagating in flat
spacetime have two very important features. First, the gyraton metric belongs to a class

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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of metrics for which all scalar invariants constructed from the curvature and its covariant
derivatives vanish identically in any dimension (Frolov et al., 2005). The second property
is that the Einstein–Maxwell field equations in D-dimensional spacetime reduce to a set of
linear equations in the Euclidean (D − 2)-dimensional space.
Generalized gyraton solutions containing electric charge were presented in Frolov and

Zelnikov (2006). Also a generalization of electrically charged gyratons to the theory of
supergravity was found in Frolov and Feng-Li (2006).
The results were also generalized to the asymptotically AdS spacetime (Frolov and Zel-

nikov, 2005). Here they obtained exact solutions for the gyraton propagating in an asymp-
totically AdS background. The gyratons in AdS are perturbatively exact in string theory.
There were also found supersymmetric gyraton solutions in minimal gauged theory in

five dimensions in Caldarelli et al. (2007).
Nowadays, the gravitational field generated by gyratons is important for studies of mini-

black hole production in colliders (the Large Hadron Collider in CERN) or for cosmic
ray experiments. The mini-black hole formation in high energy particle collisions is an
important issue of TeV gravity scenarios. in Yoshino et al. (2007) head-on collisions of two
gyratons and black hole formations are studied in these processes.
In this paper, we reviewand further investigate the four dimensional gyratonmetric inflat

spacetime. In Section 2we review some important features about theKundt class (Stephani
et al., 2003; Pravda et al., 2002). In Section 3 basic theory about the gyratons in flat
4-dimensional spacetimes is mentioned. In Section 4 we apply the theory of the Kundt
class spacetimes to the gyratons from Section 3 andwe demonstrate that the gyratonmetric
belong to the VSI spacetimes.

2 THEORYAROUNDKUNDT’SCLASS

The Kundt class of spacetimes has shear-free, non-expanding, non-twisting geodesics null
congruence. We will review shortly the Kundt class as in Stephani et al. (2003), for more
see also (Kundt, 1961). The non-twisting null vector field may be chosen to be a gradient
field, and coordinates u and v are then naturally introduced by

e4 = ki∂i = ∂v , ω3 = −ki dxi = du . (1)

As coordinates in the null hypersurfaces u = const we use the affine parameter v and two
spacelike coordinates x1, x2. With this choice, the line element has the form

ds2 = gAB dx Adx B − 2 du (dv + mA dx A + H du) , A, B = 1, 2 . (2)

The functions in themetric gAB (u, x1, x2, v),mA(u, x1, x2, v) and H (u, x1, x2, v) are real.
The spin coefficients ρ and σ are then

ρ = −ka;b mamb = − 1
2gab,v m

amb = − 1
2gAB,v mAmB ,

σ = −ka;b mamb = − 1
2gab,v m

amb = − 1
2gAB,v mAmB ,

κ = −ka;b makb .

(3)
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Hence

ρ = σ = 0 (4)

leads to gAB,v = 0. And it can be calculated directly that

κ = 0 . (5)

Performing a coordinate transformation x A′ = x A′(x B, u), and with complex coordinates

ζ =
1
√

2

(
x1 + ix2

)
, ζ̄ =

1
√

2

(
x1 − ix2

)
, (6)

the line element (2) can be written in the form

ds2 = 2P−2 dζdζ̄ − 2 du (dv + W dζ + W dζ̄ + H du) , (7)

and

P(u, ζ, ζ̄ ),v = 0 . (8)

It could be written equivalently as

ds2 = 2ω1ω2 − 2ω3ω4 , (9)

where the tetrad components are

ω1 =
dζ
P

, ω2 =
dζ̄
P

, ω3 = du , ω4 = dv + W dζ + W dζ̄ + H du , (10)

where the functions P(u, ζ, ζ̄ ) and H (u, ζ, ζ̄ , v) are real. The function W (u, ζ, ζ̄ , v) is
complex.
It is useful to perform a null rotation with respect to k and use the rotated tetrad instead

of (10). The basis of one-forms is

ω1 =
dζ
P
− PW du , ω2 =

dζ̄
P
− PW du , ω3 = du , ω4 = dv+ (H+ P2WW ) du , (11)

and corresponding tetrad vectors

e1 = P∂ζ , e2 = P∂ζ̄ , e3 = ∂u + P2(W∂ζ +W∂ζ̄ )− (H + P2W W )∂v , e4 = ∂v . (12)

The rotated tetrad (11) and (12) are useful in calculating the Riemann tensor in the
Newman–Penrose formalism.
The coordinate transformations preserving the form (7) of the metric and the associated

transformations of metric functions P, H andW are

(i) ζ ′ = f (ζ, u) , P ′2 = P2 f,ζ f̄,ζ̄ , W ′ = W/ f,ζ + f̄u/P2 f,ζ f̄,ζ̄ , (13)

H ′ = H −
(
f,u f̄,u/P2 + W f,u f̄,ζ̄ + W ζ̄,u f,ζ

)
/( f,ζ f̄,ζ̄ ) ,

(ii) v′ = v + g(ζ, ζ̄ , u) , P ′ = P , W ′ = W − g,ζ , H ′ = H − g,u , (14)

(iii) u′ = h(u) , v′ = v/h,u , (15)

P ′ = P , W ′ = W/h,u , H ′ = (H + vh,uu/h,u)/(h,u)
2 .



92 H. Kadlecová

Let usmention some further properties of the Kundt class. If (ln P)ζ ζ̄ = 0, then it is always
possible to transform P to

P = 1 . (16)

The condition

W,v = 0 (17)

is invariant under the transformations (13), (14) and (15), and so characterizes a special
subclass of metrics. The 2-surfaces u, v = const with metric 2 dζdζ̄/P2 are called wave
surfaces. The tetrad vector fields e1 = P∂ζ and e1 = P∂ζ̄ are surface-forming, i.e., their
commutator is a linear combination of themselves. They are tangent to the wave surfaces,
whereas the vector fields e1 = P(∂ζ − W∂v) and e2 = P(∂ζ̄ − W∂v) associated with the
basis (10) are not.
The existence of (spacelike) 2-surfaces orthogonal to k implies ω = 0. The spacetime

geometry uniquely determines the null congruence k and the wave surfaces. The Gaussian
curvature

K = 2P2(ln P),ζ ζ̄ (18)

of the wave surfaces is a spacetime invariant.
In the next paragraph, we will mention a few words about spacetimes with vanishing

curvature invariants (VSI). The VSI spacetimes represent an important subclass of space-
times in the Kundt class of spacetimes. It was proved in Pravda et al. (2002) that all
Lorentzian spacetimes for which all curvature invariants of all orders are zero satisfy the
next theorem:

Theorem 1 All curvature invariants of all orders vanish if and only if the following two
conditions are satisfied:

(A) The spacetime possesses a non-diverging shear-free geodesics null congruence.
(B) Relative to the above null congruence, all curvature scalars with non-negative boost

weight vanish.

The analytic form of condition (A), expressed relative to any spin basis where k is aligned
with the null congruence in question, is simply

κ = ρ = σ = 0 (19)

and the analytic form of condition (B) is

Ψ0 = Ψ1 = Ψ2 = 0 , (20)

Φ00 = Φ01 = Φ02 = Φ11 = 0 , (21)

ΛNP = 0 . (22)

Previous equations are expressed in terms of quantities used in the Newman–Penrose
formalism. Spacetimes that satisfy condition (A) belong to Kundt’s class (Stephani et al.,
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2003). Condition (B) implies that the spacetime is of Petrov type III, N or O (see Eq. (20))
with the Ricci tensor restricted by (21) and (22). We note here thatΛNP is Ricci scalar up to
a constant factor. Non-vacuum spacetimes with a covariantly constant null vector are often
referred to as generalized pp-wave.

3 THERELATIVISTIC GYRATON IN FLAT 4DSPACETIME

The gyratonmetric in 4-dimensional spacetime has a form

ds2 = −2 dudv+dz2+dx2 +Φ(u, x, z) du2+2[Az(u, x, z) dz+ Ax(u, x, z) dx] du . (23)

The functionsΦ (gravitoelectric potential) and Aa (gravitomagnetic potential) can be con-
sidered as a scalar and a vector field in the 2-dimensional Euclidean space with Cartesian
coordinates x, z. The functions do not depend on v. The metric (23) reduces to Minkowski
metric for A = Φ = 0.
The null Killing vector is k = kµ∂µ = ∂v. Instead of u, v we also use coordinates t, ξ

given by u = (t − y)/
√

2, v = (t + y)/
√

2. The metric (23) describes an object moving
with the velocity of light in the ξ direction. The coordinates x and z are coordinates of an
2-dimensional space which is transverse to the direction of motion.
We introduce the antisymmetric tensor in the 2-transversal planewith the only independ-

ent component

Fzx = ∂z Ax − ∂x Az . (24)

It can be shown that the null Killing vector k is covariantly constant, i.e.,

kµ;ν = 0 . (25)

It means that the spacetime admit a covariantly constant null vector field.
TheEinstein equations reduce to two sets of equations in2-dimensional flat space (Frolov

et al., 2005)

F :b
ab = Ja , (26)

Φ :a
:a = −J + 1

2 FabF
ab + 2∂u(A:a

a ) , (27)

where Ja = κTua, J = κTuu . Here ():a denotes the covariant derivative with respect to
the flat metric in the transverse space, the indices a, b could be x and z. The first set of
equations (26) formally coincides with the Euclidean Maxwell equations in 2 dimensions
where Ja plays the role of the current. We need to find the static magnetic potential Aa
created by the gyraton source. The second equation (27) is similar to the equation for the
electric potentialΦ with the important difference that in addition to the charge distribution
J it contains an extra source proportional to FabFab. We obtain vacuum solution when we
set J = Ja = 0. It describes a solution outside the source of gyraton.
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4 RESULTS

In this section, we will show that the gyraton metric in flat spacetime belongs to the sub-
class of the Kundt class of spacetimes. Then we will calculate spin coefficients, the Ricci
scalars and the Weyl scalars to demonstrate that the gyraton metric belong also to the VSI
spacetimes. Furthermore, we will determine the algebraical type of thatmetric.
First, we compare the gyratonmetric (23) with the general Kundtmetric (2). We observe

that they can be compared and the functions could be identified as

g11 = g22 = 1 , g12 = g21 = 0 , m1 = −Ax , m2 = −Az , H = −Φ/2, P = 1 . (28)

We choose x1 = x , x2 = z, then the complex coordinates read

ζ =
1
√

2
(x + iz) , ζ̄ =

1
√

2
(x − iz) , (29)

and the inverse transformation

x =
1
√

2
(ζ̄ + ζ ) , z =

i
√

2
(ζ̄ − ζ ) . (30)

The gyratonmetric can be rewritten in complex coordinates by (30) to the Kundt form (7)

ds2 = 2 dζdζ̄ − 2 du (dv + W dζ + W dζ̄ + H du) , (31)

where

W =
1
√

2
(m1 − im2) = −

1
√

2
(
Ãx − i Ãz

)
,

W =
1
√

2
(m1 + im2) = −

1
√

2
(
Ãx + i Ãz

)
, (32)

H = − 1
2Φ̃ , P = 1 ,

and we observe that condition (8) for P is trivially satisfied. We have denoted the func-
tions Ãa(u, ζ, ζ̄ ) = Aa(u, x, z) and Φ̃(u, ζ, ζ̄ ) = Φ(u, x, z). In the following we use
mainly the coordinates (v, x, z, u) and we evaluate everything in them. We substitute the
transformation (32) into the rotated tetrad (11), (12). The basis of one-forms are

ω1 =
1
√

2
[dx + i dz − (Ax + iAz) du] , ω2 =

1
√

2
[dx − i dz − (Ax − iAz) du] ,

ω3 = du , ω4 = dv − 1
2

(
Φ − A2

x − A2
z

)
du ,

(33)

and corresponding tetrad vectors

e1 =
1
√

2
(∂x + i∂z) , e2 =

1
√

2
(∂x − i∂z) ,

e3 = ∂u − (Ax∂x + Az∂z) + 1
2

(
Φ − A2

x − A2
z

)
∂v , e4 = ∂v .

(34)
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We will discuss the transformations preserving the form of the metric (31). The trans-
formation (13) can not be used, because P = 1. The transformation (14) reads:

v′ = v + g̃(z, x, u) , P ′ = P = 1 , A′a = Aa + g̃,a , Φ ′ = Φ + 2g̃,u , (35)

where g̃(z, x, u) = g(ζ, ζ̄ , u). Then in the transformation (15) we choose the function h(u)
to be linear function of u, h(u) = bu; b ̸= 0:

u′ = bu , v′ = v/b , P ′ = P = 1 , A′a = Aa/b , Φ ′ = Φ/b2 , (36)

which is in agreement with (Frolov et al., 2005).
The 2-surfaces u, v = const with the metric dx2 + dz2 are called wave surfaces. The

vector fields e1, e2 are surface-forming. The Gaussian curvature (18) is K = 0 since
P = 1 here. The functions in the gyraton metric (28) does not depend on coordinate
v, so the condition (17) characterizes a special subclass of metrics. These non-vacuum
gyraton solutions in flat spacetime with covariantly constant null field (25) are often called
generalizedpp-waves. Thevacuumgyratonsolutions inflat spacetimecouldbe transformed
to the standard pp-wave solutions in 4D. We can get vacuum pp-wave metric by deleting
A-terms in the gyratonmetric by transformation (35).
Now, we derive spin coefficients, Ricci scalars and Weyl scalars with respect to the

tetrad (33), (34). The spin coefficients are

κ = σ = ρ = τ = π = ϵ = α = β = 0 ,

λ = 1
2 [(∂x + i∂z)Ax − (∂z − i∂x )Az] ,

ν =
1

2
√

2
[(∂x + i∂z)Φ − Ax(∂x + i∂z)Ax − Az(∂x + i∂z)Az] , (37)

µ = 1
2 (∂x Ax + ∂z Az) ,

γ = 1
4 iFzx ,

and the Ricci scalars are:

Φ00 = Φ01 = Φ02 = Φ11 = 0 ,

Φ12 = −
1

4
√

2
(∂z + i∂x)Fzx , (38)

Φ22 =
1
4

[
F2
zx −

(
∂2
z + ∂2

x

)
Φ + 2∂u (∂x Ax + ∂z Az)− 2 (Az∂x − Ax∂z) Fzx

]
.

TheWeyl scalars are

Ψ0 =Ψ1 = Ψ2 = 0 ,

Ψ3 =
1

4
√

2
(∂z − i∂x )Fzx ,

Ψ4 = 1
4 (∂z − i∂x)2Φ − 1

2 Ax(∂z − i∂x)Fzx
− 1

2 Az(∂x + i∂z)Fzx − 1
2∂u(∂z − i∂x)Ax + 1

2∂u(∂x + i∂z)Ax , (39)

ΛNP = 1
24 R = 0 .
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We compare our results (37), (38) and (39) with the Theorem 1, the analytical equi-
valents of conditions (A) and (B), cf. (19), (21), (20) and (22) are satisfied. Therefore
the metric (23) belongs to the VSI spacetimes. It is valid in any dimension (Frolov et al.
2005, for more information about VSI class of spacetimes see, e.g., Pravda et al. 2002
in 4D and Coley et al. 2004 in higher dimensions). Furthermore, the condition (B) of the
Theorem1determine the algebraical type of gyratonmetric. Their type is III ormore special.
Let us recall that the Weyl tensor is invariant under the conformal transformations. It

means that theWeyl tensors for gyraton metric in flat and in conformally related spacetime
are the same. Thenwe have determined algebraical type for the gyraton in four dimensional
flat spacetime and for any conformally related metrics. An example of such a conformally
related metric in the gyraton metric in AdS (Frolov and Zelnikov, 2005). An important
subfamily of the gyratonmetric in AdSwas first described in Siklos (1985) and also studied
in Podolský (1998).
To conclude this section, we have shown that the non-vacuum gyraton metric in flat 4D

spacetimebelongs to theKundt class of spacetimes and also to its VSI subclass. Particularly,
it belongs to the generalized pp-waves. We have applied the theory of the Kundt spacetimes
on the gyraton metric. Moreover, we have determined the algebraical type of the gyraton
metric in flat spacetime and those metrics which are conformally related to them.

5 CONCLUSIONS

We have shown that the non-vacuum gyraton metric (23) in 4-dimensional spacetime be-
longs to the Kundt class of spacetimes, specifically, to their subclass-generalized pp-wave
spacetimes. The metric (23) could be rewritten to the standard Kundt form of metric (7)
by the complex transformation (30). We have calculated spin coefficients, Ricci scalars
and Weyl scalars and thanks to the Theorem 1 in the Section 2 we have demonstrated that
the gyratonmetric belongs to the VSI spacetimes which are special subclasses of the Kundt
class of spacetimes. Thanks to that fact we have showed the algebraical type of the gyraton
metric in flat spacetime and those metrics which are conformally related to them is III or
more special.
In the future work, we want to investigate the higher dimensional Kundt class of space-

times and to study other conformally related spacetimes to the gyratons in flat spacetimes
and find their higher dimensional generalization. The very interesting assignment is to find
a connection between the gyratons in AdS and the AdS/CFT correspondence.

ACKNOWLEDGEMENTS

The work was supported by the Czech Science Foundation under grant 205/03/H144.

REFERENCES

Aichelburg, P. C. and Sexl, R. U. (1971), On the Gravitational Field of a Massless particle, Gen.
Relativity Gravitation,2, p. 303.



Relativistic gyratons 97

Bonnor,W. B. (1969), The gravitational field of light, Comm.Math. Phys., 13, p. 163.
Bonnor,W. B. (1970), Chargemoving with the speed of light in Einstein-Maxwell theory, Internat. J.

Theoret. Phys., 3, p. 57.
Caldarelli, M. M., Klemm, D. and Zorzan, E. (2007), Supersymmetric gyratons in five dimensions,

ClassicalQuantumGravity, 24, pp. 1341–1357.
Coley, A., Milson, R., Pravda, V. and Pravdová, A. (2004), Vanishing scalar invariant spacetimes in

higher dimensions, ClassicalQuantumGravity, 21, pp. 5519–5542.
Frolov, V. P. and Feng-Li, L. (2006), String gyratons in supergravity, Phys. Rev. D, 73, p. 104028.
Frolov, V. P. and Fursaev, D. V. (2005), Gravitational field of a spinning radiation beam-pulse in higher

dimensions, Phys. Rev. D, 71, p. 104034.
Frolov, V. P., Israel, W. and Zelnikov, A. (2005), Gravitational field of relativistic gyratons, Phys. Rev.

D, 72, p. 084031.
Frolov, V. P. and Zelnikov, A. (2005), Relativistic gyratons in asymptotically AdS spacetime, Phys.

Rev. D, 72, p. 104005.
Frolov, V. P. and Zelnikov, A. (2006), Gravitational field of charged gyratons, Classical Quantum

Gravity, 23, p. 2119.
Kundt,W. (1961), The Plane-frontedGravitatationalWaves, Zeischrifft für Physik, 163, pp. 77–86.
Peres, A. (1959), SomeGravitationalWaves, Phys. Rev. Lett., 3, p. 571.
Peres, A. (1960), Phys. Rev. D, 118, p. 1105.
Podolský, J. (1998), Interpretation of the Siklos solutions as exact gravitational waves in the anti-

de Sitter universe, ClassicalQuantumGravity, 15, p. 719.
Pravda, V., Pravdová, A., Coley, A. and Milson, R. (2002), All spacetimes with vanishing curvature

invariants, ClassicalQuantumGravity, 19, pp. 6213–6236.
Siklos, S. T. C. (1985), Galaxies, Axisymmetric Systems and Relativity, Cambridge University Press,

Cambridge.
Stephani, H., Kramer, D., Maccallum, M., Hoenselaers and Herlt, E. (2003), Exact Solutions to

Einstein’s Field Equations, CambridgeUniversity Press, Cambridge.
Tolman, R. C. (1934), Relativity, Thermodynamics, and Cosmology, Clarendon Press, Oxford.
Yoshino, H., Zelnikov, A. and Frolov, V. (2007), Apparent horizon formation in the head-on collision

of gyratons, Phys. Rev. D, 74, p. 044003, arXiv: gr-qc/0703127.





Proceedings ofRAGtime 8/9, 15–19/19–21September, 2006/2007,Hradec nadMoravicí, Opava, Czech Republic 99
S.Hledík and Z. Stuchlík, editors, SilesianUniversity inOpava, 2007, pp. 99–108

Flares from spiral waves by lensing and
time-delay amplification?
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ABSTRACT
Episodically accreting black holes are thought to produce flares when a chunk of
particles is accelerated to high velocity near the black hole horizon. This also seems
to be the case of SagittariusA∗ in the Galactic Center, where the broad-band radi-
ation is produced, likely via the synchrotron self-Compton mechanism. It has been
proposed that strong-field gravitational lensing magnifies the flares. The effect of
lensing is generally weak and requires a fine-tuned geometrical arrangement, which
occurs with only a low probability. However, there are several aspects that make
SagittariusA∗ a promising target to reveal strong gravity effects. Unlike type II (ob-
scured) active galaxies, chances are that a flare is detected at high inclination, which
would be favourable for lensing. Time delays can then significantly influence the
observed flare duration and the form of light-curve profiles.

Here we discuss an idea that the impact of lensing amplification should be consid-
erably enhanced when the shape of the flaring clump is appropriately elongated in
the form of a spiral wave or a narrow filament, rather than a simple (circular) spot
which we employed previously within the phenomenological “orbiting spot model.”
By parameterizing the emission region in terms of the spiral shape and contrast, we
are able to extend the spot model to more complicated sources. In the case of spir-
als, we notice a possibility that more photons reach a distant observer at the same
moment because of interplay between lensing and light-travel time. The effect is
not symmetrical with respect to leading versus trailing spirals, so in principle the
source geometry can be constrained. In spite of this, the spotmodel seems to provide
entirely adequate framework to study the currently available data.

Keywords: Black holes –Galactic center (SgrA∗) – accretion–gravitational lensing

1 INTRODUCTION

Temporal changes of the radiation flux are frequently reported in active galactic nuclei
(AGN) as well as Galactic black-hole candidates, i.e., two categories of objects that contain
accreting black holes (for reviews of AGN variability, see, e.g., McHardy and Czerny, 1987;

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Lawrence and Papadakis, 1993; Done, 2002; Gaskell and Klimek, 2003; Vaughan et al.,
2005). Especially X-rays vary a lot and on short time-scales. Variability time-scales extend
down to the shortest resolvable intervals and seem to scalewith theblack holemass (Mirabel
andRodríguez, 1998; Papadakis, 2004; Done andGierliński, 2005). Persisting fluctuations
are occasionally dominated bymore substantial increases of the radiation flux. These events
have been dubbed “flares” and often attributed to instabilities/shocks operating in black-
hole accretion flows (Haardt et al., 1994; Poutanen and Fabian, 1999; Życki, 2002; Czerny
et al., 2004; Goosmann et al., 2006). One can expect that fast bulk (orbital) motion and
lensing play a role in amplification of the flaring signal.
In the dynamical center of our Galaxy, a peculiar radio source, SagittariusA∗ (SgrA∗),

is located (e.g., Eckart et al., 2005). It is very compact and presumably contains a su-
permassive black hole. Given a relatively small distance (D ≃ 8 kpc) and a large mass
of the black hole (M• ≃ 3–4 × 106 M⊙), a silhouette of SgrA∗ should draw a circle of
diameter ≃10.4 rg/D ≃ 42 µarcsec on the sky. Furthermore, a gaseous torus is not detec-
ted in Sgr A∗, and so the central region can be viewed at high inclination, something which
is quite impossible in obscured AGN.
In spite of a very low level of its activity, flares of duration ≃ tK(rms) have been reported

also from the Galactic Center (Baganoff et al., 2001; Genzel et al., 2003; Marrone et al.,
2006; Bélanger et al., 2005, 2006). Duration of short flares is comparable with Keplerian
orbital period near the marginally stable orbit, tK(rms), and it is not much longer than the
light-crossing time across one gravitational radius: tc ≡ rg/c, rg ≡ GM•/c2 ≈ 1.5 ×
1011 M6 cm,M6 ≡ M•/106 M⊙.
The flares occur about once per day from within a few milli-arcseconds of SgrA∗ ra-

dio position. Because of short time-scales they cannot be explained in terms of viscous
processes in the standard accretion disc with some appreciable accretion rate (as already
mentioned, there is no evidence for a standard-type axially symmetric accretion regime);
SgrA∗ is accreting at a highly sub-Eddington rate. Nonetheless, recent millimeter, infrared
and X-ray observations have confirmed these irregular outbursts lasting between ≃ 20
minutes and about 2 hours. They are probably generated by relativistic acceleration of
electrons in the innermost region, where synchrotron radiation emerges followed by inverse
Compton mechanism (Markoff et al., 2001; Yuan et al., 2003; Liu Siming et al., 2006).
There are indications for 17–20min quasi-periodicities to be present in light curves of some
of these flares (Genzel et al., 2003; Eckart et al., 2004). The influences of relativistic lens-
ing and Doppler effects have been considered in connection with SgrA∗ since more than
a decade ago (see, e.g., Hollywood and Melia, 1995; Melia et al., 2001). These effects are
now of imminent interest because of growing amount of new data gathered in different
wavebands.
The model of a bright spot orbiting near a black hole (Bao and Stuchlík, 1992; Cunning-

ham and Bardeen, 1972, 1973; Karas et al., 1992) has been fairly successful in explaining
the observed SgrA∗ modulation (Broderick and Loeb, 2005, 2006; Meyer et al., 2006a,b;
Noble et al., 2007). It has been argued that the flare lightcurves can be understood as a
region of enhanced emission, a.k.a. “spot,” that performs a co-rotational bulk motion near
above the innermost stable orbit, r = rms. The observed signal is modulated by relativistic
effects. According to this idea, Doppler and gravitational lensing influence the observed
radiation flux and this can be computed by ray-tracingmethods (Dovčiak et al., 2004b,a).
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The original idea and the interpretation of the “spot” origin have to be adapted to the
conditions appropriate for SgrA∗. To this aim, the phenomenological model of the source
is a way of parametrizing the intensification of the signal. This approach can be extended to
more complicated geometry of the emission region, like standing shocks and spiral waves,
which is what we discuss here. For example, spiral waves as an agent of light modulation
have discussed and compared with the spot model by Varnière and Blackman (2005) in the
context of quasi-periodic oscillations from accretion discs. On amore physical level it is still
not possible to calculate the intrinsic emissivity from first principles, i.e., without enlarging
the number of free parameters beyond and reasonable limit.

2 TIMEDELAYS FROMSGRA∗ VICINITY

2.1 Model setup

It is quite likely that the geometrical shape of the flare emission region is deformed by
shearing due to strong tidal fields of the black holes, magnetohydrodynamic instabilities
operating in the plasma, as well as by the influence of stars passing nearby. Under such
circumstances the emission area can be better described as a transient pattern extending
in both radial and azimuthal directions. Relativistic effects from spiral waves and standing
shocks have been previously invoked to explain spectral features from black-hole accretions
discs (Karas et al., 2001; Hartnoll and Blackman, 2002; Machida and Matsumoto, 2003;
Fukumura and Tsuruta, 2004). Although the Doppler boosting is visible even at amoderate
value of the inclination angle, much stronger enhancement can occur via gravitational
lensing, provided that a rather precise geometrical alignment with the caustic position is
satisfied (e.g., Rauch and Blandford, 1994; Bozza et al., 2005).
It has been proposed that a kind of this instability could play a role in forming Sgr A∗

flares (Tagger et al., 1990; Tagger and Melia, 2006) and since then the idea of spiral per-
turbations has been greatly advanced (Falanga et al., 2007). Here we put forward a simple
argument (based on Karas et al., 2001) that relativistic effects together with finite light
travel time from different elements of the spiral source may add up together and enhance
the observed flare signal from SgrA∗. For suitable spiral shapes, r ≡ r(φ), the enhance-
ment can reach quite significant levels. Lightcurve profiles depend on observer inclination,
θo, and the emission radius as the principal parameters, which in turn may depend on the
black hole spin a through rms(a) dependency.
Let us assume that a perturbation of local emissivity structure develops on length-scales

of ≃ 10–20 rg extending along a logarithmic spiral pattern r ≡ r(φ) (Karas et al., 2001).
The spirals become active either by their intrinsic synchrotron emission and Compton up-
scattering or the illumination from a primary source. Although our model is a phenomen-
ological one, such kind of spirals are expected to arise by several mechanisms in accretion
discs: spiral waves represent large-scale structures (size comparable with the radius) that
can be induced by non-axisymmetric instability mechanisms.1 Also, a pattern resembling a

1 Most of the attention towards gaseous spiral waves has been originally motivated by studies of cataclysmic
variables. It has been recognized that the variation of the density profile and of the ionization structure of accretion
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single-armed spiral is produced froman extended spot after its decay due to shearing (Karas
et al., 1992) or it may be produced by debris in the wake of a tidally captured and disrupted
satellite (e.g., Gomboc andČadež, 2005).
One should emphasize that the physical conditions leading to the spiral-shaped source of

X-raysmust be very different from those envisaged by the orbiting spotmodel, although, on
thephenomenological level the twomodels donot appear to be thatmuchdifferent (they can
be treated by similar numerical schemes). The spot model has been built on the standard
disc, which is illuminated by coronal flares; otherwise it remains almost intact. Spots
are merely the reflection features that come into existence only by flares and they cease as
soon as the irradiation is diminished. On the other hand, the existence of extended spirals
probably requires that the base flow is non-axisymmetric and, hence, profoundly different
from a standard disc – self-gravity, external forcing by another body, or MHD processes
must be invoked to create the spirals and calculate their form. They light up themselves by
the synchrotron mechanism.

2.2 Time-delay calculations and the signal enhancement

We calculated the light-travel time from the equatorial disc around a Kerr black hole to
a distant observer. Apart from the central mass M•, the situation is characterized by
parametersa (dimension-less black hole spin) and θo (inclination angle).2 The complexities
of primary X-ray reprocessing can be hidden by parameterizing the emissivity in the form
of a logarithmic spiral wave. The emission region extent and shape are then defined by
the spiral-wave pitch angle and the emissivity contrast – two variables that can be fitted to
actual data.
Adopting the phenomenological approach does not merely hide the unknown physics. It

also allows us to distinguish the principal difference of the two models, i.e., their geometry,
while the “physical”models in reality rely on a number of free input parameters that have to
be set.
We first estimate the light-crossing time across the spiral-wave extent. It comes out

of the order of tc ≈ 10M6 sec. On the other hand, the orbital, thermal, sound-crossing,
and viscous time-scales are typically longer than tc. Radiation arrives at the observer from
different regions of the source, so that individual light rays experience variable time lags.
Time intervals get longer very near to the hole because of gravitational delays predicted by
general relativity, including the frame-dragging effect near a rotating black hole, which we
also take into account.

flows, predicted by numerical and semi-analytical methods, is followed by temperaturemodulation and, therefore,
a change in the gas (thermal) emissivity within the spirals. A similar effect is expected for the X-ray irradiated
accretion flows in AGN. Sanbuichi et al. (1994) first considered the spirals extending close to a Schwarzschild
black hole and they showed examples of relativistically distorted spectra where the effects of general relativity play
a role.
2 We employ standard notation for the Kerr spacetime in Boyer–Lindquist coordinates and geometrized
units (c = G = 1, e.g., Misner et al., 1973). All lengths and times are made dimensionless by expressing
them in units of the typical mass of the central black hole. Radius is supposed to be greater than the marginally
stable orbit, i.e., rms = 3 rg for a non-rotating black hole (a = 0), and rms = 1 rg for a maximally rotating black
hole (a = 1).
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Figure 1. Graphs of the maximum time delay∆t (r) for photons originating from an r = const ring
rotating in the black-hole equatorial plane. The delay is plotted in units of theKeplerian orbital period,
tk ≃ 31(r3/2 + a)M6 sec. Radius is expressed in rh = [1 + (1− a2)1/2]1/2rg. Four cases are shown
with different spin a of the black hole and inclination θo of the observer. The Euclidean estimate is
plotted by dotted lines of −1/2 slope. Towards low radius the relativistic delay grows more rapidly
than the estimate because of fastmotion and strong gravity.

The geometrical time lag (along different rays) can be characterized by the maximum
value ∆t (r), which also indicates whether the Euclidean formula gives a correct value
of the light-travel time with an acceptable precision. Figure 1 shows ∆t for a source
located near r = rms. Solid curves represent the delay values in Kerr spacetime, while the
dotted lines show the approximation in flat space. Relativistic corrections are increasingly
important for r ! 5rg, where ∆t (r) increases sharply. On the other hand, the difference
between the exact value of∆t and its Euclidean approximation is less than 10 % for a source
location " 5rg (see Karas et al., 2001).
Figure 2 shows contours of relative time delay between a ray coming from a given radius

in the equatorial plane (θ = 90o), and an (arbitrarily chosen) reference ray. In this figure,
time delay was calculated in Kerr metric. Clearly, the contours are progressively deformed
and even split as the emission radius approaches the black-hole horizon. Reference values
quoted with the contours of this figure can be transformed to physical time units (meas-
ured by a distant observer) by the relation t̄ [sec] ≈ 10M6 t . Furthermore, contours of
constant redshift g(r,φ) = const are over-plotted in Fig. 2. Radiation flux is enhanced
(or diminished) by factor g4 as it originates from the regions approaching (receding) the
observer.
Figure 2 once again suggests the main grounds for the enhancement of the observed

signal. The enhancement occurs when photons emitted at different points of the rotating
source reach the observer similar time. This is possible near the black hole (r ! 6rg), where
t (r,φ) = const contours are bent significantly. The actual shape of the spiral supporting the
signal enhancement depends also on the pattern rotation, i.e., not solely on the spacetime
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Figure2.Levels of light-travel time t (r,φ) = const (approximately horizontal direction of the contour
lines) are plotted together with levels of the redshift function g(r,φ) = const (roundish shape of the
latter). The contours are constructed in the equatorial plane of Kerr black hole for two cases: a non-
rotating hole (a = 0, left panel) and for a maximally rotating hole (a = 1, right panel). Observer is
located towards top of the figure (at the inclinationof θo = 20◦). The argument of this paper assumes
that the spiral pattern crosses t = const contours and the signal varies thanks to their deformation and
thanks to lensing near the horizon. Geometrical units are used for time t (conversion to physical units
as in the previous figure caption); redshift function g is dimensionless and it attains values around
unity (g > 1 corresponds to the blue-shift, i.e., observed energy of photons higher than the rest-frame
energy). Three circles are plotted around the center: the horizon radius (r = rh, black), the circular
photon orbit (r = rph, yellow), and the marginally stable orbit (r = rms, red). The circles coincide
with each other in the extremely rotating case: rh|a=1 = rg.

geometry. Needless to say, the effect combines with the lensing and Doppler amplification
as the source crosses the lensing caustics in g > 1 region.
Obviously the effect grows with spin of the black hole and attains maximum at a = 1,

a theoretical upper limit for Kerr black hole. The difference from the canonical a = 0.998
case is rather minimal, except for a small shift of rms(a) radius. That shift can prove to be
important for the disc emission though, provided that the inner edge of the disc is attached
to r = rms.

3 DISCUSSION

As mentioned above, the interplay of lensing and the Doppler boosting was discussed by
many authors within the orbiting spot model, whereas the influence of time-delays has not
been emphasized to such detail. The effect is noticeable when watching the well-known
animations of an orbiting spot at a large view-angle inclination (e.g., Fig. 3 in Eckart et al.,
2007): the signal is sharply enhanced at the moment when the large spot moves behind the
black hole. In the case of a spiral-shaped emission region the effect is expected to be even
more pronounced thanks to the elongated size of the source.
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The amplification is not symmetrical between leading and trailing spirals of otherwise
the same geometry and the intrinsic emissivity. Put in a different way, the timing properties
of the flare lightcurves can in principle constrain the ratio of vr/vφ of the spiral pattern
producing them. In particular, for vr = 0, vφ = vK the model is effectively reduced
to the orbiting spot model, whereas for l = const (constant angular momentum of the
gas), vr < 0, vφ < vK the case goes over to the falling spot model. Very exciting is now
the possibility of having an extended source which can be incorporated within the spiral
model. On the other hand the effects of lensing and the delay amplification should not be so
important in the case of a low-angular momentum inflow (vφ ≪ vK), which has been also
widely applied in the context of Sgr A∗ (Proga and Begelman, 2003; Mościbrodzka et al.,
2007 and references cited therein).
Further, it has been recognized that relativistic effects can strongly influence the observed

signal and enable us tomeasurephysical parameters of Sgr A∗ black hole. The simultaneous
near-infrared and X-ray flares as well as the steady microwave emission from SgrA∗ may
be important probes of the gas dynamics and space-time metric of the black hole. The
enhancement of the signal discussed in the present paper should be seen in all wavelengths
as long as the approximation of geometrical optics is satisfied.
We have argued that the emitting region is likely to be twisted into a shapemore complex

than a simple spot. The spiral pattern is a physically sound possibility for the flaring region,
in which the effect of relativistic modulation is more pronounced. The enhancement of the
main peak of the lightcurve takes place roughly on time-scale of the spiral pattern crossing
the equal-time curves. In other words the duration of the event can be significantly shorter
that the pattern rotation period (it depends on the spiral shape and its rotation law). On the
other hand, the pattern orbital speed is still relevant for the estimation of the flare periodicity
over the entire cycle.
Given a specific mechanism to generate the spiral waves, certain freedom remains in the

model parameters, so the actual form of the spiral profile can vary. Because for an ideal
geometrical alignment of the spiral a rather sharp enhancement of the observed signal is
foreseen (i.e., stronger than the spotmodel would predict), we can expect occasional strong
flareswith amplitudes exceeding themore frequent and currently knownflares fromSgr A∗.

4 CONCLUSIONS

Albeit physically substantiated, the model of an extended emission region suffers from a
practical disadvantage in comparison with the spot model. The spiral model is more com-
plex and the number of parameters describing the source is greater. Therefore, the fitting
procedure will need better quality of future data. The spiral model assumes mechanisms
beyond the standard disc scheme play a major role and form these non-axisymmetric struc-
tures. This may or may not be true. After all, the two scenarios – spots versus spirals – can
be relevant for different categories of objects and different regimes of accretion. To this un-
certainty refers the questionmark in the title of the paper. The advent of simultaneousX-ray
and IR detections of Sgr A∗ flares and the improving temporal and polarimetric resolution
offer a promising potential to remove ambiguities that still hamper the association between
physical models and real data.
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Test particle motion in brany black hole
spacetimes with a nonzero cosmological
constant

Martin Kološ, Zdeněk Stuchlík and Stanislav Hledík
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
In the framework of the brany cosmology, the influence of the bulk spacetime on the
black holes in the brane can be described by the so called tidal charge, which has a
character similar to the charge parameter in the standard black-hole solutions, but
can be both positive and negative. We discuss the influence of the tidal charge on
the test particle and photon motion in the spherically symmetric spacetimes with a
nonzero cosmological constant using the analysis realised in the case of Reissner–
–Nordström–(anti-)de Sitter spacetimes. We concentrate on the properties of circu-
lar geodesics as they play an important role in determining the brane properties of
both thin and thick accretion discs. Some implications of the tidal charge influence
are outlined.

Keywords: Brany black hole – tidal charge – Kerr–Newman–(anti-)de Sitter –
Reissner–Nordström–(anti-)de Sitter – black hole – test particle motion – cosmolo-
gical constant

1 INTRODUCTION

The Brane models of the Universe (Randall and Sundrum, 1999a,b), are studied intensive
today since they could give an effective description of multidimensional theories of physical
interactions. Roughly said, the branemodel represent a five-dimensional spacetime – bulk,
where the brane – our Universe is placed. Basical information about the brane models can
be found inMaartens (2004); Majumdar andMukherjee (2005). Recent cosmological tests
indicate presence of a nonzero (but very small) repulsive cosmological constant (Λ > 0)
responsible for the observed present acceleration of the expansion of our universe (Riess
et al., 2004). Therefore, some attemption was denoted to the studies of the influence
of Λ > 0 in astrophysical situations related to supermasive black holes (Stuchlík, 2002,
2005). Both test particles or photons and test fluid were studied in the field of spherically
symmetric (Stuchlík and Hledík, 1999) or rotating black holes (Hledík, 2002; Stuchlík and
Slaný, 2004) with Λ > 0. Since the brany black holes could be described by standard

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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metrics with a single additional brany parameter b, called tidal charge because of represent-
ing non-local, i.e., tidal, gravitational effects of the bulk we extend our studies to the case of
branyblack holeswith repulsive cosmological constant. Herewe restrict our attention to the
case of spherically symmetric black holes by the spacetimes of the Reissner–Nordström–
–(anti-)de Sitter type.
In this article we use tilde˜ for the five-dimensional quantities, while the standard nota-

tion is used for the four-dimensional quantities on the brane. From the five-dimensional
Einstein field equations, governing the whole bulk spacetime

G̃ AB = −Λ̃g̃AB κ̃2 + T̃AB , (1)

we can express the effective four dimensional Einstein field equations (see Shiromizu et al.,
1999; Majumdar andMukherjee, 2005) in the form

Gµν = −Λgµν + κ2T eff
µν = −Λgµν + κ2Tµν + 6

κ2

ϵ
Sµν − Eµν . (2)

Here ϵ is the brane tension, κ2 = ϵκ̃4/6 is the effective coupling constant,Λ = (Λ̃+κ2ϵ)/2
is the effective cosmological constant, Eµν is the brane projection of the five-dimensional
Weyl tensor determining non-local gravitational effect of the bulk, while Sµν is made up of
energy momentum tensor Tµν and represent the local gravitational effect. These tensors
can be expressed in the form (Shiromizu et al., 1999)

Sµν = − 1
4T

α
µ T

α
ν + 1

12T
α
αTµν − 1

24gµν

[
3TαβT αβ − (T αα)2

]
, (3)

Eµν = −
6
κ2ϵ

[
U(uµuν + 1

3hµν)Pµµ + 2Q(µuν)
]

. (4)

where U represents energy density of the so called dark radiation and P represents dark
pressure.
From the Bianchi identities ∇νGµν = 0 it follows thus ∇νT eff

µν = 0. If matter on the
brane is conserved, then∇νTµν = 0. It is clear, that is such a situation

∇µEµν =
6κ2

ϵ
∇µSµν . (5)

2 AXIALLY SYMMETRICSPACETIMESWITHTIDAL CHARGE

We shall now demonstrate how can we construct a stationary and axisymmetric metric,
which is asymptotically (anti-)de Sitter, that can describe a rotating black-hole. Following
theoriginal approachofKerr (Kerr andSchild, 1965)we canuse theKerr–Schild ansatz (for
Λ ̸= 0, see Carter, 1973; Gibbons et al., 2004), this means that the metric around a rotating
black hole is represented by a linear approximation around the (anti-)de Sitter metric. For
the spacetime interval we thus assume

ds2 = gµν dxµdxν = ḡµν dxµdxν + H (kµ dxµ)2 , (6)



Brany black hole spacetimes with a nonzero cosmological constant 111

where kµ is a null vector in both gµν and ḡµν, H = H (r) is an arbitrary scalar function. The
(anti-)de Sitter metric ḡµν canwe taken in the from

ds̄2 = −
(1− yr2)∆θ dτ 2

1 + ya2 +
ρ2 dr2

(1− yr2)(r2 + a2)
+
ρ2 dθ
∆θ

+
(r2 + a2) sin2 θ dφ2

1 + ya2 , (7)

ρ2 = r2 + a2 cos2 θ , ∆θ = 1 + ya2 cos2 θ . (8)

We introduced y = Λ/3, where Λ is the effective cosmological constant. The null vector
field is then given in the form

kµ =
∆θ dτ

1 + ya2 +
ρ2 dr

(1− yr2)(r2 + a2)
−
a sin2 θ dφ

1 + ya2 . (9)

With a coordinate transformation (see Gibbons et al., 2004)

dτ =
dt

1 + ya2 +
Ĥ dr

(1− yr2)∆r
, dφ = dφ − ay

dt
1 + ya2 +

aĤ dr
(r2 + a2)∆r

, (10)

where

∆r = (1− yr2)(r2 + a2)− Ĥ ; Ĥ ≡ Hρ2 , (11)

we can give the axially symmetric metric in the standard Boyer–Lindquist like coordinates

ds2 =−
∆r

(1 + ya2)2ρ2 (dt − a sin2 θ dφ)2 +
ρ2

∆r
dr2

+
ρ2

∆θ
dθ2 +

∆θ sin2 θ

(1 + ya2)2ρ2 [a dt − (r2 + a2) dφ]2 . (12)

The trace of the Einstein field equations (2) in vacuum Tµν = 0 can be expressed in a very
simply form R = 4Λ (because Eαα = 0), in case of our metric (12) we are going to get,
after some calculation, a differential equation dĤ/dr = 0. An ordinary solution for Ĥ is

Ĥ = 2Mr − b , (13)

where M and b are constant.
The axially symmetric spacetime with tidal charge given by (12) and (13) has the char-

acter of Kerr–Newman–(anti-)de Sitter spacetime, although here b (tidal charge) – can be
both positive or negative, contrary to the standard electromagnetic case of Q2 > 0. For
y = 0, a = 0, the metric is of the Reissner–Nordström form (see Dadhich et al., 2000), and
for the case y = 0, a ̸= 0 the Kerr–Newman form (see Aliev and Gümrükçüoǧlu, 2005).
For a = 0 and y ̸= 0, we obtain metric of the Reissner–Nordström–(anti-)de Sitter form
describing brany spherically symmetric black holes withΛ ̸= 0.
The tidal charge b arises from the projection of the gravitational field in the bulk on to

the brane – it is an imprint of the extra dimension. Negative b strengthens the gravitational
field, positive bweakens the gravitational field.



112 M.Kološ, Z. Stuchlík and S. Hledík

Non-zero components of the “tidal” tensor Eµν tensor are

Et t = −Eφφ = −
b
ρ6

[
ρ2 − 2(r2 + a2)

]
, (14)

Err = −Eθ θ =
b
ρ2 , (15)

Eφ t = −(r2 + a2) sin2 θEtφ = −
2βa
ρ6 (r2 + a2) sin2 θ . (16)

This type of Eµν has the same form (b → Q2/8π) as energy momentum tensor Tµν for
the classical Kerr–Newman metric (Aliev and Gümrükçüoǧlu, 2005). This type of Eµν

obey the conservation condition (5), ie ∇µEµν , as the Sµν tensor vanishes in the vacuum
case (Tµν = 0).

3 SPHERICALLY SYMMETRICSPACETIMESWITHTHETIDAL CHARGEAND
NONZEROCOSMOLOGICAL CONSTANT

We would like to examine geodetical structure of the axially symmetric spacetime with
the tidal charge (12), but hereinafter we focus our attention to the simplest case of the
spherically symmetric spacetime with a = 0. Thus the metric (12) has the form (SdS with
a tidal charge)

ds2 = A(r) dt2+A−1(r) dr2+r2(dθ2+sin2 dφ2) , A(r) = 1−
2M
r
−

1
3
Λr2+

b
r2 . (17)

The tidal chargemetric (17)has same formas theReissner–Nordströmmetricwithnonzero
cosmological constant with the exception that the tidal charge b of arbitrary sign is replaced
with non-negative square of electrical charge Q2. Thus, the Reissner–Nordström metric
represents a special case (b > 0) of metric (17).
In article (Stuchlík andHledík, 2002) geodetical structure ofReissner–Nordström space-

time with cosmological constant is discussed, and we are going to use the same approach
for examination of metric with tidal charge (17). All equations from (Stuchlík and Hledík,
2002) can be used only with substitution Q2 → b (or e2 → x). Therefore we are going
to write here only main steps; much more detailed discussion can be found in Stuchlík and
Hledík (2002).
It is convenient to introduce a dimensionless cosmological parameter y ≡ ΛM2/3, and

dimensionless tidal charge x ≡ bM−2 anddimensionless coordinates t → t/M , r → r/M .
The event horizons of the metric (17) are determined by the condition

−gtt ≡ 1−
2
r

+
x
r2 − yr2 = 0 . (18)

We are going to express position of the event horizons as solutions of the equation

y = yh(r; x) ≡
r2 − 2r + x

r4 ; (19)
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Figure 1. The loci of the event horizons in the tidal charge spacetimes. The functions yh(r; x)
are labelled by the corresponding value of the parameter x – the asymptotic behaviour is yh(r →
∞, x) → 0. We distinguish three different class of behaviour yh(r, x), x < 0, 0 < x < 9/8 and
9/8 < x . The loci of the local extrema are emphasised by the dashed curve.

2.5 5 7.5 10 12.5 15 17.5 20
r

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

s
i
g
n!
y"
#
y#

1$
4

2.5 5 7.5 10 12.5 15 17.5 20
r

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

s
i
g
n!
y"
#
y#

1$
4

Figure 2. Properties of the circular geodesics in the tidal charge spacetime for x = −1. Determined
by the function yh(r; x) (thick solid line), giving event horizons , yms(r; x) (thin solid line), giving
marginally stable circular orbits, and ys(r; x) (dotted line), giving so called static radii, where particles
with zero angular momentum remain at an equilibrium position. Regions admitting existence of
circular geodesics are shaded. If the orbits are unstable, a low level of gray is used, while the regions
of stable circular geodesics are emphasised by a higher level of gray (compare with the Fig. 4 from
Stuchlík andHledík, 2002, where are cases x > 0).
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properties of the function yh(r; x) determine distribution of black-hole and naked-singular-
ity spacetimes in the parameter space x -y (see Figs 1 and 2).
First, we are going to inspect special cases. For the case x = 0 ((anti-)de Sitter metric)

we are going to determine the loci of the event horizons from the equation yr3 − r + 2 = 0,
so black holes can exist for all y ≤ yc = 1/27. For y > 1/27, naked singularity exist (see
Stuchlík andHledík, 1999).
For a special case y = 0 (tidal charge metrics see Dadhich et al., 2000) the loci of the

event horizons can be expressed as a solution of the equation r2 − 2r + x = 0. This implies
that black-holes exist for all x < xc = 1, for x > 1 only naked singularity exist.
The zero points of the yh(r; x) are given by the relation determining horizons of black

holes with tidal charge

x = xz(h) ≡ 2r − r2 . (20)

Its local extrema are given by the equation

x = xe(h) ≡ 1
2 (3r − r2) . (21)

At the local extrema, the cosmological parameter takes the values

yh(max)(x) ≡
re(h)+ − x
r4
e(h)+

, yh(min)(x) ≡
re(h)− − x
r4
e(h)−

, (22)

where

re(h)± =
3
2

[

1 ±
(

1−
8x
9

)1/2
]

. (23)

Equation (23) determinate position of the black-hole horizons. The black holes with
tidal charge have two black-hole horizons rb− < rb+ for 0 < x < 9/8 and only
one horizon rb+ for x < 0. The asymptotically de Sitter black-holes has one extra
horizon – the so called cosmological horizon rb+ < rc. The stationary parts of the
Reissner–Nordström–(anti-)de Sitter geometry are located at rb+ < r < rc and 0 < rb− (if
rb− > 0), and dynamic at r > rc and rb− < r < rb+.

4 GEODETICALMOTION

Motion of uncharged test particles and photons is governed by the geodetical structure of
the spacetime. The geodesic equation reads

Dpµ

dλ
= 0 , (24)

where pµ ≡ dxµ/dλ is the four-momentum of a test particle (photon) and λ is the affine
parameter related to the proper time τ of a test particle by τ = λ/m. The normalisation
condition reads pµ pµ = −m2, wherem is the rest mass of the particle;m = 0 for photons.
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It follows from the central symmetry of the geometry (17) that the geodetical motion is
allowed in the central planes only. Two constants of the motionmust exist

pt = gtµ pµ = −E , pφ = gφµ pµ = Φ . (25)

In the spacetimes withΛ ̸= 0, the constants of motion E andΦ cannot be interpreted as
energy and axial component of the angular momentum at infinity since the geometry is not
asymptotically flat. It is convenient to introduce specific energy E , specific axial angular
momentum L and impact parameter ℓ by the relations

E =
E

m
, L =

Φ

m
, ℓ =

Φ

E
. (26)

Choosing the plane of the motion to be the equatorial plane, we find that the motion of
test particles (m ̸= 0) can be determined by an “effective potential” of the radial motion
(see Fig. 3)

V 2
eff(r; L, y, x) ≡

(
1−

2
r

+
x
r2 − yr2

)(
1 +

L2

r2

)
. (27)

Since (ur )2 = (dr/dτ )2 = E2 − V 2
eff(r; L, y, x), the motion is allowedwhere

E2 ≥ V 2
eff(r; L, y, x) , (28)

and the turning points of the radialmotion are determined by the condition

E2 = V 2
eff(r; L, y, x) . (29)

The radialmotion of photons (m = 0) is determined by a “generalised effective potential”
ℓ2
R(r; y, x) related to the impact parameter ℓ (see Fig. 4). The motion is allowed, if

ℓ2 ≤ ℓ2
R(r; y, x) ≡

r4

r2 − 2r + x − yr4 , (30)

the condition ℓ2 = ℓ2
R(r, y, x) gives the turning points of the radialmotion.

The special case of x = 0 has been extensively discussed in Stuchlík and Hledík (1999).
Therefore, we concentrate our discussion on the case x ̸= 0. The effective potentials
V 2
eff(r; L, y, x) and ℓ2

R(r; y, x) define turning points of the radial motion at the static re-
gions of the tidal charge spacetimes. (At the dynamic regions, where the inequalities
Veff(r; L, y, x) < 0 and ℓ2

R(r; y, x) < 0 hold, there are no turning points of the radial
motion). V 2

eff is zero at the horizons, while ℓ
2 diverges there. At r = 0, V 2

eff → +∞, while
ℓ2
R = 0. Circular orbits of uncharged test particles correspond to local extrema of the effect-
ive potential (∂Veff/∂r = 0). Maxima (∂2Veff/∂r2 < 0) determine circular orbits unstable
with respect to radial perturbations, minima (∂2Veff/∂r2 > 0) determine stable circular
orbits. The specific energy and specific angular momentum of particles on a circular orbit,
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(c) dS-BH-1: y = 0.00001, x = −1
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(d) adS-BH-1: y = −0.0005, x = −1

Figure 3. The effective potential V 2
eff(r; x, y, L) of the test-particle geodetical motion in tidal charge

spacetimes, for x < 0. There are fourqualitatively different typesof thebehaviourofV2
eff subsequently

illustrated in the cases (a) through (d). The curves giving the effective potential are labelled by the
values of the particle’s angular momentum L . The dynamic regions of the spacetimes, where V 2

eff is
not properly defined, are shaded (compare with the Fig. 5 from Stuchlík andHledík, 2002).
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Figure 4. The effective potential ℓ2
R(r; x, y) of the photon geodetical motion in tidal charge space-

times.The dynamic regions of the spacetimes,where ℓ2
eff is not properly defined, are shaded (compare

with the Fig. 6 from Stuchlík andHledík, 2002).
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at a given r , are determined by the relations

Ec(r; y, x) =
1− 2

r + x
r2 − yr2

(
1− 3

r + 2x
r2

)1/2 , (31)

Lc(r; y, x) =

(
r − x − yr4

1− 3
r + 2x

r2

)1/2

. (32)

(The minus sign for Lc is equivalent to the plus sign in spherically symmetric spacetimes,
therefore, we do not give the minus sign explicitly here and in the following.)
At r = rph+, and r = rph−, where

rph±(x) =
3
2

[

1 ±
(

1−
8x
9

)1/2
]

, (33)

both Ec and Lc diverge – photon circular orbits exist at these radii. The photon circular
orbits are determined by the local extrema of the function ℓ2

R(r; y, x), which are located
at r = rph±(x) independently of the cosmological parameter y. Of course, the impact
parameter of the photon circular orbits depends on y; there is

ℓ2
c±(y, x) =

r4
ph±

r2
ph± − 2rph± + x − yr4

ph±
. (34)

The loci of photon circular orbits can be implicitly given by the equation x = xph(r) =
xe(h). Because rph±(x) = re(h)±(x), where re(h)±(x) determine local extrema of the
function yh(r; x) governing horizons of the tidal charge spacetimes, we can directly con-
clude that two photon circular orbits can exist at the naked-singularity spacetimes with
y < yh(min)(x), while one photon circular orbit at rph+(x) > rb+(x) exists in the black-hole
spacetimes with yh(min)(x) < y < yh(max)(x). If no local extrema of yh(r; x) exist, i.e., for
x ≤ 9/8 and y > yh(max)(x), and for x > 9/8 and y arbitrary, no photon circular geodesics
are admitted in the corresponding naked-singularity spacetimes.
The circular geodesics are allowed at regions, where the denominator of both (31)

and (32) is real, i.e., at

r < rph− and r > rph+ . (35)

However, we have to add the condition given by reality of the numerator in (32):

r − x − yr4 ≥ 0 . (36)

The equality at (36) determines so called static radii rs, where Lc(rs; y, x) = 0.
The static radii are given by the condition

y = ys(r; x) ≡
r − x
r4 . (37)
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The asymptotic behaviour of ys(r, x) is determined by relations (see also Fig. 2)

ys(r → 0, x)→−∞, ys(r →∞, x)→ 0 . (38)

The function ys(r; x) has its zero point at r = x and its local maximum is at r = 4x/3,
where

ys(max)(x) =
27

256x3 . (39)

The conditions (35) and (36) limiting radii of circular geodetical motion have to be
considered simultaneously. We arrive at the conclusion that the geodetical circular orbits
are allowed at radii

rs1 < r < rph− , rph+ < r < rs2 . (40)

The stable circular geodesics are limited by the relation

4yr6 − 15yr5 + 12yxr4 − r3 + 6r2 − 9xr + 4x2 ≤ 0 . (41)

Radii of the marginally stable circular geodesics, given by the equality in (41), can be
expressed in the form

y = yms(r; x) ≡
r3 − 6r2 + 9xr − 4x2

r4 (4r2 − 15r + 12x
) . (42)

The asymptotic behaviour of the function yms(r; x) is given by the relations yms(r →
0, x) → −∞, yms(r → ∞, x) → 0 (see also Fig. 2). The zero points of yms(r; x),
determining marginally stable circular geodesics of the Reissner–Nordström spacetimes,
are given by the relation

x = xz(ms)(r) ≡
9r ± r

√
16r − 15
8

, (43)

while its divergent points are located at r = 0, where yms(r → 0, x)→ −∞, and at radii
implicitly determined by the relation

x = xd(ms)(r) ≡
15r − 4r2

12
. (44)

Both functions xz(ms)(r) and xd(ms)(r) are illustrated in Fig. 5.
Local extrema of yms(r; x) determine the extremal values yms(max)(x) and yms(min)(x)

of spacetimes that admit existence of stable circular geodesics. These local extrema are
determined by the equation

(2x − 3r + r2)(16x2 − 28xr + 15r2 − 2r3) = 0 . (45)

In the special case of x = 0 , we find rmax = 15/2 and yms(max) = 12/154 ≈ 0.000237;
further, there is rmin = 3 and yms(min) = 1/27, which is irrelevant for timelike geodesics (see
Stuchlík andHledík, 1999 for details).
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Figure 5.The characteristic functions governing the test-particle geodeticalmotion in the tidal charge
spacetimes. Properties of the The function xz(h)(r) (represented by the dashed curve) governs the
zero points (event horizons of tidal charge (Λ = 0) black holes) and the characteristic function
xe(h)(r) (represented by the bold solid curve) governs the local extrema of the function yh(r; x)
determining the event horizons of the tidal charge spacetimes. Their respective local maxima are
located at the points (1, 1) and (3/2, 9/8). The characteristic functions xz(ms)±(r) (represented
by the dotted curve) govern the zero points of yms(r; x) determining the marginally stable circular
geodesics, the characteristic function xd(ms)(r) (represented by the dashed-dotted curve) governs the
divergent points of yms(r; x), and the characteristic functions xe(ms)±(r) (represented by the thin
solid curve) govern the local extrema of the function yms(r; x). Their respective local maxima are
located at the points (5/2, 5/4) (on the “−” branch), (15/8, 75/64) and (55/18, 275/216) (on the
“−” branch). The local minimum of the function xz(ms)±(r) (the “−” branch) coincides with the
local maximum of the function xz(h)(r) at (1,1), the local minimum of the function xe(ms)±(r) (the
“−” branch) coincides with the local maximum of the function xe(h)(r) at (3/2, 9/8). The extrema
of characteristic functions governing the test-particle geodetical motion divide the our graph into six
subintervals, each of them implying different behaviour of the functions yh(r; x) and/or yms(r; x).
The extrema are in the x > 0 part of our graph, here are no new cases, different from (Stuchlík and
Hledík, 2002).

The common points of yms(r; x) and yh(r; x) are located at r = rph+ and r = rph−,
where both yms(r; x) and yh(r; x) have local extrema, because of the first bracket of
Eq. (45); these are also common points with the function ys(r; x). Other local extrema
of yms(r; x) are determined by the term in the second bracket in (45). They can be given by
the relation

x = xe(ms)±(r) ≡
7r − r

√
8r − 11

8
. (46)

The function xe(ms)±(r) is, again, illustrated in Fig. 5. Inspecting Fig. 5 we can conclude
that the local extrema of yms(r; x), determined by (46), govern only one local extreme of
yms(r; x) in the spacetimes with black-hole horizons (x < 9/8), while they govern three
local extrema in naked-singularity spacetimes with 9/8 < x < 275/216.
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5 CONCLUSIONS

Analysis of the characteristic functions yh(r; x), ys(r; x), yms(r; x) shows that there are
fifteen types of the tidal charge spacetimes with qualitatively different behaviour of the
effective potential of the geodetical motion (and the circular orbits), see Fig. 6.

Spacetimes for x> 0

StandardReissner–Nordström–(anti-)de Sitter spacetime (see Stuchlík andHledík, 2002):

dS-BH-1 One region of circular geodesics at r > rph+ with unstable then stable and
finally unstable geodesics (for radius growing).1

1 Type dS-BH-1 means asymptotically de Sitter black-hole spacetime of type 1, etc. . .
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Figure 6. The classification of the tidal charge spacetimes according to properties of the effective
potential of the test-particle geodetical. The functions yh(min)(x) and yh(max)(x) limit the region
of black-hole spacetimes (shaded) in the parameter space x-y. Outside that region, merely naked-
singularity spacetimes exist. The function ys(max)(x) (represented by the dashed curve in the region,
where it is irrelevant for the classification)marks the local maxima of the function ys(r; x) governing
the static radii. The functions yms(min)(x) and yms(max)(x) separate the asymptotically de Sitter
black-hole spacetimes containing a region of stable circular orbits allowing accretion processes in the
disk regime (dS-BH-1), (dS-BH-3) from those with unstable circular orbits only (dS-BH-2), (dS-BH-
4) and the naked-singularity spacetimes with two regions of stable circular orbits from those with
one region of stable circular orbits From behaviour of the characteristic functions yh(r; x), ys(r; x),
yms(r; x) we can see that there are eleven different types of the spacetimes (compare with Fig. 3 in
Stuchlík andHledík, 2002).
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dS-BH-2 One region of circular geodesics at r > rph+ with unstable geodesics only.
dS-NS-1 Two regions of circular geodesics, the inner region consists of stable geodesics
only, the outer one contains subsequently unstable, then stable and finally unstable circu-
lar geodesics.

dS-NS-2 Two regions of circular orbits, the inner one consist of stable orbits, the outer
one of unstable orbits.

dS-NS-3 One region of circular orbits, subsequently with stable, unstable, then stable and
finally unstable orbits.

dS-NS-4 One region of circular orbits with stable and then unstable orbits.
dS-NS-5 No circular orbits allowed.
AdS-BH-1 One region of circular geodesics at r > rph+ with unstable and then stable
geodesics.

AdS-NS-1 Two regions of circular geodesics, the inner one (r < rph−) consists of stable
geodesics only, the outer one (r > rph+) contains both unstable and then stable circular
geodesics.

AdS-NS-2 One region of circular orbits, subsequently with stable, then unstable and
finally stable orbits.

AdS-NS-3 One region of circular orbits with stable orbits exclusively.

New type of the spacetime (x< 0)

Pure brany case:

dS-BH-3 One region of circular geodesics at r > rph+ with unstable then stable and
finally unstable geodesics.

dS-BH-4 One region of circular geodesics at r > rph+ with unstable geodesics only.
dS-NS-6 No circular orbits allowed. There is no region where V 2

eff(r; L, y, x) is properly
defined.

AdS-BH-2 One region of circular geodesics at r > rph+ with unstable and then stable
geodesics.

The tidal charge black holes have two non-cosmological rb− < rb+ horizons for 0 < x <

9/8 and only one rb+ for x < 0. For black hole spacetimes with b < 0 there is no inner
horizon, but this is irrelevant for the geodetical motion. So we thing that influence of b < 0
on the spacetime structure is quantitative, not qualitative.
If we calculate binding energy (1 − Ems), we can see that it decreases with decreasing

tidal charge b.
Finally, we could note that is of some fundamental interest, to what extend the combined

influence of both the tidal charge and cosmological constant could influence quasiperiodic
oscillations in accretion discs that could enable relatively precise determination of the black
hole parameters (Török et al., 2005). It seem that the quasiperiodic oscillations observed
near the galaxy centre black hole source Sgr A∗ give information (Aschenbach, 2004; Török,
2005a,b) that could be used to test the branymodels Stuchlík and Kotrlová (2007).
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ABSTRACT
Being inspired by existence of non-equatorial circular (halo) stable orbits of charged
particles in composite of gravitational, dipole magnetic and co-rotational electric
fields near some planets, we find possible existence of these orbits in strong grav-
itational fields described by the Kerr–Newman geometry. By using the general re-
lativistic inertial forces formalism combined with the effective potential approach,
we show that the stable halo orbits do exist there. But it seems that they are out of
the astrophysical importance, being hidden under the inner black-hole horizon, or
appearing in the naked singularity spacetimes.

Keywords: Kerr–Newman spacetime – black hole – naked singularity – charged
particle –magnetic field – halo orbits

1 INTRODUCTION

Investigation of charged particle motion in strong gravitational and electromagnetic fields
ranks among the elementary exercises in theoretical physics and astrophysics related to
black holes or neutron stars (Prasanna, 1980; Karas and Vokrouhlický, 1991; Vokrouhlický
andKaras, 1991). The test particlemotion analysis is usually restricted to the motion along
symmetry axis (Bičák et al., 1989), and to the equatorial (Balek et al., 1989) or spherical
motion (Johnston and Ruffini, 1974), and to the special case of particles freely falling from
rest at infinity (Stuchlík et al., 1999). The general off-equatorial motion in the field of
rotating black holes represents an interesting open problem deserving attention. Wewould
like to tackle this problem focusing on the case of the so-called halo orbits, i.e., off-equatorial
circular orbits, which could be interesting from the astrophysical point of view aswell as the
equatorial circular orbits.
As a partial motivation of our work, we mention an investigation of the charged dust

grains motion in magnetosphere of some planets (see, e.g., Howard et al., 1999, where the
halo orbits and their stability are discussed near Saturn). Some later general studies of the
problem are presented in Dullin et al. (2002).

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.



126 J. Kovář, Z. Stuchlík and V. Karas

Of course, the natural question appears. Could such halo orbits survive in strong grav-
itational field near a compact object with additional magnetic field? Clearly, there are
many, say “strong-filed” configuration, corresponding to the situation near the magnetized
planets, i.e., a central spherically (axially) symmetric gravitational field and rotating dipole
magnetic field. We can mention, e.g., neutron stars, and static or rotating black holes with
plasma rings in the equatorial plane, as sources of the dipole magnetic fields. In this cases,
exact investigations require knowledge of solutions of the Einstein–Maxwell equations, in
order to described present magnetic (electric) and gravitational fields well. Naturally, the
magnetic field can be considered to be the test field only, which is usually sufficient in many
cases, and acceptable within the general relativistic approaches. On the other hand, there
is well-known solution of the Einstein–Maxwell equations, describing the required field
configuration. It is the Kerr–Newman solution, describing axially symmetric spacetimes of
rotating and charged black holes (naked singularities), where the electromagnetic field is
internally related to the spacetimes, originating from the rotating charged sources.
In the case of Kerr–Newman spacetimes, the answer for our question concerning the

existence of halo orbits, has been partly found in de Felice (1979); Calvani et al. (1982),
where the authors conclude that under some circumstances, the halo orbits do exist inKerr–
Newman spacetimes. Nevertheless, because of many input parameters characterizing the
central object and particle motion itself, the detailed discussion of the halo orbits existence
and their stability is not presented by those authors. Moreover, the later paper (Stuchlík and
Hledík, 1998), dealing with a similar problem, i.e., with the stability of charged spherical
shells in Kerr–Newman spacetimes, could suggest that the existence of the halo orbits can
be restricted to the hypothetical naked-singularity spacetimes only, which holds for the
stable configuration of the shells.
Our discussion of halo orbits existence is based on the inertial forces analysis of the

charged test particle motion (Aguirregabiria et al., 1996), which, in combination with the
standard approach based on the analysis of an 2D effective potential of the particle motion,
gives understandable and semi-analytic discussible condition on the halo orbits existence.
Note that in general the inertial forces formalism, defined in the general relativity in the
framework of the so-called optical reference geometry (Abramowicz et al., 1995), turned
out to be very effective in relativistic dynamics when dealing with problems concerning the
circularmotion (Kovář and Stuchlík, 2006, 2007).

2 KERR–NEWMANSPACETIME

The Kerr–Newman spacetime is stationary and axially symmetric solution of the Einstein–
Maxwell equations, with the Killing vector fields ηi = δit and ξ

i = δiφ , related to the
standard Boyer-Linquist coordinates (t, r,φ, θ). In the geometrical units (c = G = 1), the
line element of the spacetime geometry takes the form (Misner et al., 1973)

ds2 = −
∆

ρ2 (dt − a sin θ dφ)2 +
sin2 θ

ρ2 [(r2 + a2) dφ − a dt]2 +
ρ2

∆
dr2 + ρ2 dθ2 , (1)

where

∆ = r2 − 2Mr + a2 + e2 , ρ2 = r2 + a2 sin2 θ , (2)
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and M , a and e are the mass, angular momentum and charge parameters of the space-
time. As the standard practise is, we use the dimensionless quantities, such as r → r/M ,
a→ a/M , e→ e/M , etc.
Pseudo-singularities of the solution (1), given by the relation∆ = 0, determine positions

of two black hole horizons when a2 + e2 < 1, coalescing for a2 + e2 = 1 at the radius
r = 1, and vanishing for a2 + e2 ≥ 1 when the naked singularities appear. Between
the horizons, i.e., in the region where ∆ < 0, the particles are forced to move inward to
the inner black-hole horizon. The spacetime is called dynamical in that region. On the
other hand, both the remaining parts of the spacetime, i.e., above the outer horizon and
under the inner horizon, are stationary, and called outer and inner stationary regions. The
naked-singularity spacetimes are stationary everywhere.
The electromagnetic field associated to the Kerr–Newman spacetimes can be simply

expressed by using the vector potential in the form

A = −
er
ρ2 (dt − a sin2 θ dφ) , (3)

determining the electromagnetic field tensor Fij = Aj,i − Ai, j . Its non-zero components
read

Frt = −Ftr =
e(r2 − a2 cos2 θ)

ρ4 , (4)

Frφ = −Fφr =
−ae sin2 θ(r2 − a2 cos2 θ)

ρ4 , (5)

Fθ t = −Ftθ =
−a2er sin 2θ

ρ4 , (6)

Fθφ = −Fφθ =
aer sin 2θ(r2 + a2)

ρ4 . (7)

3 EFFECTIVEPOTENTIAL

In any electromagnetic field, the “super Hamiltonian” for the motion of a test particle of
charge q andmassm, parametrized by the affine parameter λ = τ/m (τ is the proper time),
reads (Misner et al., 1973)

H = 1
2g

i j (πi − q Ai)(πj − q Aj ) , (8)

where πi is the generalized 4-momentum. The first Hamilton equation implies dxi/dλ =
π i − q Ai ≡ pi . The secondHamilton equation ensures that the momenta

πt = pt + q At ≡ −E , (9)

πφ = pφ + q Aφ ≡ L (10)

are conserved.
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The effective potential for the motion of a particle with the specific charge q̃ = q/m,
deduced from the Hamiltonian (8), or from the Carter equations (Carter, 1968), takes the
form (Misner et al., 1973)

Weff =
β +

√
β2 − αγ
α

, (11)

where

α = (r2 + a2)2 −∆a2 sin2 θ , (12)

β = (L̃a + q̃er)(r2 + a2)− L̃a∆ , (13)

γ = (L̃a + q̃er)2 −∆L̃2/ sin2 θ −∆ρ2 (14)

and L̃ = L/m is the conserved specific angularmomentum (axial component).

4 PROJECTIONOFLORENTZEQUATIONAND INERTIALFORCES
FORMALISM

Investigation of the effective potential behaviour is though to be the standard routine for
the circular orbits determination. However, in the Kerr–Newman spacetime, this “method
of effective potential” itself does not seem to be convenient and effective enough for in-
vestigation of the charged particle motion. It is helpful to combine it with the “forces
approach” (Abramowicz et al., 1988).1 We define the inertial and real forces by projecting
the Lorentz equation of motion for a particle with 4-velocity ui (Abramowicz et al., 1995;
Aguirregabiria et al., 1996)

muk∇kuj = qFjkuk , (15)

into the space (hypersurface) of the zero angular momentum (ZAMO) observers (in the
locally non-rotating frames), eliminating asmuch as possible the influence of the rotational
effects of the spacetime (Bardeen et al., 1972).
We start with the decomposition of the particle 4-velocity into the form

ui = γ (ni + vτ i ) , (16)

where the 4-velocity field ni (here considered to be the 4-velocity of the ZAMO) satisfies the
conditions

nknk = −1 , ni∇i nk = ∇kΦ , n[i∇j nk] = 0 , (17)

and the vector τ i is the unit spacelike vector orthogonal to it, along which the spatial
3-velocity with magnitude v is aligned. The 4-velocity field ni can be chosen in the form

ni = e−Φιi , Φ = 1
2 ln (−ιi ιi ) , (18)

1 It was shown that the force analysis of circular geodesics seems to be much more effective and straightforward
in comparisonwith the effective potential approach (Kovář and Stuchlík, 2007).
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thus it corresponds to 4-velocity field of stationary observers (here ZAMO), parallel to a
timelike vector field ιi . Now, we can express the left-hand side of the Lorentz equation (15)
in the form

mak = m[γ 2∇kΦ + γ 2v(ni∇iτk + τ i∇i nk) + γ 2v2τ i∇iτk + (vγ )̇τk + γ̇ nk] , (19)

where (vγ )̇ = ui∇i (γ v). By using the projection tensor hik related to the directly projected
geometry

hik = gik + nink , (20)

we obtain the uniquely decomposed 4-force (19) in the form

ma⊥j = mhkj ak = −Gj − Zj − Cj − Ej , (21)

where

Gj = −m∇jΦ , (22)

Zj = −m(γ v)2τ̃ i ∇̃i τ̃j , (23)

Cj = −mγ 2vXj , (24)

Lj = −mV̇ τ̃j (25)

can be interpreted as the gravitational, centrifugal, Coriolis and Euler inertial forces (Ab-
ramowicz et al., 1995). In the above relations Xj = ni (∇iτj − ∇j τi ) and V̇ =
−ui∇i (ιkukv). The vector τ̃ i = eΦτ i , with its covariant form τ̃i = e−Φτi , is the spacelike
unit vector parallel to τ i in the so-called optical reference geometry, defined by the relation

h̃ik = e−2Φhik . (26)

Projecting the right-hand side of the Lorentz equation (15), we obtain the equation

qhij Fiku
k = Ej + Mj , (27)

where

Ej = qγ Fjkn j , (28)

Mj = qγ v(Fjkτ k + nj Fklnkτ l) (29)

are the electric andmagnetic forces, respectively.

4.1 Circularmotion in Kerr–Newman spacetimes

In the Kerr–Newman spacetimes, it is convenient to consider ni to be 4-velocity ZAMO
observers, i.e.,

ni = e−Φ(ηi +ΩZAMOξ
i ) , (30)

Φ =
1
2

ln
[
−(ηi +ΩZAMOξ

i )(ηi +ΩZAMOξi )
]

, (31)
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where ΩZAMO = −ηiξi/ξ jξj . Considering a uniform circular motion of particle at a
constant radius and a constant latitude, i.e.,

τ i = (ξ kξk)
−1/2 ξ i , (32)

the mass and velocity independent parts of the non-zero radial and latitudinal components
of the forces (22)–(25) take in the Kerr–Newman spacetimes the form:

Gr =
−4r
µ
−

(a2 + r2)[(r − 1)(a2 + r2)− 2r∆]
∆ν

+
r
ρ2 , (33)

Zr =
−4r
µ
−

2(a2 + r2)[(r − 1)(a2 + r2)− 2r∆]
∆ν

+
r − 1
∆

, (34)

Cr = 2a sin θ
{

2(a2 + r2)[(2r − 1)(a2 + r2)− a2(r − 1) sin2 θ ]
µν
√
∆

−
r(3a2 + 4r2 + a2 cos 2θ)∆

µν
√
∆

}
, (35)

Gθ =
1
2
a2 sin 2θ

(
4
µ
−
∆

ν
−

1
ρ2

)
, (36)

Zθ = cot θ +
2a2 sin 2θ

µ
−
a2 sin 2θ∆

ν
, (37)

Cθ =
4a3 cos θ sin2 θ(∆− a2 − r2)

√
∆

µν
, (38)

where

µ = a2 + 2r2 + a2 cos 2θ , ν = (a2 + r2)2 −∆a2 sin2 θ . (39)

The Euler force Lk vanishes because of the uniformity of the motion. The charge and ve-
locity independent parts of the non-zero electric andmagnetic force components (28)–(29)
are given by the relations

Er =
e(a2 + r2)(r2 − a2 cos2 θ)

ρ3
√
ν∆

, (40)

Mr =
ae sin θ(a2 cos2 θ − r2)

ρ3√ν
, (41)

Eθ =
−2a2er

√
∆ sin 2θ

µρ
√
ν

, (42)

Mθ =
2aer cos θ(r2 + a2)

ρ3√ν
. (43)
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5 HALOORBITSEXISTENCEANDSTABILITY

For a uniform circular motion of a particle at constant radius and latitude, and with the
velocity v (measured by ZAMO), we canwrite two force equations

−Gr − (γ v)2Zr − γ 2vCr = q̃γ (Er + vMr ) , (44)

−Gθ − (γ v)2Zθ − γ 2vCθ = q̃γ (Eθ + vMθ ) , (45)

where the Lorentz factor γ = (1− v2)1/2.
Eliminating q̃ from Eqs (44), (45) and assuming that 0 < θ < π/2, i.e., omitting

stationary equilibriumpoints on the axis of symmetry (Bičák et al., 1989) and circular orbits
in the equatorial plane (Balek et al., 1989), we obtain a cubic equation

Av3 + Bv2 + Cv + D = 0 , (46)

where

A = Mθ (Gr −Zr ) + Mr (Zθ − Gθ ) , (47)

B = Er (Gr −Zr ) + Er (Zθ − Gθ ) + CθMr − CrMθ , (48)

C = CθEr − CrEθ + GθMr − GrMθ , (49)

D = ErGθ − EθGr . (50)

This gives three, in general complex, solutionsvI(r, θ; a, e),vII(r, θ; a, e) and vIII(r, θ; a, e)
for possible orbital velocities of charged particles moving along the halo orbits. Although
the three roots can be expressed in analytical form, we do not present them here because of
their complexity, and perform further a numerical analysis.
Considering the velocity candidates vI, vII and vIII to be parameterized by the spin a

and latitude θ , we can investigate the validity of the condition for them to be the relevant
velocity, i.e., vi ∈ R and −1 < vi < 1 (i = I, II, III), in the plane (r × e)2. Our
numerical analysis of vi confirms the existence of halo orbits in the Kerr–Newman naked-
singularity spacetimes as well as in both the inner and outer stationary regions of the
black-hole spacetimes (see Fig. 1).
We conclude our study of halo orbits existence by the discussion of their stability, namely

by seeking for stable circular orbits. which remain locked in the region entirely outside the
equatorial plane. For this purpose, we can use Eq. (44) and express the specific charge q̃h
of the particle moving along the expected halo orbit at velocity v by the relation

q̃h =
Gr (v2 − 1)− v(Cr + vZr )

(Er + vMr )
√

1− v2
, (51)

The condition (51) provides three possible values q̃h,i related to vi . By using relation (10),
the metric coefficients (1) and the 4-velocity decomposition (16), we can write for the
specific angularmomentum of particles at halo orbits

L̃h = γ v
√gφφ + q̃h Aφ , (52)

2 The natural parameterization a and e, and following investigation of conditions in the plane (r × θ) is not so
illustrative.
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Figure 1. Existence of halo orbits in Kerr–Newman black-hole (BH) and naked-singularity (NS)
spacetimes. Positions of horizons are denoted by the thick curve. Left: White areas correspond to
the regions where the root vi is real and−1 < vi < 1, i.e., where the halo orbits occur. We present
here result of investigation of the typical (a) vI behaviour (a2 = 0.4, θ = 1.1), (c) vII behaviour
(a2 = 0.7, θ = 1.4), and (e) vIII behaviour (a2 = 0.4, θ = 0.15), allowing the existence of halo
orbits in the NS spacetimes as well as in the BH spacetimes in the inner and outer stationary regions.
Right: White areas correspond to the regions where the stationary points of the effective potential
Weff , corresponding to the values of v, are minima, i.e., where the halo orbits are stable. We present
here result of investigation of the typical (b) Weff-I behaviour (a2 = 0.4, θ = 1.1), related to the
values of vI (see part (a) of figure), (d)Weff-II behaviour (a2 = 0.7, θ = 1.4), related to the values of
vII (see part (c) of figure), and (f)Weff-III behaviour (a2 = 0.4, θ = 0.15), related to the values of vIII
(see part (e) of figure), allowing the existence of stable halo orbits only in the NS spacetimes and in
the inner stationary region of the BH spacetimes.

obtaining three possible values L̃h,i related to q̃h,i and vi .
The stable halo orbits must satisfy the conditions of effective potential minima, i.e.,

∂2
r Weff(r, θ; a, e, L̃ = L̃h , q̃ = q̃h) > 0 , (53)

∂2
θWeff(r, θ; a, e, L̃ = L̃h , q̃ = q̃h) > 0 , (54)

whichweanalyze in a numericalway in theplane (r×e), considering theparametrizationby
a and θ , for all three pairs of L̃h,i and q̃h,i . Going through a large number of related (r × e)
plots for combinations of a and θ in the intervals 0 < a < 1 and 0 < θ < π/2 (see Fig. 1),
we have not found any combination of parameters allowing the existence of stable halo
orbits in the outer stationary region of the Kerr–Newman black-hole spacetimes3. Because

3 From the conceptional point of view, it is certainly better to discuss the conditions for the stable halo orbits
(53)–(54) having the specific angular momentum L̃h and charge q̃h available from the conditions ∂r Weff = 0
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Figure 1.Continued frompage 132.

of this, we presume to state that there are no such orbits. On the other hand, the inner
stationary region of the black-hole spacetimes and the naked-singularity spacetimes do
exhibit stable halo orbits. Wegive illustrative cases of thebehaviour of the effective potential
for motion of charged particles in Figs 2–3.

and ∂θWeff = 0, which are equivalent to the force equations (44)–(45). But it seems that it is not possible to
express the quantities L̃h and q̃h so easy as from the force equations, i.e., by using only three, in general, complex,
but analytical roots for L̃h and related three roots for q̃h . Because of this, there are more additional cases to be
discussed in the following numerical routines.
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Figure 2. Effective potential Weff and its contours for motion of charged particles with L̃ = 1 and
q̃ = −5 (in geometric units) in the Kerr–Newman (a) black-hole spacetime with a2 = 0.04 and
e2 = 0.95; (b) naked-singularity spacetime with a2 = 0.6 and e2 = 0.95. Positions of stable halo
orbits correspond to the potential minima. Concomitant equatorial circular orbit, stable in radial
direction, corresponds to the saddle point in the equatorial plane. The effective potential Weff is
not relevant in the region between the event horizons (gray), where∆ < 0. Clearly, the stable halo
orbits locatedunder the inner horizon become accessible after transforming into thenaked-singularity
spacetime.

6 CONCLUSIONS

As expected, our study has confirmed the results of (Calvani et al., 1982). The halo orbits
can appear in strong gravitational fields in the vicinity of compact objects endowed with an
additional magnetic fields of dipole character, such as Kerr–Newman black holes or naked
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Figure 3. Effective potentialWeff and its contours for motion of charged particles with L̃ = 0.1 and
q̃ = 2.9 (in geometric units) in the Kerr–Newman black-hole spacetimewith a2 = 0.5 and e2 = 0.3,
in the regions (a) above the outer event horizon; (b) under the inner event horizon. Positions of
unstable stable halo orbits correspond to the saddle points of the potential. Concomitant equatorial
unstable circular orbit corresponds to the potential maximum in the equatorial plane. The effective
potentialWeff is not relevant in the region between the event horizons (gray), where∆ < 0.

singularities. In addition, our investigation suggests that there are no stable halo orbits in
the field of Kerr–Newmanblack holes above the outer horizon. It seems that the connection
of the electromagnetic field with the spin of the spacetime causes impossibility of the halo
orbits stability outside theblack hole, and onlyunstable halo orbits are allowed there. On the
other hand, the combinations of spacetime parameters allow existence of stable halo orbits
under the inner horizon of black holes and in the naked-singularity spacetimes. These
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Figure 4. Effective potential Weff and its contours for motion of charged particles with L̃ = 8 and
q̃ = −5 (in geometric units) in the region above the outer event horizon of the Kerr–Newman black-
hole spacetime with a2 = 0.2 and e2 = 0.5. The potential minimum corresponds to the stable
equatorial circular orbit. The effective potentialWeff is not relevant in the region between the event
horizons (gray), where∆ < 0. In all numerically tested cases, no stable halo orbits have been found,
only the stable equatorial circular orbits were confirmed.

conclusions of our semi-analytic analysis, are consistent with the results of pure analytic
study of the situation on the axis of symmetry, where the circular motion degenerates to
the equilibrium positions of the particle. There, only unstable positions exist above the
outer event horizon. The stable positions occur only under the inner horizon or in the
naked-singularity spacetimes (Bičák et al., 1989). Thus, in the Kerr–Newman black-hole
spacetimes, the only astrophysically relevant stable circular orbits at constant radius and
latitude are those in the equatorial plane (Dadhich and Kale, 1977) as depicted in Fig. 4.
High frequencykilohertz quasiperiodic oscillations (QPOs)observed in somemicroquas-

ars and binary systems with compact stars are frequently explained by variety of models
based on the equatorial quasicircularmotion, with characteristic orbital Keplerian and epi-
cyclic frequencies. Most promising seems to be the relativistic precession model (Stella
and Vietri, 1999), and the orbital resonance model (Kluźniak and Abramowicz, 2001; Aliev
and Galtsov, 1981) or its generalization to the orbital multiresonant model (Stuchlík and
Kotrlová, 2007; Stuchlík et al., 2007c) for both binary systemswith black holes (microquas-
ars) and neutron stars; in the case of near-extreme Kerr black-hole candidates (e.g., well
known GRS 1915+105 microquasar) the complex high frequency QPOs patterns could be
explained using the extended resonance model with the so-called hump-induced oscilla-
tions, additional to the orbital epicyclic oscillations (Stuchlík et al., 2007b,a). The orbital
resonancemodel seems to be relevant even for the intermediate and galactic nuclei (SgrA∗)
black-hole accretion disk (Török, 2005b,a; Kluźniak et al., 2007). Using the orbital reson-
ancemodels, black hole parameters, especially, the spin could be determined.
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The halo orbits in the magnetic field of neutron stars and black holes (Kovář et al.,
2007) could in principle be related to the oscillatory motion with “halo” radial and vertical
frequencies, which could be considered as complementary model of the QPOs observed in
the binary system of neutron stars andmicroquasars.
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ABSTRACT
In a series of papers, we recently investigated properties of geodesic motion and
test scalar fields in the background of generic rotating higher-dimensional black
holes. In this contribution, we briefly discuss the integrability of geodesic motion,
the construction of constants of motion, and the relation to the separability of the
Hamilton–Jacobi equation. We also present a class of algebraically special test
electromagnetic fields which generalize the electromagnetic field of a charged black
hole in four dimensions. It will be, however, shown that in higher dimensions such
fields cannot be easily modified in such a way that they would satisfy full Maxwell–
–Einstein equations.

Keywords: Black holes – higher dimensions – geodesic motion – integrability and
separability – test fields

1 INTRODUCTION

Spacetimes of higher dimensions (D > 4) have become much studied as a result of their
role in unification theories, such as the string/M theory. One important class of such
spacetimes is a sequence of higher-dimensional black-hole metrics of greater and greater
generality that have been discovered over the years.
The first such higher-dimensional black-hole spacetime was the metric for a nonrotat-

ing black hole in D > 4 (the generalization of the 1916 Schwarzschild solution), found
in Tangherlini (1963). Next was the metric for a rotating black hole in higher dimensions
(the generalization of the 1963 Kerr metric in four dimensions), discovered in Myers and
Perry (1986) in the case of zero cosmological constant. Then in 1999 Hawking, Hunter and
Taylor-Robinson (Hawking et al., 1999) found the general D = 5 version of the D = 4 ro-
tating black holewith a cosmological constant (called also theKerr–(anti-)de Sittermetric).
In 2004 Gibbons, Lü, Page and Pope (Gibbons et al., 2004, 2005) discovered the general

1 This contribution is a review of the results which have been obtained together with DonN. Page, Valeri Frolov,
David Kubizňák, and Muraari Vasudevan last and this year and have been published in the papers (Page et al.,
2007; Frolov et al., 2007; Krtouš et al., 2007a,b; Krtouš, 2007).

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Kerr–de Sittermetrics in all higher dimensions, and in 2006Chen, Lü andPope (Chen et al.,
2006) put these into a simple form similar to that of Carter (1968a,b) and were able to add
aNUT parameter (though not electric charge) to get the general Kerr–NUT–(a)dSmetrics
for all D. The properties of these metrics have been extensively studied in recent years. In
the following, we give overview of some of these results.
One of the key spacetime properties is the nature of the corresponding geodesic mo-

tion. In our papers (Page et al., 2007; Krtouš et al., 2007b) we have found a full set of
D conserved quantities for geodesic motion and demonstrated that this motion is com-
pletely integrable. The constants of motion have been constructedwith help of the principal
Killing–Yano tensor – an important geometrical structure that has been thoroughly invest-
igated in (Krtouš et al., 2007a).
Closely related to the integrability of the geodesic motion is the separability of the

Hamilton–Jacobi equation. It was proved, together with the separability of the Klein–
–Gordon equation (in Frolov et al., 2007).
Finally, we will discuss a test electromagnetic field specially aligned with the high-

-dimensional black hole background which was found in (Krtouš 2007; cf. also Chen and
Lü 2007) and a no-go theorem for “charging” the rotating black hole in higher dimensions
with the electromagnetic field of this type. Let us note that another no-go theorem for “ac-
celerating” black holes in a way analogous to the four dimensional case has been presented
in Kubizňák andKrtouš (2007).
In the following sections, we will revisit these topics in more detail. For simplicity, we

will concentrate on the case of even dimensions. However, all discussed properties are
valid also in odd dimensions – see the originals papers for corresponding expressions and
modifications.

2 METRICOF AGENERALLYROTATINGBLACKHOLE INHIGHER
DIMENSIONS

The metric of the general Kerr–NUT–(anti-)de Sitter spacetime in D = 2n dimensions
discovered by Chen et al. (2006) can be written

g =
n∑

µ=1

⎡

⎣Uµ

Xµ
dx2

µ +
Xµ

Uµ

(n−1∑

k=0
A(k)

µ dψk

)2⎤

⎦ . (1)

Here, the coordinates xµ (µ = 1, . . . , n) correspond to (Wick rotated) radial and latitudinal
directions, ψk (k = 0, . . . , n − 1) to temporal and azimuthal directions. The metric
functionsUµ, A(k)

µ , together with auxiliary functions A(k), are given by

Uµ =
n∏

ν=1
ν ̸=µ

(
x2
ν − x

2
µ

)
, A(k)

µ =
n∑

ν1,...,νk=1
ν1<···<νk ,νi ̸=µ

x2
ν1 · · · x2

νk , A(k) =
n∑

ν1,...,νk=1
ν1<···<νk

x2
ν1 · · · x2

νk . (2)

Each of the remaining metric functions Xµ is a function of a single variable xµ and their
exact form is given by the Einstein equations. However, most of the properties discussed
below are independent of the exact form of the metric functions Xµ.
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It is useful to rewrite the metric in a diagonal form

g =
n∑

µ=1
(eµeµ + eµ̂eµ̂) (3)

introducing an orthonormal frame of 1-forms {eµ, eµ̂} and the dual vector frame {eµ, eµ̂},
withµ = 1, . . . , n and µ̂ = µ + n:

eµ =
(
Uµ

Xµ

)1/2
dxµ , eµ =

(
Xµ

Uµ

)1/2
∂ xµ ,

eµ̂ =
(
Xµ

Uµ

)1/2 n−1∑

k=0
A(k)

µ dψk , eµ̂ =
(

1
XµUµ

)1/2 n−1∑

k=0

(
−x2

µ

)n−1−k
∂ψk .

(4)

It was derived inHamamoto et al. (2007) that the Ricci tensor is also diagonal in this frame

Ric = −
n∑

µ=1
rµ(eµeµ + eµ̂eµ̂) , (5)

with the component rµ given by

rµ =
1
2
X ′′µ
Uµ

+
n∑

ν=1
ν ̸=µ

1
Uν

xνX ′ν − xµX ′µ
x2
ν − x2

µ

−
n∑

ν=1
ν ̸=µ

1
Uν

Xν − Xµ

x2
ν − x2

µ

. (6)

The scalar curvature then is

R = −
n∑

ν=1

X ′′ν
Uν

. (7)

Enforcing the vacuumEinstein equationswehave to solve the conditions rµ = 0. It turns
out that the general solution is

Xµ = bµxµ +
n−1∑

k=0
ck
(
−x2

µ

)n−1−k
. (8)

The constants bµ and ck are related to the mass, NUT parameters, angular momenta and
cosmological constant (for details, see Gibbons et al., 2005; Chen et al., 2006).

3 PRINCIPALKILLING–YANOTENSOR

Inspecting the metric, we immediately see that the metric has n Killing vectors ∂ψk . How-
ever, it also possesses hidden symmetries which can be demonstrated by the existence of the
so-called principalKilling–Yano tensor f

f =
n∑

µ=1
xµ e1 ∧ · · · ∧ eD︸ ︷︷ ︸

eµ,eµ̂ skipped

. (9)
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Its Hodge dual gives the second-rank closed conformal Killing–Yano tensor

h =
n∑

µ=1
xµeµ ∧ eµ̂ . (10)

The conformal Killing–Yano tensor (CKYT)was first proposed byKashiwada (1968) and
Tachibana (1969) as a generalization of the Killing–Yano tensors (Yano, 1952). Since then
both these tensors found wide applications in physics related to hidden (super)symmetries,
conserved quantities, symmetry operators, or separation of variables. Let us recall that
CKYT of a general rank r is an antisymmetric r -form f the covariant derivative of which
can be split into an antisymmetric part and a divergence part

∇ f = A∇ f + T ∇ f . (11)

HereA is the standard anti-symmetrization and T is the projection onto the “trace” part of
the tensor of rank r + 1which is antisymmetric in the last r indices,

T Aaa1...ar =
r

D − r + 1
ga[a1A

e
|e|a2...ar ] . (12)

The divergence part T ∇ f thus depends only on the divergence ∇e f eab.... The operations
A and T satisfyA2 = A, T 2 = T , and T A = A T = 0. The condition (11) implies that
∇ f does not have a harmonic part (given by the complement of the A and T projectors),
i.e., f does not have a part for which both d f and ∇ · f vanishes. A CKYT transforms
into a CKYT under the Hodge duality. The antisymmetric part A∇ f transforms into the
divergence part T ∇∗ f and vice versa.
A Killing–Yano tensor f is such a CKYT for which the divergence part is missing, i.e.,
∇ f = A∇ f . The dual of a Killing–Yano tensor is a closed CKYT, i.e., an r -form obeying
∇ f = T ∇ f .
In our case, the principal CKYT h is the crucial geometrical structure which allows us to

construct additional conserved quantities for geodesic motion and which is closely related
to the separability of the Hamilton–Jacobi equation.

4 INTEGRABILITYOFGEODESICMOTION

Let us now investigate geodesic motion in the spacetime given by the metric (1) with
unspecified metric functions Xµ. For such a motion, the non-normalized velocity plays the
role of momentum p. Its norm

w = p · p (13)

is conserved along the motion. Having n Killing vectors ∂ψk , we can construct n conserved
quantities linear inmomentum

Lj = ∂ψj · p , j = 0, . . . , n − 1 . (14)
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The remaining n − 1 independent constants of motion can be constructed starting from the
generating function written in terms of the Killing–Yano tensor andmomentum

W (β) = det
(
I −

√
β h · P

)
. (15)

Here, P is a projector on the directions orthogonal to the momentum p. It was shown
in Krtouš et al. (2007a) that W (β) is conserved for any value of β. The independent
constants of motion can be extracted as coefficients in the β-expansion

W (β) =
1
w

∑

j
Cjβ j , (16)

leading toC0 = w and

Cj =
n∑

µ=1
A( j )

µ

(
p̄2
µ + p̄2

µ̂

)
, j = 0, . . . , n − 1 , (17)

where p̄µ, p̄µ̂ are components of momentum in the frame eµ, eµ̂,

p =
n∑

µ=1

(
p̄µeµ + p̄µ̂eµ̂

)
. (18)

We have shown in Page et al. (2007); Krtouš et al. (2007b) that the constants Lj andCj
are not only independent, but that they are also in involution

{Lk, Ll} = {Lk,Cl} = {Ck,Cl} = 0 . (19)

These are sufficient conditions for themotion to be completely integrable (see, e.g., Arnol’d,
1989).

5 SEPARABILITYOF THEHAMILTON–JACOBIANDKLEIN–GORDON
EQUATIONS

Both the complete integrability and the existence of the Killing–Yano tensor are closely
related to the separability of the Hamilton–Jacobi equation (see, e.g., Arnol’d, 1989; Floyd,
1973; Penrose, 1973; Benenti and Francaviglia, 1979, 1980).
The separability of the Hamilton–Jacobi equation for geodesic motion

∂S
∂τ

+ dS · g · dS = 0 (20)

can be demonstrated assuming

S = −τw +
n∑

µ=1
Sµ(xµ) +

n−1∑

i=0
Liψi ,
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with Sµ(xµ) being functions of a single variable only. Substituting into (20), we obtain an
ordinary differential equation for Sµ (Frolov et al., 2007)

S′2µ =
1
Xµ

n−1∑

i=0
Ci
(
−x2

µ

)n−1−i
−

1
X2

µ

[n−1∑

i=0
Li
(
−x2

µ

)n−1−i
]2

, (21)

which can be solved by quadratures.
Identifying the gradient dS with the momentum dS = p, we find that the separability

constants w, Lj , and Cj are exactly those defined in the previous section in (13), (14), and
(17), Lj being linear inmomentum andCj quadratic.
Similarly, itwas alsodemonstrated inFrolov et al. (2007), that themassiveKlein–Gordon

equation for a scalar field
[
#−m2

]
Φ = 0 (22)

can be solved by the separability ansatz

Φ =
n∏

µ=1
Rµ(xµ)

m∏

k=0
exp (iΨkψk) . (23)

It leads to differential equations for Rµ

(
XµR′µ

)′ −

⎡

⎣ 1
Xµ

(n−1∑

k=0
Ψk(−x2

µ)n−1−k

)2

+
n−1∑

k=0
Ξk
(
−x2

µ

)n−1−k
⎤

⎦ Rµ = 0 , (24)

withΨj andΞk arbitrary separation constants.

6 ALGEBRAICALLY SPECIAL TESTELECTROMAGNETICFIELD

Following Krtouš (2007), we will discuss now a special kind of test electromagnetic fields
on the background given by the metric (1). We are looking for a field that would share the
explicit symmetry of the metric (it would be independent of ψj ) and that would be aligned
with the hidden symmetry of the spacetime, namely, its Maxwell tensor F would have the
same eigenspaces as the principal conformal Killing–Yano tensor h. We thus require

F =
n∑

µ=1
fµeµ ∧ eµ̂ , fµ = fµ(x1, . . . , xn) . (25)

The Maxwell tensor is generated by the vector potential, F = d A. As a consequence of
the assumption (25), we find that the vector potential can be written as

A =
n∑

µ=1
gµ

(
xµ

Uµ

)1/2
eµ̂ , (26)
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where gµ are functions of a single variable only, gµ = gµ(xµ). Evaluating the Maxwell
tensor, we get the components fµ:

fµ =
gµ

Uµ
+
xµg′µ
Uµ

+ 2xµ

n∑

ν=1
ν ̸=µ

1
Uν

xνgν − xµgµ

x2
ν − x2

µ

. (27)

Alternatively, we could apply directly the first Maxwell equation dF = 0 to find that fµ
are generated by an auxiliary potential φ,

fµ = φ,µ , (28)

which satisfies the equation

φ,µν = 2
xνφ,µ − xµφ,ν

x2
µ − x2

ν

for µ ̸= ν . (29)

The field (26) is generated by the potential

φ =
n∑

ν=1

gνxν
Uν

. (30)

Calculating the source J of the electromagnetic field using the secondMaxwell equation
J = −∇ · F, we obtain

J =
n∑

µ=1
jµ
(
xµ

Uµ

)1/2
eµ̂ , (31)

with

jµ = −
1
xµ

∂

∂xµ

(

φ − x2
µ

n∑

ν=1
x−1
ν φ,ν

)

. (32)

Substituting (30), we finally obtain

jµ =
1
xµ

∂

∂xµ

( n∑

ν=1

x2
νg′ν
Uν

)

. (33)

We are interested in source-free electromagnetic fields, so we require J = 0. Using the
special form of the sum in the square brackets in (33) we find that g′µ are given by a single
polynomial of order (n − 1) in variable x2

µ. Integrating oncemore, we find

gµxµ = eµxµ +
n−1∑

k=0
ak
(
−x2

µ

)n−1−k
. (34)
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Substituting into the vector potential (26) or the scalar potential (30), we find that the terms
containing the constants ak are gauge-trivial and they can be ignored.
We have thus found that an algebraically special electromagnetic field (i.e., a field of the

form (25)) satisfiesMaxwell equations on the background described by themetric (1) if and
only if it is generated by the vector potential

A =
n∑

µ=1
eµ
(
xµ

Uµ

)1/2
eµ̂ . (35)

The components fµ of the Maxwell tensor are easily determined by (28) from the auxiliary
potential

φ =
n∑

µ=1

eµxµ

Uµ
, (36)

and they read

fµ =
eµ
Uµ

+ 2xµ

n∑

ν=1
ν ̸=µ

1
Uν

xνeν − xµeµ
x2
ν − x2

µ

. (37)

Here, eµ are constants that can be related to the electric and magnetic charges of the field
using the Gauss and Stokes theorems.
If we set all charges except for one, say eν , to zero, the Maxwell tensor F corresponds

to the harmonic form G(ν)
(2) recently found and verified for particular cases in Chen and Lü

(2007).
The surprising property of our field is that it satisfies Maxwell equations independently

of the specific form ofmetric functions Xµ. Moreover, the stress-energy tensor correspond-
ing to the field (25) has a form consistent with the structure of the Ricci (and Einstein)
tensor (5). These facts open up a possibility that we could solve the full Einstein–Maxwell
equations: modifying the metric functions Xµ, we could construct a spacetime in which the
stress-energy tensor T would be a source for the Einstein equations, and the electromag-
netic field would still satisfyMaxwell equations.

7 NO-GOTHEOREMFORCHARGINGTHEKERR–NUT–(A)DSMETRIC

Indeed, this goal can be achieved in the physical dimension D = 4. In this case metric (1)
with metric functions Xµ given by (8) corresponds to the uncharged black-hole solution
in the form found by Carter (1968a,b) and elaborated by Plebański and Demiański (1976).
However, if we modify the metric functions by adding constant terms−e2

1 and−e
2
2,

X1 = c0 + c1x2
1 + c2x4

1 + 2b1x1 − e2
1 ,

X2 = c0 + c1x2
2 + c2x4

2 + 2b2x2 − e2
2 ,

(38)
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the metric (1) together with the electromagnetic field (35) solve the full Einstein–Maxwell
equations – it corresponds to the Carter’s charged black-hole solution.
In a generic dimension,wefirst evaluate the stress-energy tensorT of the electromagnetic

field (25):

8πT =
n∑

µ=1

(
2 f 2

µ − f 2
) (
eµeµ + eµ̂eµ̂

)
. (39)

Its trace is

8πT = 2(2− n) f 2 , (40)

where the function f 2 is defined as

f 2 =
n∑

ν=1
f 2
ν . (41)

We explicitly see that the trace of the stress-energy is non-vanishing for D ̸= 4 which is
related to the fact that the electromagnetic field is not conformally invariant in a general
dimension.
Nowwe would like to solve the Einstein equationsRic− 1

2Rg +Λg = 8πT . The trace
gives the condition

R = 2
D

D − 2
Λ+ 2

D − 4
D − 2

f 2 . (42)

However, the scalar curvature has the form (7) and it immediately follows that

∂2n−2

∂x2n−2
µ

(UµR) = −X [2n]
µ , (43)

which is a function of xµ only. Applying this to the right-hand-side of (42), we obtain the
condition:

∂2n−2

∂x2n−2
µ

(
Uµ f 2

)
must be a function of xµ only. (44)

This condition does not hold for the electromagnetic field given by (37), at least for the
lowestnon-trivial valuesofn. It seems that themainproblem is thatR behavesas

∑
hµ/Uµ

while f 2 as a square of such sums.
We can thus conclude that in a generic even dimension the electromagnetic field of the

form (25), (37) cannot couple to the metric given by (1).

8 SUMMARY

In this contribution, we have reviewed some properties of the general higher-dimensional
rotating black-hole spacetimes given by the metric (1). We have discussed the complete
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integrability of geodesic motion and explicitly found the full set of constants of motion.
We have seen that the “nontrivial” constants are generated using the principal conformal
Killing–Yano tensor and that they are quadratic in momenta and thus correspond to rank-2
Killing tensors (Krtouš et al., 2007a).
The complete integrability of the geodesic motion is related to the issue of separability of

theHamilton–Jacobi equation, which has been reviewed next. It was demonstrated that the
separability constants for the Hamilton–Jacobi equation are the same as those constructed
directly for geodesic motion.
Finally, we have presented an algebraically special test electromagnetic field. It depends

on n = D/2 constants eµ related to the global electric andmagnetic charges. It generalizes
the field known on the background of the Carter’s black-hole solution in D = 4 dimensions.
In this case, the metric functions can be modified in such a way that the field and the metric
solve the full Einstein–Maxwell equations. Unfortunately, an analogousmodification is not
possible in a generic dimension.
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ABSTRACT
Iron lines emitted in the innermost regions of the accretion disc in Active Galactic
Nuclei (and Galactic Black Hole candidates) are one of the best tools to probe strong
gravity effects in the close vicinity of a Black Hole. In this contribution I review the
basic theory on “relativistic lines” and the observational evidence for them in Active
GalacticNuclei.

Keywords: Iron lines – GeneralRelativity – active galactic nuclei – X-rays

1 INTRODUCTION

In the 90’s, X-ray missions carrying on-board high sensitivity, moderate energy resolution
instruments working at energy bands including the iron line complex (∼ 6–7 keV) were
launched, the first of them being ASCA, then followed by Beppo SAX (both of them are
no longer operating). Then Chandra, XMM-Newton and Suzaku joined (all three still
operating as for late 2007). With these missions, probing General Relativity (GR) effects
on iron emission lines has became possible, and it is now a relevant part of the studies on
Active Galactic Nuclei (AGN) as well as on Galactic BlackHole systems (GBH) and also on
X-ray binaries with neutron stars, if accretion occurs via a disc (e.g., Di Salvo et al., 2005).
In this paper I will review the main GR effects on the iron line emitted in the innermost

regions of the accretion disc (often referred to as “relativistic lines”) and I will discuss
the observational evidence for them. The paper is organized as follows: in Section 2 the
basic concepts concerning Black Holes, of relevance for understanding GR effects on line
emission, are summarized. In Section 3 line emission from a relativistic accretion disc is
presented, while Section 4 is devoted to the discussion of the strenghts and weaknesses of
methods, based on iron emission lines, to measure the mass and spin of the Black Hole.
Present observational evidence for relativistic lines inAGN are discussed in Section 5, while
conclusions are given in Section 6.

2 BLACKHOLES

A Black Hole (BH) is fully characterized by only three quantities: its mass M , angular mo-
mentum J and electric charge Q, which is usually assumed to be negligible for astrophys-

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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ically relevant BlackHoles. The space time around a BH is described by the Kerr–Newman
metric which, when Q = 0, reduces to the slightly simpler Kerr metric. If also J is null,
than the metric is themuch simpler Schwarzschild one. While the static solution was found
by Karl Schwarzschild in 1916 (i.e., only one year after the publication by Einstein of the
theory of General Relativity), the rotating solution was found by Roy Kerr only in the six-
ties (Kerr, 1963), a delay probably duemore to the lack of interest in the field rather than to
the mathematical difficulties of the problem.
All relevant General Relativity effects around a BH are scale invariant, i.e., do not depend

on the BHmass. It is therefore convenient to measure all distances in units of the so-called
gravitational radius, rg = GM/c2. It is also customary to introduce the adimensional
angularmomentum per unit mass, a = Jc/GM2, called for simplicity “spin” hereinafter.
In Boyer–Lindquist spherical coordinates (namely t, r,φ, θ , with the usual meaning of

symbols), the Kerr metric can be written as:

ds2 =−
(

1−
2r
Σ

)
dt2 −

(
4ar sin2 θ

Σ

)
dtdφ +

(
Σ

∆

)
dr2 +Σ dθ2

+
(
r2 + a2 +

2a2r sin2 θ

Σ

)
sin2 θ dφ2 , (1)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2r + a2 .

(If the BlackHole electric charge is not null, then∆ = r2 − 2r + a2 + Q2). For a = 0, the
Schwarzschildmetric is obtained:

ds2 = −
(

1−
2
r

)
dt2 +

(
1−

2
r

)−1
dr2 + r2(dθ2 + sin2 θ dφ2) . (2)

The radius of the Event Horizon, i.e., the surface of “no return,” is given by REH =
1 +
√

1− a2. This implies that 0 ≤ a ≤ 1, i.e., that there is a maximum value for the spin.
When a = 1 the BH is said to be maximally rotating; in this case the radius of the Event
Horizon is equal to the gravitational radius, while it is 2rg (the “Schwarzschild radius”) for
a static (a = 0) BH.1 It is interesting to note that the Schwarzschild radius corresponds, in
a pureNewtonian calculation, to the radius a star should have in order for its escape velocity
to be equal to c. Indeed, BlackHoles (or invisible stars, as they were called at the time) were
predicted in this way more than two centuries ago by Michell (1784) and Laplace (1796),
even if of course they could not know that from such objects nothing, not only the light,
could escape.

1 It is important to recall here that Thorne (1974) has shown that in the standard accretion disc model the
radiation emitted by the disc and swallowed by the BH produces a counteracting torque which limits the spin
to a maximum value of ∼ 0.988, corresponding to REH ∼ 1.23. Different values can be found for different
assumptions on the accretion flow (see Agol and Krolik, 2000).
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Figure 1. Upper panel: the ratio between the observed and emitted frequency of a photon (“gravita-
tional redshift”) in Schwarzschild metric as a function of the radius at which the photon is emitted.
Lower-left panel: the radius of the Innermost Stable Circular Orbit as a function of the BH spin. The
lower (upper) curve refers to a co- (counter-) rotating disc. The radius of the Event Horizon is also
shown for comparison. Lower-right panel: the Keplerian velocity (in the LNRF) in the equatorial
plane as a function of radius, for a static and amaximally rotatingBH.

An important General Relativity effect is the gravitational redshift. Photons can get out
of the gravitational potential of the BH only at the expense of their energy, and therefore
frequency. In Schwarzschildmetric

νobs
νem

=
√

1−
2
r

, (3)

where νem and νobs are the emitted and observed (at infinity) frequencies of the photon, and
r the emission radius (see also Fig. 1). In Kerr metric, a similar formula can be written only
for the photons emitted on the rotation axis, where it reads

νobs
νem

=
√

1−
2r

r2 + a2 . (4)

For any other point, the “dragging of the inertial frame,” i.e., the corotation of the space-
timewith the BH spinmakes gravitational andDoppler shifts not separable.
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3 LINE EMISSIONFROMACCRETIONDISCS

3.1 General remarks

Accretion onto BlackHoles, at least for luminous systems, is believed to occur via an accre-
tion disc, where gravitational energy can be efficiently dissipated and eventually converted
into radiation. Accretion discs are very complicated systems, and the details of the physical
processes are far from being fully understood. Fortunately, for what follows we only have
to make a few assumptions, and forget about details. The assumptions are: that the disc is
geometrically thin (i.e., its height is always much smaller than its radius at any radius), so
that it may be approximated with a thin slab on the equatorial plane; that it is homogenous
enough in order that clumpiness does not affect much the line emissivity; and that it is
optically thick, so that iron line fluorescent emission can be efficient.
I also assume that the iron line is due to fluorescent emission after illumination by an

external source of X-rays. George and Fabian (1991) and Matt et al. (1991) discussed in
detail theproperties of thefluorescent line for neutralmatter (rest frameenergyof6.4 keV2),
while Matt et al. (1993a,b, 1996); Nayakshin and Kallman (2001), A. C. Fabian, R. R. Ross
and collaborators in a series of papers (Ross and Fabian, 2005 and references therein)
discussed the case of ionizedmatter (rest frame energies up to ∼7 keV).
GReffects on the radiation emitted by anaccretiondiscwere first studied byCunningham

(1975), while Fabian et al. (1989) and Chen et al. (1989) were the first to model line
emission from relativistic discs and compare calculations with observations. Different
groups (too many to be quoted here; further references can be found in: Fabian et al.,
2000; Reynolds andNowak, 2003; Fabian andMiniutti, 2005; Karas, 2006) have since then
performed calculations of line profiles under different assumptions and physical conditions,
stimulated by theGINGAdiscovery that iron lines are almost ubiquitous in theX-ray spectra
of AGN (e.g., Nandra and Pounds, 1994). Precise and fast models for fitting real data are
now available (e.g., Dovčiak et al., 2004b,d).

3.2 Line emission from relativistic discs

The inner radius of the accretion disc cannot be smaller than the Innermost Stable Circular
Orbit (ISCO). This of course does not mean that there is no matter at radii lower than
the ISCO; simply, the matter must spiral in (see Krolik and Hawley, 2002 for different
definitions of the “edge” of the disc). The ISCOdepends on the BH spin and onwhether the
disc is co- or counter-rotating with the BH (see Fig. 1):

rISCO = 3 + Z2 ± [(3− Z1)(3 + Z1 + 2Z2)]1/2 , (5)

where

Z1 = 1 + (1− a2)1/3[(1 + a)1/3 + (1− a)1/3] Z2 = (3a2 + Z2
1)

1/2 .

2 This line is actually a doublet, with energies of 6.4055 and 6.3916 keV and a branching ratio of ∼2 :1 (Palmeri
et al., 2003). As the broadening effects we are discussing here are much larger than the ∼ 14 eV intrinsic
separation, we will assume a single narrow line with a weightedmean energy of 6.4 keV.
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The − (+) sign applies to co- (counter-) rotating discs. The decrease of the ISCO with a
(for a corotating disc) is usually used to estimate the spin (see next Section).
Motion of matter in accretion discs is supposed to be dominated by the gravitational

potential of the BH, and then rotation to be Keplerian. Close to the BH the Keplerian
velocity, vK, becomes very large, reaching a significant fraction of the velocity of light. In
the LocallyNon-Rotating Frame (LNRF), i.e., the reference frame “rotating with the Black
Hole” (Bardeen et al., 1972), we have (see also Fig. 1):

vK/c =
r2 − 2a

√
r + a2

(r2 + a2 − 2r)1/2(r3/2 + a)
. (6)

It is interesting to note that vK can be a significant fraction of the velocity of light, implying
that the Doppler shift and boosting may be very prominent.3 At these velocities, the fully
relativistic Doppler effect must be considered, as the transverse Doppler effect (i.e., the
redshift of photons when matter has only a transverse component of the velocity) is by no
means negligible.
In General Relativity, photon geodesics are no longer straight lines (the so-called “light

bending”). In Schwarzschild metric they still lie on a plane, and therefore the equation of
the orbit can bewritten in terms of only two coordinates, the radius and the azimuthal angle,

3 Doppler boosting is the brightening/dimming of the flux when the matter is approaching/receding. It is a
Special Relativity aberration effect due to the fact that Iν/ν3 is a Lorentz invariant.

Figure 2. Iron line profiles for a maximally rotating BH, extending from the ISCO to 400, 50 and
10 rg (from top to bottom) with a 30◦ inclination angle and the index of the emissivity law q = 2 (see
footnote #4). Here and in the next figure profiles have been calculatedwith the code kyrline (Dovčiak
et al., 2004b,d) in theXSPEC software package.



156 G.Matt

Φ, on the plane of the trajectory (Misner et al., 1973):

d2u
dΦ2 = 3u2 − u , (7)

where u = 1/r . In Kerr metric the orbits are fully tridimensional, and the equation
of motion much more complex (Carter, 1968). As a result of light bending, geodesics of
photons emitted in the far side of thedisc are strongly curved, and thedisc appears “bended”
towards the observer (see, e.g., Luminet, 1979, 1992).
All these effects strongly modify the properties of emission lines. Let us for simplicity

neglect natural and thermal line broadening, so that the line profile, in the matter reference
frame, is a δ-function. Let us also assume that the line is the neutral iron Kα at 6.4 keV.
Their resulting line profile has a characteristic doubled-horned shape, with the blue peak
brighter than the red peak due to Doppler Boosting, and an extended red wing due to both
Doppler Transverse andGravitational redshift. In Fig. 2 profiles obtained for different outer
radii are shown. Many more examples, illustrating the dependence of the profile on the
various parameters (spin, inner and outer radii, inclination angle, emissivity laws4 can be
found in the literature (see, e.g., references inMatt, 2006; Karas, 2006).

4 MEASURINGTHESPIN ANDMASSOFBLACKHOLESUSING IRONLINES

Iron lineprofiles fromrelativistic accretiondiscs providespotentially verypowerfulmethods
to measure the mass and the spin of the Black Holes in Active Galactic Nuclei. Pros and
cons of these methods are now briefly discussed in the following paragraphs.

4.1 Spin

Methods to measure the Black Hole spin usually make use of the dependence of the ISCO
on a. Methods based on the iron line make no exception. The smaller the inner disc radius,
the lower (due to gravitational redshift) the energy to which the profile extends. In Fig. 3,
left panel, profiles from accretion discs around a static and a maximally rotating Black
Holes, in both cases extending down to the ISCO, are shown. The advantage of this method
is that it is very simple and straightforward, at least conceptually. Moreover, no detailed
physical modelling of the line emission is required: the spin is measured from the low end
of the profile, independently of the exact form of the profile itself (once the inclination angle
is determined).

4 A crucial ingredient in shaping the line profile is the radial emissivity law, ξ . For the iron fluorescent line, which
is emitted following external illumination (e.g., George and Fabian, 1991; Matt et al., 1991), ξ depends mainly on
the geometry of the system. It is customary to assume a power law emissivity law, ξ ∝ r−q . If q < 2, the outer
regions dominate the emissivity, while the inner regions prevail for q > 2. Actually, the emissivity law is likely to
be more complex than a simple power law. Even in the simplest case, the so-called “lamp-post” model in which
the primary emitting region is a small cloud on the BH axis (as in aborted jet models, e.g., Ghisellini et al., 2004),
the emissivity law is, neglecting GR effects and radiative transfer subtleties, given by: ξ ∝ (h2 + r2)−3/2, where
h is the height of the emitting point; ξ is then a power law (q = 3) only for large radii. Once the effects on the
emissivity of the incident angle (Matt et al., 1991) and, especially, of GR (light bending, gravitational shift) are
included, the emissivity is significantly modified (e.g., Martocchia andMatt, 1996; Martocchia et al., 2000, 2002).
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Figure 3. Left panel: iron line profiles for a maximally rotating BH and a static BH, extending from
the ISCO to 400 rg, with a 30◦ inclination angle. Note that the profile for the spinning BH extends
to much lower energies. Right panel: iron line profiles for a maximally rotating BH and a static BH,
extending from r = 2 to 10 rg, with a 30◦ inclination angle, to illustrate the differences due to the
metric.

There are, however, also some limitations and caveats to this method that must be taken
into account. First of all, strictly speaking the method provides only a lower limit to the
spin, because the disc (or at least the iron line emitting region) could in principle not extend
down to the ISCO (see next section). Technically, zero-intensity energies are far from trivial
to be measured. Finally, even if the disc (properly said) stops at the ISCO, the region
within the ISCO (the so-called plunging region) in not empty, and line emission may arise
from thematter free-falling onto the BlackHole (Reynolds andBegelman, 1997; Krolik and
Hawley, 2002 ,for different definitions of the “edge” of the disc), even ifmatter is likely to be
significantly ionized there. If the inner radius results to be smaller than 2, there is of course
no ambiguity. Otherwise, one could in principle rely to the differences in the profiles due to
the metrics themselves (Fig. 3, right panel) which, at least for small radii, are subtle but not
entirely negligible and will be hopefully exploited by the next generation of large area X-ray
satellites.

4.2 Mass

Iron Kα reverberation mapping of structures in the profile (Stella, 1990) or of integrated
quantities (Equivalent Width, centroid energy and width, Matt and Perola, 1992) has been
suggested, in analogy with the method routinely used for optical broad lines, as a tool to
measure the BH mass in AGN (this technique is practically inapplicable in Galactic Black
Hole systems because of the very short time scales involved, and themuch lower typical flux
per light-crossing time). It is a conceptually simple but technically very difficult technique.
First of all, it requires a large number of photons. Worst than that, the Transfer Function,
which describes how the line follows variations of the illuminating continuum, is strongly
geometry-dependent. With respect to the reverberation mapping of optical broad lines, one
here has the advantage that the geometry of the illuminated region can be assumed a priori
(i.e., the accretion disc), but has the disadvantage that the geometry of the illuminating
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region is unknown. In fact, in the optical lines case a point-like source is a safe assumption,
given the much larger distance of the illuminated matter. For the iron lines, instead, the
illuminating and illuminated regions are likely of comparable sizes.
On the other hand, if the iron line is emitted in a small spot on the accretion disc (coro-

tating with the disc at the Keplerian velocity), the BH mass could be easily and precisely
measured, once the spot radius is known (Dovčiak et al., 2004a, 2007). Such a hot spotmay
be due to a localized flare, possibly of magnetic origin, just above the disc surface.
A spot on the accretion disc at a radius r has an orbital period (asmeasured by an observer

at infinity) given by

Torb = 310
(
r3/2 + a

)
M7 [sec] , (8)

where M7 is the mass of the black hole in units of 107 solar masses. If the spot radius and
the BH spin can be estimated, the measurement of the orbital period immediately provides
the Black Hole mass (note that the spin is relevant only for small radii; when r ≫ 1, when
the spin is hard to measure, it fortunately becomes irrelevant).
There is some observational evidence (albeit still controversial) for spot-like emission in

AGN (e.g., Turner et al., 2002; Dovčiak et al., 2004a; Iwasawa et al., 2004; Pecháček et al.,
2005, and references therein), but confirmations and the full exploitation of the method
have to wait for the next generation of X-ray satellites.

5 OBSERVATIONALEVIDENCEFORRELATIVISTIC LINES IN AGN

5.1 The innermost regions of (radio-quiet) AGN

The standard scenario for the innermost regions of AGN is shown in Fig. 4. TheUV thermal
photons emitted by the accretiondisc areComptonized byhot (T ∼ 100–200 keV) electrons
in an optically thin corona. The resulting X-ray spectrum is, in the very first approximation,
a power law with a high energy cut-off, as indeed is observed (Petrucci et al., 2001; Perola

UV
UV

Figure 4. Schematic view of the innermost region of a radio-quiet AGN. UV photons from the
accretion disc are Comptonized in a hot corona, producing the primary continuum, part of which is in
turn reprocessed by the disc itself. Adapted from (Dabrowski, 1998).
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et al., 2002). The primary X-ray emission illuminates the accretion disc, producing the
so-called Compton reflection component (Lightman and White, 1988; Guilbert and Rees,
1988;George and Fabian, 1991;Matt et al., 1991) plus several fluorescent emission lines, by
far the most prominent of them being the iron line (Reynolds et al., 1995). This two–phase
scenario was first discussed in detail by Haardt and Maraschi (1991). While the aspects
regarding the reprocessing are now well established, the origin and geometry of the hot
corona are still far from clear.
The spectrumof the reflection component is determinedby the competition betweenpho-

toelectric absorption and Compton scattering. For neutral matter, the former dominates≪
10 keV, the latter above this energy. Combined with the Compton downscattering, a char-
acteristic bump at 20–30 keV is produced. If the matter is ionized, photoabsorption is
reduced, and the albedo below 10 keV increases (Ross and Fabian, 1993; Matt et al., 1993a;
Nayakshin andKallman, 2001; Ross and Fabian, 2005).

5.2 Relativistic lines

Among the fluorescent lines, the Fe Kα is often the only detectable. On the other hand,
its presence is almost ubiquitous. It may originate both in the innermost regions of the
accretion disc or in more distant matter like the “torus.” In the first case, its profile is
broadened by the Special and General Relativity effects, discussed above. In the latter case,
it is unresolved at the energy resolution of present detectors.
Relativistic lines have been discovered by ASCA in the spectra of several AGN, firstly

and most notably in the Seyfert galaxyMCG-6-30-15 (Tanaka et al., 1995). XMM-Newton
observations have confirmed the presence of the relativistic iron line in this source (Wilms
et al., 2001; Fabian et al., 2002) as well as in other sources (e.g., Turner et al., 2002;
Balestra et al., 2004; Piconcelli et al., 2006), but inmany bright sources the line is definitely
narrow (i.e., unresolved at the energy resolution of the CCDs, e.g., Matt et al., 2001, 2006;
Pounds et al., 2003; Bianchi et al., 2004; Vaughan et al., 2004, see Fig. 5). Indeed, a narrow
iron line is almost always present, independently of the presence of the broad one.

Figure 5.Examples of sources with (left panel: 4U 1344-60 Piconcelli et al., 2006) andwithout (right
panel: MCG–8-11-11, Matt et al., 2006) the relativistic line.
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What is the fraction of AGN with a relativistic line? Guainazzi et al. (2006) and Nandra
et al. (2007) analyzed the XMM-Newton spectra of bright Seyfert galaxies available in the
public archive. The two groups find similar results, i.e., that this fraction is about 30–40 %.
Unfortunately, the number of sources which are bright enough, and/or have been observed
with sufficient exposure time, is relatively small, and moreover the samples are neither
complete nor, probably, entirely fair. A firm conclusion, however, can already been drawn:
relativistic lines are relatively common but definitely not ubiquitous. Possible explanations
are now discussed.

5.2.1 Why are relativistic lines not ubiquitous?

In the standard disc-corona scenario, relativistic lines are expected, and the fact that they
are not always present is puzzling. A few explanations (none of them fully satisfactory) are
now brieflymentioned.
A first possibility is that the matter in the disc is ionized. Some degree of ionization

is indeed likely, especially for large accretion rates. A strong reduction of the line flux is
expected for moderate (due to resonant trapping) and very large (due to full ionization)
degrees of ionization, at least in the constant density model (Matt et al., 1993a, 1996).
Hydrostatic equilibriummodels (Nayakshin andKallman, 2001) predict a strong reduction
in the line flux with ionization. For a given black hole mass, the ionization parameter
(L/nr2) increases with the accretion rate, hence with luminosity. On the other hand, for a
given accretion rate (or, better, Eddington ratio), the ionization parameter decreases with
the Black Hole mass, and therefore with luminosity. It would be very important, therefore,
to search for a correlation between the presence of the relativistic line and the luminosity
or accretion rate. At present, the number of sources in which the relativistic line can be
profitably searched for is too limited, but hopefully it will increase in the next years.
Another possibility is that the disc is truncated well before the last stable orbit, therefore

producing a less intense and narrower line. Accretion discs are believed to be truncated
in the low/hard state of Galactic Black Hole systems (Fender et al. 2004; but the issue is
controversial, e.g., Miller et al. 2006). Recently, possible evidence for disc truncation has
been found in a quasar, Q0056-383 (Matt et al., 2005). This quasar was observed by XMM-
Newton in 2000 and 2003. In the second observation, the UV to X-ray ratio was lower, the
soft X-ray emission fainter, the hardX-ray emission flatter, and the iron line EWhalved. All
these results can be explained, at least qualitatively, if in the second observation the disc is
truncated to amuch larger radius than in the first observation.
A third possibility is that the line is so broad to be hardly recognizable, at least in relatively

faint objects. This may happen if line emission is confined to the innermost regions of
an accretion disc around a Kerr Black Hole. Indeed, in MCG-6-30-15 this is what seems
to occur (Wilms et al., 2001), either due to enhanced energy dissipation very close to the
Black Hole (Wilms et al., 2001) or to geometrical effects (Martocchia et al., 2002; Miniutti
et al., 2003). The problem with this solution is that the line EW is expected to be very
large (Martocchia and Matt, 1996), as indeed is the case for MCG-6-30-15. Bianchi et al.
(2004) analyzed a sample of bright Seyferts observed simultaneously by BeppoSAX and
XMM-Newton, and found rather tight upper limits to such lines in all sources.
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5.2.2 The light bending model

MCG-6-30-15 is definitely the best source to study the relativistic line, because it is relatively
bright and with a very intense iron line. Indeed it has been extensively observed by all major
satellites. One of most puzzling result on this source is that the line varies much less than
the continuum (Fabian et al., 2002), contrary to what expected in the simple disc-corona
model. Miniutti et al. (2003) proposed a model in which the primary emission is due to
a small region close to the Black Hole axis (as expected in models like the aborted jets,
Ghisellini et al., 2004). As the emitting region goes up and down, the primary emission
appears to vary due to variations in the gravitational redshift and light bending, while the
reflection has been shown to vary less, at least in a wide range of parameters. This model
reproduces rather well the variability pattern in this and other sources. It is also interesting
to note that Dovčiak et al. (2004c) made clear predictions on the polarization properties
from the reflection component in such a situation. It would be very exciting, for this and
many other reasons, to have an X-ray polarimeter on-board a future mission, now that
sensitive enough polarimeters do exist (Costa et al., 2006).

6 CONCLUSIONS

Iron lines are probably the best tools to probe GR effects in the vicinity of Black Holes.
Spectral distortions are much easier to study in lines then in continua, because of their
intrinsic narrowness – broadening can be safely assume to arise mainly, if not exclusively,
fromsucheffects. Even ifmany important observational results have alreadybeenobtained,
muchwork is still to be done, especially in using iron lines to estimate the mass and the spin
of the Black Hole. Relativistic iron lines are definitely still a major scientific driver for next
generation, large area X-ray satellites.
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ABSTRACT
The talks of which these notes provide a written version were intended to intro-
duce a range of basic ideas in relativistic hydrodynamics to an audience having a
background in relativity theory but perhaps not being familiar with this particular
material. Following some preliminaries, the basic equations of relativistic hydro-
dynamics were first introduced in a general form and then some applications to
problems with spherical symmetry were discussed, concerning cosmological expan-
sion, gravitational collapse and hydrostatic equilibrium (applicable for relativistic
stellarmodels).

1 PRELIMINARIES

1.1 Going fromNewtonian theory to Special Relativity

In going fromNewtonian theory to Special Relativity (SR),wemove froma picture inwhich
we have three dimensions of space plus a separate one-dimensional time to a picture with a
unified four-dimensional space-time in which the three dimensions of space and the one of
time are brought together and are seen to be inextricably inter-related. Using rectangular
Cartesian coordinates, the formula for the distance between adjacent points in Newtonian
theory

ds2 = dx2 + dy2 + dz2 (1)

goes over, in SR, to the 4D space-time interval

ds2 = dx2 + dy2 + dz2 − c2 dt2 (2)

with ds2 being invariant under transformations from one inertial frame to another. It is a
key point that all four dimensions appear in this. In the rest frame of an observer, we have

ds2 = −c2 dt2 → −c2 dτ 2 , (3)

where τ is the proper time measured by that observer using a co-moving standard clock.
Since ds2 is an invariant, we can then write

c2 dτ 2 = c2 dt2 − dx2 − dy2 − dz2 (4)
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for non-comoving frames, giving

(
dτ
dt

)2
= 1−

dx2 + dy2 + dz2

c2 dt2
→ 1−

v2

c2 , (5)

where v is the three-velocity. This then leads to

dt
dτ

=
1

√
1− v2/c2

= γ (6)

with γ being the Lorentz factor.

1.2 The position vector in Special Relativity

In Newtonian theory, the position vector (still using rectangular Cartesian coordinates) is
given by

x ≡ (x, y, z) . (7)

In Special Relativity (SR) we have two choices. If the interval is written as

ds2 = dx2 + dy2 + dz2 + d(ict)2 , (8)

we then have the corresponding position vector

x ≡ (x, y, z, ict) . (9)

However, if instead we write the interval as

ds2 = dx2 + dy2 + dz2 − d(ct)2 , (10)

this corresponds to

x ≡ (x, y, z, ct) (11)

but with also the introduction of the idea of a metric tensor. The first approach is often
convenient in SR, not only because it avoids the need to introduce the metric tensor at this
stage but also because it is then possible to continue using thewell-known ideas of Cartesian
tensors, just extended from 3D to 4D.

1.3 The Special Principle of Relativity

This says that physical laws should be the same in all inertial frames, embodying the idea of
covariance. Mathematically, covariance is ensured if we write our physical laws in terms of
scalars, vectors and tensors, with the vectors and tensors having the same dimensionality as
the space concerned (i.e., four dimensions for the space-time of SR).
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1.4 Velocity in Special Relativity

In order to get a velocity, we need to differentiate the position vector with respect to time,
but the differentiation of our position 4-vector must be with respect to a scalarmeasure of
time in order to produce another 4-vector. Our scalar measure of time is the proper time τ ,
and so for the 4-velocity we have

u ≡
d

dτ
(x) →

dt
dτ

·
d
dt

(x, y, z, ict) → γ (vx , vy , vz, ic) . (12)

Having introduced these basic ideas, we now move on to our discussion of relativistic
hydrodynamics.

2 THESYSTEMOFEQUATIONSDESCRIBINGARELATIVISTIC FLUID

Our system of equations needs to include

• conservation of mass,
• an energy equation,
• amomentum equation.

In the following, wewill see how the expressions for these in relativity theory differ from the
corresponding ones inNewtonian theory.

2.1 Conservation of mass

We will begin this subsection with a purely Newtonian discussion and will then generalise
it. We focus on an imaginary fixed three-dimensional box of unit volume throughwhich the
fluid is able to flow freely. Since the box has unit volume, the amount of mass inside it at
any time is equal to the mass density ρ, and the time rate of change of this is given by the
Newtonian equation

∂ρ

∂ t
= −∇ · (ρv) , (13)

which says just that the rate of change of the amount of mass contained in the box is equal
to the negative of the net mass flux out of it. Writing this in components (again using
rectangular Cartesian coordinates), we have

∂ρ

∂ t
= −

∂

∂x
(ρvx )−

∂

∂y
(ρvy)−

∂

∂z
(ρvz) . (14)

Bringing all of the terms onto the left-hand side and re-arranging gives

∂

∂x
(ρvx ) +

∂

∂y
(ρvy) +

∂

∂z
(ρvz) +

∂

∂ t
(ρ) = 0 . (15)

Now we make a move which is completely allowed but very non-intuitive when viewed in a
Newtonian context: wemake the replacement

∂

∂ t
(ρ) →

∂

∂(ict)
(ρic) . (16)
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Using this, Eq. (15) can be rewritten in the compact form

∑

j

∂

∂xj
(ρvj ) = 0 , (17)

where

xj ≡ (x, y, z, ict) (18)

and

vj ≡ (vx , vy , vz, ic) ≡
∂

∂ t
(xj ) . (19)

This is Newtonian theory written in an unusual way. In order to go to SR, it is necessary to
replace vj ≡ ∂xj/∂ t with uj ≡ ∂xj/∂τ since the quantity representing the velocity needs to
be a 4-vector in order to have covariance. Also, ρ now has to be specified as being the rest-
mass density. Next, we use the summation convention (implied summation over repeated
indices):

∑

j

∂

∂xj
(ρuj ) →

∂

∂xj
(ρuj ) (20)

and introduce the comma notation for partial derivatives

∂

∂xj
(ρuj ) → (ρuj ), j . (21)

Themass conservation equation (17) then becomes

(ρuj ), j = 0 (22)

which is Lorentz covariant for flat space-time (SR). For the curved space-time of General
Relativity (GR), we need to replace the partial derivativewith a covariant derivative in order
to give a tensor quantity, and then we have

(ρuµ);µ = 0 (23)

which is generally covariant as necessary for GR. In making this step, we also move to
an indefinite metric, using x0 = ct rather than x4 = (ict) as the time component of the
position vector, and this then requires making a distinction between contravariant and
covariant vectors. Under these circumstances, we follow the convention of using Greek
letters for indices rather than Latin ones.

2.2 The energy equation

In the previous subsection, we considered an imaginary box of unit volume whichwas fixed
with respect to the coordinate system being used. For the discussion in this subsection, we
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shift to considering a different imaginary box which is now co-moving with the matter flow
and contains unit mass (rest-mass) of the medium which we take to be a perfect fluid (i.e.,
no viscosity, heat transfer, etc). The change in the internal energy of the matter in the box,
as it is expanded or compressed, is given by the first law of thermodynamics:

dε = −p dV , (24)

where ε is the specific internal energy, p is thepressure andV is the volume (proper volume)
of the box. Since we have unit mass in the box, ρV = 1 and V = 1/ρ, so that

dε = −p d
(

1
ρ

)
. (25)

Next, we introduce the total energy density

e = ρc2 + ρε = ρ(c2 + ε) . (26)

Up to this point, the discussion in this subsection has been the same for Newtonian theory
and in relativity (as long as rest mass and proper volume are used when appropriate) but
this step moves strictly to relativity with the introduction of the rest-mass energy (using
E = mc2). Next, we look at the variation of the energy density as the box expands or
contracts; we have

de = (c2 + ε) dρ + ρ dε

→ (c2 + ε) dρ − pρ d
(

1
ρ

)

→ (c2 + ε) dρ +
p
ρ

dρ

→
(
c2 + ε +

p
ρ

)
dρ

→
e + p
ρ

dρ . (27)

Note here the appearance of the enthalpy density (e + p). Eq. (27) links the changes of e
and ρ and can also be written in terms of the co-moving (Lagrangian) derivatives of these
quantities:

Dt e =
e + p
ρ

Dtρ , (28)

where the relativistic expression forDt gives

Dt e ≡ uµe,µ =
∂e
∂xµ

dxµ

dτ
=

de
dτ

(29)

(similarly forDtρ). From the mass equation (23)

(ρuµ);µ = 0 → uµρ,µ + ρuµ
;µ = 0 (30)
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and so

Dtρ ≡ uµρ,µ = −ρuµ
;µ . (31)

The energy equation (28) can then be written in the alternative form

uµe,µ + (e + p)uµ
;µ = 0 . (32)

2.3 Themomentum equation

Following on from the discussion in Section 2.1, the general form for a relativistic conserva-
tion equation is
(
Xuµ

)
;µ = 0 , (33)

where X is the density of the quantity being conserved. Compare this with the Newtonian
form
∂X
∂ t

= −∇ · (Xv) . (34)

In this subsection, we will look at conservation of momentum, setting X equal to the
momentum density ρuν (but bearing inmind that momentum is only conserved if there are
no forces acting). Expanding out the expression coming from the left hand side of Eq. (33)
then gives

(ρuνuµ);µ = uν ;µ(ρuµ) + uν(ρuµ);µ . (35)

The second term on the right hand side is zero, by conservation of rest mass, and so

(ρuνuµ);µ = ρuµuν ;µ = ρ Dt uν . (36)

If there are no forces acting, ρ Dt uν → 0 and momentum is then conserved, as expected.
We now introduce the energy-momentum tensor as

Tµν ≡ ρuµuν (37)

and, if there are no forces acting, we have

Tµν
;ν = 0 . (38)

(Note that Tµν has dimensions of energy density.) When there are forces acting, as is
typically the case, the right hand side would be non-zero if the energy-momentum tensor
continued to be defined as above, but it turns out to bemore convenient to absorb the forces
into the definition of Tµν so that Eq. (38) continues to hold. We are focusing here on the
case of a perfect fluidwith energy density e and pressure p (which is an internal force). How
should we then modify Tµν? If there were no pressure, then it would just be necessary to
replace ρ by e/c2 and this suggests writing

Tµν =
e
c2 u

µuν + pSµν , (39)
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where Sµν is the most general second-rank tensor that can be constructed from quantities
associatedwith the fluid:

Sµν = kuµuν + ℓgµν . (40)

We need to check whether this is, in fact, reasonable and to determine the values of the
constants k and ℓ. Projecting Tµν

;ν = 0 along the direction of motion of the fluid element
(i.e., taking uµTµν

;ν = 0) gives the energy equation andwe already knowwhat that should
be from Section 2.2. It is easy to check that uµTµν

;ν = 0 does reduce to Eq. (32) if
ℓ = kc2 = 1. Therefore, we have

Tµν =
e + p
c2 uµuν + pgµν (41)

for a perfect fluid. Finally, using this in Tµν
;ν = 0 leads to the Euler equation:

Dt uµ ≡ uνuµ
;ν = −

p,ν

e+ p

(
gµνc2 + uµuν

)
. (42)

The mass equation, the energy equation and the Euler equation form the full set of hydro-
dynamical equations for a perfect fluid in a given space-time. However, we need theEinstein
field equations to tell us about the space-time curvature produced by a given source.

2.4 The full set of relativistic hydro equations for a perfect fluid

To summarise, our set of hydrodynamical equations written in Lagrangian form (i.e., using
time derivatives which are projections of the partial or covariant derivatives along the fluid
world-lines) are

Dtρ = −ρuµ
;µ , (43)

Dt e =
e + p
ρ

Dtρ , (44)

Dt uµ = −
p,ν

e + p

(
gµνc2 + uµuν

)
, (45)

while in Eulerian formwe have

(
ρuµ

)
;µ = 0 , (46)

uµe,µ + (e + p)uµ
;µ = 0 , (47)

uνuµ
;ν +

p,ν

e + p
(gµνc2 + uµuν) = 0 . (48)

Note that the 4-accelerationDt uµ is zero if there is no pressure andEq. (45) then reduces to
the geodesic equation. The gravity is contained inside the 4-acceleration: in the following,
it will be convenient to write

Dt uµ = uνuµ
;ν = uν

(
∂uµ

∂xν
+ B

µ
νλ u

λ

)
→

duν

dτ
+ B

µ
νλ u

νuλ , (49)

where the termBµ
νλ u

νuλ represents the “gravitational part.”
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3 SOMEAPPLICATIONS TOPROBLEMSWITHSPHERICAL SYMMETRY

3.1 The equation of motion

Up to now, our treatment has been general in the sense that no particular symmetry has
been assumed. In this section, we will restrict attention to spherical symmetry but will
include self-gravity of the fluid. The equation of motion for the fluid elements can then be
written (seeMisner and Sharp, 1964 andmany subsequent authors) as:

dU
dτ

= −
Γ 2c2

e + p
∂p
∂R
−
Gm
R2 − 4πR

G
c2 p , (50)

where

R is the Schwarzschild circumference coordinate,

U = Dt R ,

m =
∫ R

0
4πR2(e/c2) dR ,

Γ 2 = 1−
2Gm
Rc2 +

U2

c2 .

and a diagonalmetric is being used with co-moving coordinates. The derivation of Eq. (50)
involves the Euler equation (45) together with the Einstein field equations. We will now
consider applications of it in two particular cases.

3.2 Case 1: A homogeneousmedium

We consider here a medium for which the energy density e and the pressure p are the same
everywhere at any particular value of the coordinate time but can change with time. A
well-known example of this is in the Friedmann–Robertson–Walker cosmological models.
For amedium of this type, Eq. (50) can be written as

dU
dτ

= −
G
c2

(
4
3πRe + 4πRp

)
→ −

4π

3
G
c2 R(e + 3p) . (51)

Defining

dU
dτ
≡ R̈ , (52)

Eq. (51) can then be written as

R̈ +
4π

3
G
c2 R(e + 3p) = 0 , (53)

which is the Friedmann acceleration equation. This applies for either expansion (as in the
case of the universe, at least at present) or contraction (as in gravitational collapse). When
used for collapse, it gives the basis for theOppenheimer–Snyder solution (Oppenheimer and
Snyder, 1939), where the pressure is set to zero.
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Suppose now that we have a false vacuum present in addition to the matter. A property
of a false vacuum is that it has constant energy density ev at all places and at all times. The
energy equation (44) for this component then gives

Dt ev = −(ev + pv) uµ
;µ→ 0 , (54)

where uµ
;µ is the expansion of the worldlines of the standard component, and this implies

pv = −ev . (55)

Adding this to the standard component

e→ e + ev , (56)

p→ p + pv = p − ev , (57)

and Eq. (53) then becomes

R̈ +
4π

3
G
c2 R(e + 3p) =

8π

3
G
c2 Rev →

1
3
RΛc2 , (58)

whereΛ = 8πGev/c4 is the cosmological constant.

3.3 Case 2: Hydrostatic equilibrium

For a configuration in hydrostatic equilibrium, both the velocity U and the acceleration
dU/dτ are zero everywhere. Eq. (50) then gives

∂p
∂R

= −
G
[
m + 4πR3 p/c2] [(e + p)/c2]

R
[
R − 2Gm/c2

] . (59)

This is the Tolman–Oppenheimer–Volkoff (TOV) equation which is used for calculating
the equilibrium structure of spherical relativistic stars (e.g., neutron stars). The equivalent
equation inNewtonian theory is

∂p
∂R

= −
Gmρ
R2 (60)

and it is interesting to check on how important an effect is produced by the relativistic
corrections in each of the sets of square brackets in the TOV equation (59). Curves of
total mass plotted against radius are shown in Fig. 1 for sequences of neutron star models
calculated with the rather typical Bethe–Johnson equation of state (Bethe and Johnson,
1974), using different versions of the equation of hydrostatic equilibrium: the dotted curves
were calculated with the Newtonian equation (60); for the short-dashed curves, this was
modified by including the correction term in the first set of square brackets in Eq. (59), i.e.,
4πR3 p/c2 was added tom; for the long-dashed curves, the pressure correction term in the
second set of square brackets was also included (ρ was put equal to e/c2 for the Newtonian
calculation); for the solid curves, the full form of Eq. (59) was used. It can be seen that for
neutron stars near to the canonical mass of 1.4 M⊙, the subtraction of 2Gm/c2 from R in
the denominator has overwhelmingly the most significant effect but for the models with the
highest masses, all of the correction terms are very important. The differences between the
Newtonian and relativistic higher-mass models are enormous.
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Figure 1. The relation between the gravitational mass M and radius R of neutron star models calcu-
lated using different forms of the equation of hydrostatic equilibrium. See text for details.
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ABSTRACT
Hot spots residing on the surface of an accretion disc have beenconsidered as amodel
of short-term variability of active galactic nuclei. In this paper we apply the theory of
random point processes to model the observed signal from an ensemble of randomly
generated spots. The influence of general relativistic effects near a black hole is taken
into account and it is shown that typical features of power spectral density can be
reproduced. Connection among spots is also discussed in terms of Hawkes’ process,
which produces more power at low frequencies. We derive a semi-analytical way to
approximate the resulting power-spectral density.

Keywords: Black holes – accretion – variability

1 INTRODUCTION

Radiation from accreting black holes varies on different timescales (Gaskell et al., 2006). In
X-rays, the observed light-curve, f ≡ f (t), is a complicated noisy curve that can be rep-
resented by a broad-band power spectrum (Uttley et al., 2002). It has been proposed (Ab-
ramowicz et al., 1991; Wiita et al., 1992) that “hot spots” are a possible contributor to this
variability. These spots are supposed to occur on the surface of an accretion disc follow-
ing its irradiation by coronal flares (Galeev et al., 1979; Merloni and Fabian, 2001; Czerny
et al., 2004). A model light-curve can be constructed as a sum of contributions from many
point-like sources that are orbiting above an underlying accretion disc. The observed signal
is modulated by relativistic effects as photons propagate towards a distant observer.
In order to characterise the light curveswe need to introduce some appropriate estimator

of the source variability. In a mathematical sense, one applies a functional: f → S[ f ],
where S[.] is amap from functions defined onR to functions onRk (k ≥ 0). The variability
estimator can be a single number (for example, the mean flux or the “rms” characteristic),
or function of one variable (power spectrum density or probability distribution) or of many
variables (poly-spectra, rms-flux relation, etc). A signal of such a spotted accretion disc
should be intrinsically stochastical. Hence, the variability estimator S[ f ], derived from a
piece of the light-curve, is a random value, too.
Various schemes have been proposed inwhich spots aremutually interconnected in some

way (Poutanen and Fabian, 1999; Życki and Niedźwiecki, 2005). We want to investigate

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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this type of models within a common mathematical basis. Other authors have developed
different approaches to the problem (Mineshige et al., 1994; Lyubarskii, 1997).

2 SPOTMODELSANDTHEACCRETIONDISCVARIABILITY

2.1 Model assumptions and variables

Let us have K samples of the observed light-curves from the same source, fj . The law of
large numbers ensures that

1
K

K∑

j=1
S
[
fj
]
→ E [S [ f ]] , K →∞ , (1)

where E[.] is the mean value operator. The average value of the functional is formally
defined

E [S [ f ]] ≡
∑

{All possible fj (t)}

(
Probability of fj

)
× S

[
fj
]

, (2)

where the sum goes over all possible light-curves generated by this model. We will show
how to define and parameterise “the space of all possible light-curves” and how to perform
the averagingwhen the functional is the power spectrum.
The general model is constrained only by the following three assumptions about the

creation and evolution of spots:

(i) Each spot is described by its time and place of birth (tj , rj and φj ) on the disc surface.
(ii) Every new occurrence starts instantaneously; afterwards the emissivity decays gradu-
ally to zero. The total emitted radiation energy is finite.
(iii) The intrinsic emissivity can be fully determined by a finite number of parameters
which form a vector ξ j .

For a simple demonstration of this concept see Fig. 1. The disc itself has a passive role in our
present considerations. We will treat it as a geometrically thin, optically thick layer lying in
the equatorial plane.

2.2 Random point processes

The concept of point processes is a generalisation of well-known random processes which
were developed as a description of time-dependent random values (Bendat and Piersol,
2000). Point processes are used as statistical description of configurations of some ran-
domly distributed points in spaceRn .
One way of describing a configuration of points is by their counting measure, N(A),

which for every A ⊂ Rn gives a number of points lying in A. One defines the intensity
measure,

M1(A) = E [N(A)] . (3)
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Figure 1. The model curve (panel a) is obtained as a sum of elementary events (panel b). Profile
of each individual event is assumed to be I (t, τ ) = (t/τ )2 exp (−t/τ ) θ(t), as described in the text.
Their normalization is assumed to be identical. The final light-curve is fully determined by the form of
the individual contributions together with a set of points in t -τ plane (panel c), which represent pairs
of ignition times and temporal constants τ of each event.

Similarly to random processes, the point process can be characterised by its mean value
and moments. For every A ⊂ Rn, M1(A) is the mean number of points lying in A. The
second-order moment measure is defined in the same way on the Cartesian product of
spacesRn × Rn :

M2(A × B) = E [N(A)N(B)] . (4)

Let {xi}N be one possible configuration of points, i.e., the support of some N(.) For the
functions f (x) and g(x, y) on Rn and R2n, respectively, it follows (Campbell, 1909; Daley
and Vere-Jones, 2003)

E

⎡

⎣
∑

{xi }N

f (xi )

⎤

⎦ = E

⎡

⎣
∫

Rn

f (x)N(dx)

⎤

⎦ =
∫

Rn

f (x)M1(dx) , (5)

E

⎡

⎢⎢⎣
∑

{xi }N
{yi }N

g(xi , yi )

⎤

⎥⎥⎦ = E

⎡

⎢⎣
∫

R2n

g(x, y)N(dx)N(dy)

⎤

⎥⎦ =
∫

R2n

g(x, y)M2(dx × dy) . (6)

The concept of point process can be further generalised in the following way. We add
a mark κi from the mark set K to each coordinate xi from {xi }N . Marks carry additional
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information. The resulting point process on the set Rn × K is called the “marked point
process” if for every A ⊂ Rn it fulfils the condition Ng(A) ≡ N(A ×K) <∞.
The random measure Ng(A) represents the ground process of the marked process N .

When the dynamics of the process is governed only by the ground process and marks
are mutually independent and identically distributed random values with the distribution
functionsG(dκ), then the process intensity and the second ordermeasure fulfil

M1(dx × dκ) = M1g(dx)G(dκ) , (7)

M2(dx1 × dκ1 × dx2 × dκ2) = Mg2(dx1 × dx2)G(dκ1)G(dκ2) . (8)

2.3 Relationship between point processes and spots

Let us assume a surface element orbiting at radius r with constant emissivity I and orbital
frequencyΩ(r). This should represent an infinitesimally small spot. For the fluxmeasured
by an observer at inclination θo we find

f (t) = I F(t, r, θo) . (9)

The periodical modulation of the signal is determined by relations

F(t (φ), r, θo) = F(φ, r, θo) , (10)

t (φ) =
φ

Ω(r)
+ δt (φ, r, θo) , (11)

where F(φ, r, θo) is the transfer function describing the total amplification of signal emitted
from then disc surface element on the coordinates r and φ. The function δt (φ, r, θo) is the
time delay of the signal (hereafter wewill omit θo in the argument of F for simplicity). Now,
we consider a process consisting of statistically dependent events,

f (t) =
∑

j
I (t − δj , ξ j )F(t − δp j , rj ) , (12)

where: I (t, ξ ) = θ(t)g(t, ξ) is the profile of a single event; δj = tj + t0 j is time offset;
δp j = δj + tp j is the phase offset; θ(t) is the Heaviside function; and g(t, ξ) is non-
negative function of k + 1 variables t and ξ = (ξ1, . . . , ξ k), which is on the interval ⟨0,∞)
integrable in the variable t for all values of parameters ξ ∈ Ξ . The setΞ is somemeasurable
subset of Rk . For a fixed value of r , F(t, r) is a periodical function of t , with the angular
frequencyΩ(r).
Quantities ξ j , tj , rj , tp j and t0 j are random values. The vector ξ j determines the duration

and shape of each event, tj is time of ignition of the j -th event, and t0 j the corresponding
initial time-offset. Parameter tp j determines the initial phase of the periodical modulation.
Processes of this kind and their power spectra were mathematically studied by Brémaud
andMassoulié (2002); Brémaud et al. (2005).
Power spectral function of a stationary stochastic process X (t) is

S(ω) = lim
T→∞

1
2T

E
[
|FT [X (t)](ω)|2

]
, (13)
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whereFT [ ] is the incomplete Fourier transform,

FT [X (t)] =
T∫

−T

X (t) e−iωt dt . (14)

This can be evaluated by using the complete Fourier transform,

T∫

−T

X (t) e−iωt dt =
∞∫

−∞

X (t)χ⟨−T , T ⟩(t) e−iωt dt = 2
sin(Tω)

ω
⋆ F [X (t)](ω) , (15)

where χA(x) is the characteristic function of set A, which equals 1 for x ∈ A and 0 for
x ̸∈ A. Symbol ⋆ denotes the convolution operation.
By applying this transformation on the process (12) we find

FT [ f (t)](ω) =
2 sin(Tω)

ω
⋆
∑

j
F [I (t − δj , ξ j )F(t − δp j , rj )](ω) . (16)

The Fourier transform of a single event I (t − δj , ξ j )F(t − δp j , rj ) is then

F [I (t − δj , ξ j )F(t − δp j , rj )](ω) = e−iωδjF [I (t, ξ j )] ⋆ F [F(t + tp j , rj )] . (17)

Function F(t, r) is periodical in time, and so it can be expanded:

F(t, r) =
∞∑

k=−∞
ck(r) eikΩ(r)t , (18)

whereΩ(r) is the frequency of F(t, r). We find

F
[
F(tp, r)

]
(ω) =

∞∑

k=−∞
ck(r) eikΩ(r)tpδ (ω − kΩ(r)) , (19)

F [I (t, ξ )] ⋆ F
[
F(t + tp, r)

]
=

∞∑

k=−∞
ck(r) eikΩ(r)tpF [I (t, ξ )] (ω − kΩ(r)) . (20)

The above given formulation of the problem falls perfectly within the mathematical frame-
work of point processes.

2.4 The case of independent decaying spots (Poisson process)

Knowing the incomplete Fourier transform of f (t) we can now calculate its squared abso-
lute value and perform the averaging over all realizations of the process. Between−T and T
the process is influenced by all events ignited during the preceding interval ⟨−∞, T ⟩, how-
ever (because of fast decay of every single event), this can be restricted onto ⟨−(T +C), T ⟩,
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where C is a sufficiently large positive constant. Therefore, every realization of the process
f (t) on the interval ⟨−T, T ⟩ can be described by set of points in (k + 4)-dimensional space
(tj , t0 j , tp j , rj , ξ j ), where tj ∈ ⟨−(T + C), T ⟩.
Equation (12) represents a very general class of random processes. However, in all

reasonable models of spotted accretion discs the values of initial time delay and phase are
functions of initial position of each spot (r and φ), i.e.,

t0 = δt (r,φ), tp =
φ

Ω(r)
+ t0 . (21)

Fourier transform of the resulting signal can be then simplified,

F [I (t − t0 j , ξ j )F(t − t0 j + tp j , rj )](ω)

=
∞∑

k=−∞
ck(r) eikφF [I (t − δt (r,φ), ξ )] (ω − kΩ(r)) . (22)

Every realization of this process is completely determined by set of points (tj ,φj , rj , ξ j )
from some subset ofRk+3.
For the sum of K complex numbers zi it follows

∣∣∣∣∣

K∑

i=1
zi

∣∣∣∣∣

2

=

( K∑

i=1
zi

)( K∑

i=1
zi

)∗
=

( K∑

i=1
zi

)( K∑

i=1
z∗i

)

=
K∑

i=1

K∑

j=1
zi z∗j . (23)

Defining the function s(t,φ, r, ξ ;ω) as

s(t,φ, r, ξ ;ω) =
2 sin(Tω)

ω
⋆

(

e−iωt
∞∑

k=−∞
ck(r) eikφF [I (t − δt, ξ )] (ω − kΩ(r))

)

.

(24)

According to (23) we canwrite

|FT [ f (t)](ω)|2 =

∣∣∣∣∣∣

∑

j
s(tj ,φj , rj , ξ j ;ω)

∣∣∣∣∣∣

2

=
∑

j

∑

l
s(tj ,φj , rj , ξ j ;ω) s∗(tl,φl , rl , ξ l;ω) . (25)

Due to Campbell’s theorem (6),

E
[
|FT [ f (t)](ω)|2

]
= E

⎡

⎣
∑

j

∑

l
s(tj ,φj , rj , ξ j ;ω) s∗(tl ,φl , rl , ξ l;ω)

⎤

⎦

=
∫

A×A′

s(t,φ, r, ξ ;ω) s∗(t ′,φ′, r ′, ξ ′;ω)m2(t,φ, r, ξ , t ′,φ′, r ′, ξ ′) dAdA′ , (26)



Modelling an accretion disc stochastical variability 183

where m2 is density of the second-order moment measure corresponding to the random
point process of (tj ,φj , rj , ξ j ). The set A is a Cartesian product of sets,

A = ⟨−(T + C), T ⟩ × ⟨0, 2π⟩ × ⟨rmin, rmax⟩ ×Ξ . (27)

Now we can perform the limit (13). It can be shown that the result is independent on
the value of C . In order to obtain an explicit formula for the power spectral density we
have to specify the form of M2(.). In the simplest case we assume events that are mutually
independent with uniformly distributed ignition times. The process can be described as a
marked point process with a Poissonian process as the ground process. The intensity and
the second-order measure for the ground process are:

Mg1(dt) = n dt , (28)

Mg2(dtdt ′) =
[
n2 + nδ(t − t ′)

]
dtdt ′ , (29)

where n is themean rate of events. Other parameters are treated as independentmarkswith
common distributionG(dφ dr dξ ). The second-order measure of the process has a form

M2(dt dφ dr dξ dt ′ dφ′ dξ ′) =
[
n2G(dφ dr dξ)G(dφ′ dr ′ dξ ′) + nG(dφ dr dξ)

× δ(t − t ′)δ(φ − φ′)δ(r − r ′)δ(ξ − ξ ′)
]

dtdt ′ . (30)

For the power spectrumwe obtain this general formula,

S(ω) = 4π2n
∞∑

k=−∞

∞∑

l=−∞

∫

K

ck(r)c∗l (r) ei(l−k)φF [I (t − δt (r,φ), ξ )] (ω − kΩ(r))

× F∗ [I (t − δt (r,φ), ξ )] (ω − lΩ(r))G(dφ dr dξ ) . (31)

2.5 Introducing a relationship among spots (Hawkes process)

The assumption that the spots are mutually statistically independent seems to be a reas-
onable first approximation, however, the actual ignition times and spot parameters should
probably depend on the history of a real system. As an example of such non-Poissonian pro-
cess, we calculated the power-spectral density (PSD) for a model in which the spot ignition
times are distributed according to the Hawkes (1971) process.
The Hawkes process consists of two types of events. Firstly, new events are generated by

Poisson process operating with the intensity λ. Secondly, an existing event with ignition
time ta can give birth to new event at time t according to Poisson process with varying
intensityµ(t − ta). So the mean number of events found at time t is

m(t) = λ+
∑

i,ti<t
µ(ti ) = λ+

∫
µ(t)N(dt) . (32)
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For a stationary process the first moment density is constant. Averaging both sides of the
previous equation we find,

m1 =
λ

1− ν
, ν =

∞∫

−∞

µ(t) dt . (33)

Stationarity of the process implies, that the second-order measure density can depend only
on the difference of its arguments. It can be proven (Daley and Vere-Jones, 2003) that

mg2(t, t ′) = c(t − t ′) + m2
g1 + mg1δ(t − t ′) , (34)

where the c(t) is an even function. Thus, for the corresponding marked process with
independent markswe findM2(dt dφ dr dξ dt ′ dφ′ dξ ′):

M2 =
[(

λ2

(1− ν)2 + c(t − t ′)
)
G(dφ dr dξ)G(dφ′ dr ′ dξ ′)

+
λ

1− ν
G(dφ dr dξ)δ(t − t ′)δ(φ − φ′)δ(r − r ′)δ(ξ − ξ ′)

]
dtdt ′ . (35)

This second-order measure is almost identical to that of the Poissonian process (there is
only one additional term associated with the function c(t)). The resulting PSD is

S(ω) = 4π2 λ

1− ν

∞∑

k=−∞

∞∑

l=−∞

∫

K

ei(l−k)φck(r)c∗l (r)F [I (t − δt (r,φ), ξ )] (ω − kΩ(r))

× F∗ [I (t − δt (r,φ), ξ )] (ω − lΩ(r))G(dφ dr dξ ) + 4π3F [c(t)] (ω)

×
∞∑

k=−∞
ck(r)

∫

K

e−ikφF
[
I (t − δt (r,φ), ξ ′)

]
(ω − kΩ(r))G(dφ dr dξ )

×
∞∑

l=−∞

∫

K′

eilφ′c∗l (r
′)F∗

[
I (t − δt (r ′,φ′), ξ )

] (
ω − lΩ(r ′)

)
G(dφ′ dr ′ dξ ′) . (36)

The function c(t) can be calculated from the mean number of secondary events µ(t).
Assumingµ(t) = να exp(−αt)θ(t)we obtain

c(t) =
λαν(1 − ν/2)

(1− ν)2 exp(−α(1 − ν)|t|) . (37)

It is interesting to notice that the above-given formal approach can actually provide a
useful analytical formula to approximate the power spectrum. Figure 2 shows exemplary
PSD which were obtained by (i) direct computations of the light-curve and the resulting
PSD, and by (ii) the semi-analytical approachwith Poissonian andHawkes processes.
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Figure 2. Power spectra from the spot model driven by the Poisson process (top row) and the Hawkes
process (bottom row), calculated for spots orbiting and evolving on the surface of a thin accretion
disc (rin = 6, rout = 100 gravitational radii). Two values of observer’s inclination θo are shown
for comparison. The red (thin, noisy) curve is a result of direct numerical simulation. Blue (thick,
continuous) curves are the analytical approximations based on Eqs (31) and (36), respectively. We
assumed probability density function ρ(τ ) ∝ 1/τ . The magenta (vertical) lines denote the Keplerian
orbital frequency Ω(r) at the inner and the outer edges of the disc. One can see that the Hawkes’
process tends to enhance the low-frequency part of PSD and shift the break frequency towards lower
values, belowΩ(rout).

3 CONCLUSIONS

We have studied the properties of power spectral density within the model of accretion disc
variability driven by orbiting spots. The origin and evolution of spots were described in
terms of Poissonian and Hawkes’ processes. The latter belongs to a category of avalanche
models. We developed an analytical approximation of PSD and compared it with our
numerical results from light-curve simulations. In this waywewere able to demonstrate the
precision of formulae (31) and (36). The analytical approximation evaluates very fast and
provides the main trend of the PSD shape while avoiding the noisy form of the numerically
simulated spectra. Our approach allows us to investigate the resulting PSD as a function of
the assumed type of process, which describes creation of parent spots and the subsequent
cascades of daughter spots. In particular, we can investigate the predicted PSD slope at
different frequency ranges and we can locate the break frequency depending on the model
parameters.
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The resulting PSD can be approximated by a broken power-law. For every stationary
process the quantities S(0) and

∫∞
0 S(ω) dω are finite. Therefore, the function S(ω)flattens

(S(ω) ≈ ω0) near ω = 0 and it must decrease faster than 1/ω at high frequencies. Power-
spectra generated by the spot model behave in this way. The low-frequency limit is a
constant, whereas the-high frequency behaviour depends mainly on the shape of the spot
emission profile, I (t, ξ j ). In our calculations the emissivity was a decaying exponential
and the slope was equal to−2 at high frequencies. The most interesting part of the spectra
in between those two limits is influenced by both the emissivity profile and the underlying
process.
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Stationary observers on the symmetry axis
of rotating supermassive black holes

Martin Petrásek and Stanislav Hledík
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Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
Generalizing the results obtained by Semerák, O. (1993), Stationary Frames in the
Kerr Field, Gen. Relativity Gravitation, 10(1045), an interesting difference between
the Kerr and Kerr–de Sitter geometries has been found. In the case of freely falling
stationary observers located on the axis of symmetry, rotating supermassive black
holes (not necessarily fast rotating) behave differently from the same bodies for
which the present value of cosmological constant is not included. An interesting
family of “freely falling stationary observers” is described.

1 KERR–DESITTERGEOMETRYANDSTATIONARYFRAMES

The line element of the Kerr–de Sitter geometry reads

ds2 =−
∆r

(1 + α)2ρ2 (dt − a sin2 θ dφ)2

+
∆θ sin2 θ

(1 + α)2ρ2 [a dt − (r2 + a2) dφ]2 +
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 , (1)

where

∆r ≡ (r2 + a2)

(
1−

αr2

a2

)
− 2Mr , ∆θ ≡ 1 + α cos2 θ ,

ρ2 ≡ r2 + a2 cos2 θ , α ≡ 1
3Λa

2 .

(2)

The Kerr geometry is a stationary axially symmetric vacuum solution to the Einstein’s field
equation (Misner et al., 1973; Bardeen et al., 1972). The Kerr–de Sitter geometry is a more
general solution to the Einstein’s field equations of the space in the sense that it includes
a non-zero cosmological constant (Hledík, 2002; Stuchlík, 2002). From the Kerr–de Sitter
metric expressed in Boyer–Lindquist coordinates (1) and (2) one can derive all important
properties which leads to the clear description of stationary frames, particularly, the tetrads
and 4-acceleration derived directly from metric coefficients (Stuchlík and Hledík, 2000;
Stuchlík and Slaný, 2004; Kovář and Stuchlík, 2004, 2006, 2007).
We shall study only those cases for which the cosmological constant has a small positive

value.
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1.1 Stationary frames

Stationary observers are formed by the class of observers which move along worldline of
constant r and θ with a uniform angular velocity ω. Only those observers can perceive an
unchanging geometry of the space-time in their vicinity. Those observers are considered
to be “stationary” with respect to the local geometry (Misner et al., 1973; Bardeen et al.,
1972). The simplest class of stationary frames are those with zero angular velocity ω = 0.
These observers are called static observers, because they appear static for distant observers.
However, one can distinguish four specific classes of stationary observers, namely, Static

Observers (ω = 0), Zero Angular Momentum Observers (ZAMO, ω = ωk), Carter’s
Observers (ωCO) and Freely Orbiting Observers (ωFOO±). There can also be found another
classes of stationary observers as follows.

2 FREELYFALLINGSTATIONARYOBSERVERS

A very interesting class can be found using the definition of 4-acceleration. We looked for
freely falling stationary observers – those stationary observers whose 4-acceleration is zero
which can be found in the equatorial plane or on the axis of symmetry.
Wecanfindsimilar conditionsas for theKerr case for theexistenceof stationaryobservers

in the equatorial plane, which is (due to small value of cosmological constant) almost
indistinguishable from the pure Kerr case. But on the symmetry axis a new solution, not
present in the Kerr geometry, emerges. The condition for freely falling stationary observer
on the symmetry axis in case of the Kerr geometry reads r = ±a (hence, under the outer
horizon), in the case of Kerr–de Sitter geometry there is one pair of solutions under the
outer horizon as in the Kerr geometry, and another pair of solutions is located above the
outer horizon. The condition arises from aµ = 0, and because at = aθ = aφ = 0
implicitly, it reads (we put c = G = M = 1 and denote y = 1

3Λ)

ar (θ = {π, 0}) =
r2 − a2

(r2 + a2)2 − ry .

We can cast this problem in the form

y(r; a) =
r2 − a2

r(r2 + a2)2 , (3)

which results in the plots in Fig. 1.

3 CONCLUSIONS

The physical meaning of the existence of another solution for stationary observers on the
symmetry axis of the Kerr–de Sitter black hole arises from a simple concept. The observer
has to be freely falling, consequently, no force can influence its fall onto the horizon. This
shows that in case of Kerr geometry with even small repulsive cosmological constant, there
exists a point on the symmetry axis where vector sum of forces vanishes (Stuchlík and
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Figure 1. Plots of Eq. (3) for Freely Falling StationaryObservers on the axis of symmetry of the Kerr–
–de Sitter black hole for various values of of the black hole rotational parameter. The values a2 = 0.2,
a2 = 0.5, a2 = 0.9999, a2 = 1.2 are used (in common reading order).

Kovář, 2006). Unfortunately this point is in cases of real values of cosmological constant
too far from the outer horizon of the black hole, but not beyond the cosmological horizon.
Only in the cases of very massive black holes or in cases of non-realistic, very large value
of the cosmological constant, this point is shifted near the black hole as presented in Fig. 1.
Different behaviour of forces for Kerr and Kerr–de Sitter black holes can also influence
processes on the axis of symmetry (or near it) of very massive black holes which could lead
to observable effects, for example in observation of collimation of relativistic jets (Slaný and
Stuchlík, 2005; Stuchlík, 2005).
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On privileged stationary observers
in the Kerr–de Sitter geometry
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ABSTRACT
We focus onmain differencesbetween stationary frames in theKerrgeometry and the
Kerr–de Sitter geometry. This comparison leads to new solutions on the symmetry
axis and in the equatorial plane. This solution can clearly be described and physically
interpreted. The most interesting is the case of freely falling stationary observers on
the symmetry axis. We found a solution which can show that rotating supermassive
black holes (not necessary fast rotating) could differ in a certain way from the same
bodies for which the present value of the cosmological constant is not included.
We show that an interesting family of “freely falling stationary observers” can be
found. We found stationary observers in the equatorial plane, which can become
(at a particular radius) counter rotating if they previously co rotated and vice versa.
We also describe and compare stationary observers in the equatorial plane between
themselves, showing how depends their angular velocityω at the radius with chosen
cosmological parameter y = Λ/3 and rotational parameter a.

1 KERR–DESITTERGEOMETRY

The line element of the Kerr–de Sitter geometry reads

ds2 =−
∆r

(1 + α)2ρ2 (dt − a sin2 θ dφ)2

+
∆θ sin2 θ

(1 + α)2ρ2 [a dt − (r2 + a2) dφ]2 +
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 , (1)

where

∆r ≡ (r2 + a2)

(
1−

αr2

a2

)
− 2Mr , ∆θ ≡ 1 + α cos2 θ ,

ρ2 ≡ r2 + a2 cos2 θ , α ≡ 1
3Λa

2 .

(2)

The Kerr geometry is a stationary axially symmetric vacuum solution to the Einstein’s field
equation (Misner et al., 1973). TheKerr–deSitter geometry is amoregeneral solution to the

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Einstein’s field equations of the space in the sense that it includes a non-zero cosmological
constant (Hledík, 2002; Stuchlík, 2002). From Kerr–de Sitter metric written in Boyer–
–Lindquist coordinates (1), (2) one can derive important properties which lead to clear
description of stationary frames, particularly tetrads and 4-acceleration derived directly
frommetric coefficients (Stuchlík andHledík, 2000).
In our case, we will study only those cases for which the cosmological constant has an

arbitrary positive value.

1.1 Horizons

The event horizons are given by the pseudo-singularities of the line element (1) by the
condition

∆r = (r2 + a2)

(
1−

αr2

a2

)
− 2Mr = 0 .

Introducing cosmological parameter y = 1
3Λ, the loci of the event horizons are determined

by the relation (Stuchlík and Slaný, 2004)

a2 = a2
h(r; y) ≡

r2 − 2r − yr4

yr2 − 1
. (3)

The 3D-plot of dependence between r, y, a described by Eq. (3) is shown in Fig. 1. This
plot shows how theKerr geometry ismodified by the presence of the cosmological constant.
ForΛ = 0, there are apparently two inner horizons and no cosmological horizon. For any
otherΛ ̸= 0 there is also a cosmological horizon which approaches to the inner horizons if
cosmological parameter y increases.

2 STATIONARYFRAMES

Stationary observers move along world line of constant r and θ with uniform angular velo-
city ω. Only those observers could see an unchanging geometry of the space-time in their
vicinity, being considered to be “stationary” in the reference to their local geometry (Misner
et al., 1973). Themost simple class of stationary frames are thosewith zero angular velocity
ω = 0. These observers are called static observers, because they appear static for distant
observers.
There are four specific classes of stationary observers: Static Observers (ω = 0), Zero

Angular Momentum Observers (ω = ωK), Carter’s Observers (ωCO) and Freely Orbiting
Observers (ωFOO±), however, there can also be found other classes of stationary observers.

2.1 Zero AngularMomentumObservers (Locally Non-Rotating Frames)

Placing a rigid, circular mirror (“ring mirror”) at fixed r around a black hole, and letting
observer at r with angular velocity Ω emit a flash of light, some of the photons will get
caught by the mirror and will skim along its surface, circumnavigating the black hole in the
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Figure 1.Horizons of Kerr–de Sitter geometry, dependence on r , y, a.
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Figure 2.Resulting plot for Freely falling stationary observers on the symmetry axis of Kerr–de Sitter
black hole for different values of angular velocity of the black hole. The solid red linemarks the loci of
freely falling stationary observers (a2 = 0.1), the red dashed line marks the associated horizon. The
solid green line marks the loci of freely falling stationary observers a2 = 0.999, the green dashed line
marks the associated horizon. The solid blue line marks the loci of freely falling stationary observers
a2 = 1.2 and blue dashed linemarks the associated horizon.
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positive-φ direction. Others will get caught andwill skim along in the negative-φ direction.
Then, only the observerwithKeplerian angular velocityωK (the co-moving angular velocity)
will receive emitted photons in the samemoment. Only such an observer regard the+φ and
−φ directions are equivalent in terms of local geometry:

ω = ωK = −
gtφ
gφφ

=
2a
[
(a2 + r2)∆θ −∆r

]

(a2 + r2)∆θ − a2 sin2 θ∆r
.

2.2 Carter Observers (Carter Frames)

Carter Observers are specific class of observers connectedwith PNC (principal null congru-
ence) photons. We can find such a class of observers for which 3-velocity will appear only
radial (in terms of local geometry). These observers are Carter observers and are connected
with their Carter local frames.
Angular velocityωCO for Kerr andKerr–de Sitter geometry is same:

ωCO =
a

a2 + r2 .

2.3 Static Observers (Static Frames)

Another privileged local frame system is connected to “static observers.” These observers
occupy constant space coordinates. In other words, their are stationary and also satisfy the
condition

ωSO = 0 .

2.4 Freely Falling Stationary Observers

The most interesting class we can find using the definition of 4-acceleration. We looked for
freely falling stationary observers – those stationary observers whose 4-acceleration is zero,
we found them on the equatorial plane or on the symmetry axis.
We can find as similar conditions as apply for the Kerr case for existence of stationary

observers on the equatorial plane, which is (due to small value of cosmological constant)
almost unrecoverable from the pure Kerr case. But on the symmetry axis a new solution
emerges. This solution is not present in Kerr geometry at all. As the condition for freely
falling stationary observer on the symmetry axis reads r = ±a (hence, under the outer
horizon), in case of the Kerr–de Sitter geometry there is one pair of solutions under the
outer horizon as in the Kerr geometry, and another pair of solutions is above the outer
horizon. The condition arises from aµ = 0, and because at = aθ = aφ = 0 implicitly, it
reads (we put c = G = M = 1 and denote y = 1

3Λ)

ar (θ ∈ {π, 0}) =
r2 − a2

(a2 + r2)2 − ry .
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Figure 3. KdS black hole in the equatorial plane θ = π/2, a = 0.1: where y = 0 left and y = 0.02
right.
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Figure 4. The same but zoomed region of KdS black hole in the equatorial plane θ = π/2, a = 0.1:
where y = 0 left and y = 0.02 right.
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Figure 5. KdS black hole in the equatorial plane θ = π/2, a = 0.5: where y = 0 left and y = 0.02
right.
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Figure 6. The same but zoomed region of KdS black hole in the equatorial plane θ = π/2, a = 0.5:
where y = 0 left and y = 0.02 right.
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Figure 7.Near extremalKdS black hole in the equatorial plane θ = π/2, a = 0.999: where y = 0 left
and y = 0.02 right.
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Figure 8. The same but zoomed region of the near extremal KdS black hole in the equatorial plane
θ = π/2 a = 0.999: where y = 0 left and y = 0.02 right.
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Figure 9. KdS naked singularity in the equatorial plane θ = π/2, a = 1.2: where y = 0 left and
y = 0.02 right.
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Figure 10. The same but zoomed region of KdS naked singularity in the equatorial plane θ = π/2,
a = 1.2: where y = 0 left and y = 0.02 right.
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We can cast this problem in the form

y(r; a) =
r2 − a2

r(a2 + r2)2 ,

which results in the plot (see Fig. 2).

3 COMPARISONOF STATIONARYFRAMES

Comparison of stationary frames has been done for Kerr geometry and Kerr–de Sitter geo-
metry and between angular velocities ωK of each stationary frames in dependence on their
radii. Due to simplicity, we compared equatorial angular velocities andwe have chosen only
few typical parameters of rotational parameter a and cosmological parameter y = Λ/3.
Resulting comparison is displayed in Figs 3–10. In all figures, red line is connected to the
ZAMO’s, green line describes Carter observers, blue line co-rotating freely orbiting observ-
ers (FOO+), and purple line shows counter-rotating freely orbiting observers (FOO−).

4 CONCLUSIONS

We can conclude that two key points exist in comparison of stationary frames between Kerr
and Kerr–de Sitter geometry. The first one lies in existence of freely falling observers which
simultaneously satisfy the condition of stationarity. The second one is a coalescence of
co-rotating and counter-rotating Freely falling stationary observers in the equatorial plane
for all positive values of cosmological parameter y and all values of rotating parameter a.
In comparison with work of Stuchlík and Kovář (2006) it appears that positions of these
stationary frames correspond to the so-called static radius located at r = y−1/3.
Unfortunately, for realistic values of present cosmological constant these solutions are

too far from outer horizon of the black hole, but still not behind the cosmological horizon.
Only in cases of very massive black holes or in cases of very high value of cosmological
constant we should “see” this point as it is presented on the (Fig. 2) near the black hole.
Different behaviour of forces betweenKerr andKerr–de Sitter black holes can influence also
processes on (or near to) the symmetry axis of very massive black holes which could lead to
observable effects, for example in observation of collimation of relativistic jets (Slaný and
Stuchlík, 2005).
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ABSTRACT
We have developed the set of model atmosphere equations, corresponding to an ac-
cretion disk around a supermassive black hole irradiated by hard X-ray lamp with
power-law spectrum. Model equations allow for multiple Compton scattering of ra-
diation on free electrons, and for large relative photon-electron energy exchange. We
present spectra of specific intensities integratedover the disk radii. Outgoing intens-
ity spectra show soft X-ray excess below 1 keV, and distinct Kα and Kβ fluorescent
lines of low ionized iron. We demonstrate the existence of the Compton shoulder on
the red-wing side of Kα line. Our models exhibit very strong and steep temperature
increase in the outermost layer of irradiated disk atmosphereswhich cause the effect
of limb-brightening in reflectedX-rays.

Keywords: Accretion disks – galaxies: active – radiative transfer – scattering – line:
profiles

1 INTRODUCTION

X-ray spectra of many active galactic nuclei (AGN) exhibit effects of reprocessing of an
external radiation originating either from the point like lamp or an accretion disk corona.
We present a quite consistent and numerically exact modeling of an accretion disk atmo-
sphere simultaneously with reprocessing of the external radiation field. The calculations of
a vertical structure and an outgoing spectra are done for 8 neighboring rings, and than are
integrated over disk radii.
Our equations include effects of multiple Compton scattering of radiation on free elec-

trons in relativistic thermal motion, and rich set of bound-free and free-free monochro-
matic opacities. We allow for a large relative photon-electron energy exchange at the time
of Compton scattering, and therefore we are able to reconstruct Compton scattering of
photons with energy approaching or even exceeding the electron rest mass.
Wepresent numerical resultswhich are based on rigorousmethods of the theory of stellar

atmospheres. All existing opacity sources, both true absorption and non-thermal Compton
down-scattering, are treated equivalently in the singlemodel atmosphere code.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Our opacities are supplemented by formulae describing emission fluorescent Kα and Kβ

lines of low ionized of iron. External hardX-rays interactmost eagerlywith electrons bound
in the deepest K-shell of iron and cause ionization of iron atoms leaving a hole in the K-
shell. An electron from the higher shell immediately fills the hole andwith some probability,
fluorescent yield, cause emission of the photon in the Kα line (electron from L-shell) or Kβ

line (electron from M-shell). Energy of Auger electrons and other radiation-less processes
are ignored in our equations.
Full set of model stellar atmosphere equations with account of Compton scattering, but

without fluorescent lines was already presented in Madej and Różańska (2004). Now
we added terms which correspond to the fluorescent Kα and Kβ lines of iron, adjusted to
accretion disk geometry and assumed that the external irradiation from a point X-ray lamp
has the power-law spectral distribution.

2 THESTRUCTUREOFANACCRETIONDISK

We divide our disk onto 8 concentric rings situated at different distance from the super-
massive black hole atmassM = 107 M⊙. We assume constantmoderate value of accretion
rate in each ring, equal ṁ = 0.03 in units of Eddington accretion rate with accreting
efficiency η = 1/12 suitable for Schwarzschild black hole.
In the first step, at each radius, we have computed vertical structure of non-illuminated

disk using the method described in Różańska et al. (1999). We integrated equations of the
disk vertical structure (equation of the hydrostatic equilibrium, equation of state, equation
of vertical energy generation, transfer in diffusion approximation) assuming that viscosity
is proportional to the total pressure, i.e., Ptot = Prad + Pgas. As the result, for each ring,
we derived the effective temperature, and vertical gravity which affects the atmosphere,
and we adopted those values for further advanced radiative transfer computations. All disk
parameters used in further computations are summarized in Table 1.
Furthermore, we assumed that the disk is irradiated by an external point like X-ray lamp

of the power-law spectrum Iext ∼ ν−α , with spectral index α = 0.9. The lampwas located

Table 1. Parameters of eight neighboring rings (cgs units).

RingNo. r/rSchw Teff log g

1 3.478× 100 1.018× 105 5.5300
2 4.134× 100 1.073× 105 5.5740
3 5.204× 100 1.020× 105 5.4700
4 6.552× 100 9.238× 104 5.3010
5 8.248× 100 8.181× 104 5.1010
6 1.038× 101 7.152× 104 5.1820
7 1.385× 101 5.976× 104 5.594
8 1.847× 101 4.950× 104 5.596
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above the first innermost ring at the height hlamp = 5 rSchw, and the X-ray luminosity
equal LX = 1043 erg s−1. We are comparing the results of power-law irradiation to the case
whenX-rays emitted by the same lampare in the formof black-bodywith temperature108 K
and the same luminosity.

3 RADIATIVETRANSFEREQUATION

The radiative transfer equation for the specific intensity, Iν , solved in our research is as
follows:

µ
dIν
dτν

= Iν −
jν

κν + σν
= Iν − Sν , (1)

where Sν is the frequency dependent source function, dτν = −(κν + σν)ρ dz is a mono-
chromatic optical depth, ρ is density, and z is the geometrical depth scale in plane-parallel
geometry. Variables jν, κν and σν denote frequency dependent emission, absorption and
scattering coefficients for 1 gram, respectively. In this paper we use the LTE absorption κν
(local thermodynamic equilibrium), whereas coefficients of emission jν and scattering σν
include nonLTE terms.
Emission coefficient jν is the sum of three terms, jν = j thν + j sc

ν + jflν , which represent
thermal emission, Compton scattering emission and the emission in iron fluorescent lines,
respectively. Full description of emission coefficient taking into account intensity of the
external irradiationUν is given by

jν = κνBν + σν Jν − σν Jν
∫ ∞

0
Φ1(ν, ν

′) dν′

+ σν

∫ ∞

0
(Jν ′ +Uν ′)Φ2(ν, ν

′) dν′ + Efl
αϕ

α
ν + Efl

βϕ
β
ν . (2)

Thermal emission is proportional to the Planck function Bν . The coefficient of true
absorption κν , is the sum of bound-free absorption from numerous levels of hydrogen,
helium and iron atoms and ions, plus free-free absorption from all ions. We also included
absorption of 4 lowest lines of fundamental series of helium-like iron and of similar 4 lowest
lines of hydrogen like iron, all formed in LTE by assumption. We ignored here the presence
of other heavy elements and their fluorescence lines.
Compton scattering cross sections were computed following the paper by Guilbert

(1981). Functions Φ1 and Φ2 are properly weighted angle-averaged Compton redistri-
bution functions for photons both incoming or outgoing of frequency ν after scattering in
thermal electron gas (Madej andRóżańska, 2004).
Fluorescence of low-ionized iron gas was approximated by two emission lines, Kα line

(transitions from L to K shells) and Kβ line (transitions from M to K shells), Efl
α and Efl

β
denote the integrated intensity of Kα and Kβ emission lines, respectively. Frequency de-
pendent variables ϕα

ν and ϕβ
ν define profiles of fluorescent lines, both normalized to unity.

Iron Kα fluorescent line is a doublet line and such a structure was reproduced by our code.
TheKβ linewas approximated by a singlet line. Profiles of all three lines aremodelled as the
convolution of natural andDoppler profiles.
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Together with the radiative transfer equation we solve hydrostatic and radiative equilib-
riumequations, and take into account standard equation of state for ideal gas. Details of the
transfer equation and the method of solution by partial ionization are presented in Madej
andRóżańska (2004).

4 RESULTS

Our computer code is very powerful and allowed us to compute the structure of disk atmo-
spheres over very large range of electron scattering optical depth starting from τes = 10−8

up to τes = 104. Wewere able to reproduce both the overall continuum spectrum fromhard
X-rays of 400 keV down to deep infrared of 0.4 eV. Our results include also details of some
selected spectral line profiles, all of themwere computed simultaneously.
We present our spectra as energy dependent outgoing specific intensities Iν , which are

suitable for disk geometry. We reject presentation of monochromatic fluxes since they are
only relevant to spherical geometry.
Figure 1 presents temperature structure of several rings. In both cases of power-low or

black-body external irradiation we note the existence of very hot outermost atmospheric
layer (Nayakshin et al., 2000; Ballantyne et al., 2001; Różańska et al., 2002). The ef-
fective temperature of all rings, resulted from the accretion rate and non-zero viscosity, is
slightly less or equal to 105 K. However, the temperature of the outermost hot skin ap-
proaches 3× 106 K. For deeper layers external irradiation practically does not cause any
changes of temperature.
Figures 2–4 present outgoing intensity spectra of the whole accretion disk at various

aspect angles. The spectra were obtained by integration over eight rings located at different
radii, see Table 1. Particular lines in Figs 2–4 correspond to different angles between the
direction to the observer and the normal to the disk. Exact values of those eight angles and
their cosines are given in Table 2. In further discussion we turn attention of the reader to
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Figure 1. Temperature structure of an atmosphere for several rings. Left panel shows results for
power-law irradiation (dotted line – first ring, short dashed – fourth ring, long dashed –fifth ring, and
solid line – eight ring). Right panel shows irradiation of the black body shape (short dashed line – first
ring, solid line – second ring).
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Figure 2.Outgoing intensity from the disk integrated over radii for eight different aspect angles. The
product of E IE versus energy is presented in the right panel.
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Figure 3. Outgoing intensity spectra from the disk integrated over radii for eight different aspect
angles in the energy range around 6.4 keV. Compton shoulder is best seen for the vertical direc-
tion, i = 11.4◦.
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Figure 4. The profile of the fluorescent Kβ line of iron (left panel), which is seen here without any
apparent Compton shoulder. On the right panel we computed profiles of the Kα line for the case
where the external irradiation has black body spectral distribution.



206 A. Różańska and J.Madej

Table 2.Description of lines in Figs 2–4.

Type of a line cos i i

solid black 0.980145 11.4◦
short-long dashed 0.8983333 26.1◦
long dashed dotted 0.7627662 40.3◦
short dashed dotted 0.5917173 53.7◦
dotted 0.4082827 65.9◦
short dashed 0.2372338 76.3◦
long dashed 0.1016668 84.2◦
solid red 0.0198551 88.9◦

the extreme angles: solid black line in Figs 2–4 represents almost vertical direction (face-on
aspect), whereas the solid red line represents almost horizontal direction (edge-on aspect).
Figure 2 shows the overall spectra of our sample disk given either in specific intensity

scale Iν , or as the product of E IE. In both panels we observe the deficit of hard X-rays,
whichhasbeenabsorbed in a disk and suffered continuumCompton scattering. This caused
the energy of hard X-rays has been redistributed to lower energies.
External irradiation generates two iron fluorescent lines: Kα (6.4 keV) and Kβ

(7.057 keV). Moreover, there exists a spectral bump below 1. keV, which is similar to
the well know soft X-ray excess.
Both panels in Fig. 2 show the effect, that the intensity of radiation emerging almost

horizontally to the disk (i = 88.9◦) is greater than the intensity emerging almost vertic-
ally (i = 11.4◦). This is valid in the whole X-ray energy band, from 0.1 keV up to 100 keV,
and in the infrared. Such en effect of light-brightening was also presented by Goosmann
et al. (2007), and should be attributed to the inversion of temperature in the irradiated disk
atmospheres, see Fig. 1.
Figure 3 presents integrated intensity spectra just around the fluorescent Kα line of iron.

We turn attention to theCompton shoulderwhich ismost easily seen in the vertical direction
(lower solid black line). Right panel in Fig. 3 is the enlargement of the left panel in the same
figure, to emphasize properties of our synthetic Compton shoulder seen at different aspect
angles.
Figure 4, left panel, demonstrates the profile of the fluorescent Kβ line of iron, approx-

imated here by a singlet line. Unfortunately, Compton shoulder of that line is not seen in
our models. The most prominent Compton shoulder is visible in our results obtained for a
black-body external irradiation, Fig. 4 right panel.

5 CONCLUSIONS

In this paper we presented computations of the radiation spectrum emerging from a sample
accretion disk around the central supermassive black hole in an AGN. The disk was irradi-
ated by anX-ray lamp located above the equatorial plane.
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Reprocessing of external hard X-rays of power-law spectrum caused generation of a very
hot external layer in the disk atmosphere where temperature T rises to millionsK, whereas
the structure of deeper atmospheric layers is not affected at all.
Outgoing intensity spectra of the disk exhibit the following important observable prop-

erties. First, external irradiation generates two fluorescent lines of iron, Kα and Kβ. The
former line appeared as the doublet and is located at the energy 6.4 keV. Compton scatter-
ing of line radiation on colder electron gas (below the hot disc skin) generates the Compton
shoulder in the red side of the emission doublet Kα. The Compton shoulder modelled here
differs from the Compton shoulder presented by Matt (2002), where the second is resulted
duringX-ray reflection from a constant density wall.
Second, Compton scattering of the external X-rays causes build-up of the soft X-ray

excess below 1 keV. This excess is higher for the disk observed face-on, but still do low to
explain observations.
Third, our results clearly demonstrate the effect of limb brightening of the disk radiation

mostly in X-ray domain. This result can put new constrains on the geometry of the X-ray
source and the reflecting disk atmosphere. We address this issue for further consideration.
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Spectral line profile of radiating ring orbiting
a brany Kerr black hole

Jan Schee and Zdeněk Stuchlík
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
In the framework of the brany models, rotating black holes are described by the Kerr
metric with a tidal charge representing the influence of the non-local gravitational
(tidal) effects of the bulk space Weyl tensor onto the black hole spacetime. Here
we study the influence of the tidal charge onto profiled spectral lines generated by
radiating tori orbiting in vicinity of a rotating black hole. We show thatwith lowering
the negative tidal charge of the black hole, the profiled line becomes to be flatter and
wider.

1 INTRODUCTION

String theory and M-theory describing gravity as a truly higher-dimensional interaction
becoming effectively 4D at low-enough energies inspired studies of the braneworld mod-
els, where the observable universe is a 3-brane (domain wall) to which the standard
model (non-gravitational) matter fields are confined, while gravity field enters the ex-
tra spatial dimensions the size of which may be much larger than the Planck length
scale lP ∼ 10−33 cm (Arkani-Hamed et al., 1998). Gravity can be localized near the brane at
low energies even with a non-compact, infinite size extra dimension with the warped space-
time satisfying the 5DEinstein equationswith negative cosmological constant (Randall and
Sundrum, 1999).
The exact stationary and axisymmetric solutions describing rotating black holes localized

in the Randall–Sundrumbraneworld were derived in Aliev andGümrükçüoǧlu (2005). The
solutions are determined by metric tensor of the Kerr–Newman form with a tidal charge
describing the 5D correction term generated by the 5D Weyl tensor stresses. The tidal
charge has an “electric” character and arises due to the 5D gravitational coupling between
the brane and the bulk, reflected on the brane through the “electric” part of the bulk Weyl
tensor (Aliev and Gümrükçüoǧlu, 2005), in analogy with the spherically symmetric black-
hole case (Dadhich et al., 2000). When the electromagnetic field is introduced, the non-
vacuumsolutions of the effectiveEinstein equations on the brane aremuchmore complex in
comparison with the standard Kerr–Newman solutions (Aliev andGümrükçüoǧlu, 2005).

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Here we consider optical phenomena in the Kerr–Newman type of solutions describing
the brany rotating (Kerr) black holes with no electric charge, since in astrophysically relev-
ant situations the electric charge of the black hole must be exactly zero, or very small (Mis-
ner et al., 1973). Then the results obtained in analysing the behaviour of test particles
and photons or test fields around the Kerr–Newman black holes could be used assuming
both positive and negative values of the brany tidal parameter b (used instead of charge
parameter Q2).
The information on the properties of strong gravitational fields in vicinity of compact ob-

jects, namely of black holes, is encoded into optical phenomena of different kind that enable
us to make estimates of the black hole parameters, including its tidal charge, when predic-
tions of the theoretical models are confronted with the observed data. From this point of
view, the spectral profiles of accretion discs around the black holes in galactic binaries, e.g.,
inmicroquasars, aremost promising (McClintock et al., 2007), alongwith profiled spectral
lines in the X-ray flux (Bao and Stuchlík, 1992; Stuchlík and Bao, 1992; Laor, 1991; Matt
et al., 1993; Zakharov, 2003; Zakharov and Repin, 2006). Important information could
also be obtained from the quasiperiodic oscillations observed in the X-ray flux of some low-
mass black hole binaries of Galactic origin (Remillard, 2005; Remillard and McClintock,
2006), some expected intermediate black hole sources (Strohmayer et al., 2007), or those
observed in Galactic nuclei (Aschenbach, 2004, 2007). The most promising orbital reson-
ance model then enables relative exact measurement of the black hole parameters (Török
et al., 2005; Török, 2005a,b) that should be confronted with the predictions of the optical
modelling (McClintock et al., 2007). In the case of our Galaxy centre black hole SgrA∗, we
could be able to measure detailed optical phenomena, comparing the other sources, since it
is the nearest supermassive black holewithmass estimated to be ∼ 4×106 M⊙ (Ghez et al.,
2005), enabling to measure the “silhouette” of the black hole and other subtle GR phenom-
ena (Cunninghamand Bardeen, 1973; Schee and Stuchlík, 2007; Schee et al., 2005).
Here we present an introductory study on the role of the brany tidal charge parameter in

the optical phenomena related to profiled spectral lines generated by radiating tori in the
brany Kerr black-hole backgrounds.

2 THEGEOMETRYOFBRANYKERRSPACETIMEANDEQUATIONSOF
MOTIONFORTESTPARTICLESANDPHOTONS

The solution of vacuumeffectiveEinstein equations on the brane has been for rotating black
holes given in Aliev and Gümrükçüoǧlu (2005). The properties of the circular motion in
brany Kerr spacetimes were discussed in Aliev and Gümrükçüoǧlu (2005); Stuchlík and
Kotrlová (2007).

2.1 Geometry

Using the standard Boyer–Linquist coordinates (t, r, θ,ϕ) and geometrical units (c =
G = 1), we can write the line element of Kerr black-hole metric on the 3D-brane in the
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form (Aliev andGümrükçüoǧlu, 2005)

ds2 = −
(

1−
2Mr − b

Σ

)
dt2 +

Σ

∆
dr2 +Σ dθ2 +

A
Σ

dϕ2 − 2
2Mr − b
Σ

sin2 θ dtdϕ , (1)

where

Σ = r2 + a2 cos2 θ ,

∆ = r2 − 2Mr + a2 + b ,

A = (r2 + a2)2 − a2∆ sin2 θ .

M is the mass parameter, a = J/M is the specific angular momentum, the brany para-
meter b is called tidal charge and represents the imprint of non-local (tidal) gravitational
effects from the bulk space (Dadhich et al., 2000). The form of the metric (1) is the same as
in the case of the Kerr–Newmanmetric, with the tidal charge being replaced by the squared
electric charge, Q2. The stress tensor on the brane Eµν takes the form

E t
t = −E ϕ

ϕ = −
b
Σ3 [Σ − 2(r2 + a2)] ,

E r
r = −E θ

θ = −
b
Σ2 ,

E t
ϕ = −(r2 + a2) sin2 θE ϕ

t = −
2ba
Σ3 (r2 + a2) sin2 θ ,

that is fully analogical (b→ Q2) to the components of electromagnetic energy-momentum
tensor for Kerr–Newman spacetimes in Einstein’s general relativity (Aliev and Güm-
rükçüoǧlu, 2005). For simplicity, we putM = 1 in the following, using thus dimensionless
coordinates and parameters.

2.2 Carter’s equations

In order to study the optical effects in brany Kerr spacetimes we have to solve equations of
motionof photons. It iswell known that photonsmove alongnull geodesics of the spacetime
under consideration.
Using the Hamilton–Jacobimethod, Carter found separated first order differential equa-

tions of motion (Carter, 1968), which in the case of brany Kerr spacetime read

Σ
dr
dw

= ±
√
R(r) ,

Σ
dθ
dw

= ±
√
W (θ) ,

Σ
dϕ
dw

= −
PW

sin2 θ
+
aPR
∆

,

Σ
dt
dw

= −aPW +
(r2 + a2)PR

∆
,
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where

R(r) = P2
R −∆(m2r2 + K ) ,

W (θ) = (K − a2m2 cos2 θ)−
(
PW

sin θ

)2
,

PR(r) = E(r2 + a2)− aΦ ,

PW (θ) = aE sin2 θ −Φ .

E is the energy, Φ is the axial angular momentum and K is the constant of motion related
to total angular momentum that is usually replaced by the constant Q = K − (aE − Φ)2,
since for motion in the equatorial plane (θ = π/2) there is Q = 0. For motion of photons,
we put m = 0. Generally, these equations can be integrated and expressed in terms of
elliptic integrals (Schee and Stuchlík, 2007). The analysis of photon motion in Kerr–
Newman spacetime (Stuchlík, 1981) can be directly applied to the case of photon motion in
brany Kerr spacetime. It is done in Schee and Stuchlík (2007); we shall use the results in
the following.

3 ROTATINGRING IN THEEQUATORIALPLANEOFBRANYKERRBLACK
HOLE

Following the Carter equations for the circular motion at a given radius r in the equatorial
plane (θ = π/2,dθ/dw = 0),wefind, solving simultaneously relations R(r) = 0,dR/dr =
0, the energy and angularmomentum of the particle to be given by

E± =
r2 − 2r + b ± a

√
r − b

Z±
,

Φ± =
(r2 + a2)

√
r − b ∓ a(2r − b)
Z±

,

where

Z± = r
√
r2 − 3r + 2b ± 2a

√
r − b .

The upper (lower) sign corresponds to the corotating (counter-rotating) orbits. The crucial
limiting radii for existence of circular orbits correspond to the photon circular orbits given
by the real positive roots of the equations

Z± = 0 , r2 − 3r + 2b ± 2a
√
r − b = 0 ,

and to themarginally stable orbits (d2R/dr2 = 0) given byAliev andGümrükçüoǧlu (2005)
in the form (see Fig. 1)

r(6r − r2 − 9b + 3a2) + 4b(b− a2)∓ 8a(r − b)3/2 = 0 .
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Figure 1. The plot of d2R/dr2 for four representative values of tidal charge b = 0,−1,−2,−3,−4
and rotational parametera2 = 0.9. The intersections of d2R/dr2 with 0 give the position of margin-
ally stable orbit for specified parameters a and b.

We assume a bright rotating ring of particles following circular orbit to be located above
the photon circular orbit or marginally stable orbit, respectively. The ring is composed of a
large number of monochromatically radiating point sources which move along the circular
orbit at the radial distance re andwhich radiate isotropically in their rest frame.
The angular velocity Ω = dϕ/dt of such sources as measured by distant observers

is given by

Ω =
dϕ
dt

=
√
r − b

r2 + a
√
r − b

. (2)

4 THESPECIFIC ENERGYFLUXOFPHOTONS

The observed specific energy flux is given by the formula

Fo(ν) =
∫

Io dΠ ,

where Io is observed specific intensity of the source and dΠ is the solid angle subtended by
the source on the observer sky. The observed specific intensity and its value at the rest frame
of the source are related by the Liouville theorem

Io
ν3

o
=

Ie
ν3

e
= const ,
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where indexo (e) refers to the observer (emitter), νo (νe) is the observed (emitted) frequency
of photons. The observed specific flux then takes the form

Fo(ν) =
∫

Ieg3 dΠ , (3)

where we introduced the frequency shift ratio of the observed frequency to the emitted
one, g = νo/νe.

5 OPTICALEFFECTS

The frequency shift and the focusing of the bundle of rays are the key phenomena that form
the profile of the observed spectral line.

5.1 Frequency shift

The frequency shift g can be expressed as the ratio of observed photon energy Eo to emitted
photon energy Ee

g =
Eo
Ee

=
kµuµ

o

kµuµ
e

where kµ are covariant components of photon 4-momentum and uµ
o (uµ

e , respectively) are
contravariant components of the 4-velocity of the observer (emitter). In the case of static
distant observer the 4-velocity reads uo = (1, 0, 0, 0). In the case of emitter following a
circular geodesic at r = re in the equatorial plane of the branyKerr black hole, the 4-velocity
reads ue = (ute, 0, 0, uϕe ); the components read

ute =
[

1−
2
re

(1− aΩ)2 − (r2
e + a2)Ω2 +

b
r2

e
(1− 2aΩ)

]−1/2
,

uϕe = Ωute ,

where Ω is the angular velocity of the emitter as seen by distant observer and is given
by Eq. (2). The total frequency shift, which includes gravitational and Doppler shifts, is
finally given by

g =

[
1− 2

re (1− aΩ)2 − (r2
e + a2)Ω2 + b

r2
e
(1− 2aΩ)

]1/2

1− λΩ
, (4)

where λ = −kϕ/kt is the impact parameter of the photon being a constant of the photon
motion; notice that g is explicitly independent of the second motion constant q . Of course,
depending on the position of the emitter along the circular orbit, the motion constant of
photons reaching a fixed distant observer will change periodically.
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5.2 Focusing

For a distant observer, the solid angle dΠ can be expressed in terms of observer’s plane
coordinates [α,β] (see Fig. 2)

dΠ =
1
d2

o
dαdβ .

The observer plane coordinates are in relations with photon’s impact parameters λ and q
given by formulae (Cunningham andBardeen, 1973)

α = −
p(ϕ)

p(t) = −
λ

sin θo
,

and

β =
p(θ)

p(t) = ±
√
q2 + a2 cos2 θo − λ2 cot2 θo .

and so one can switch the integration over λ and q . The solid angle dΠ then reads

dΠ =
1
d2

o

∣∣∣∣
∂(α,β)

∂(λ, q)

∣∣∣∣ dλdq .

where |∂α,β/∂λ, q| is the Jacobian of the transformation (α,β)→ (λ, q) and reads

∣∣∣∣
∂(α,β)

∂(λ, q)

∣∣∣∣ =
q

sin θo
√
q2 + a2 cos2 θo − λ2 cot2 θo

.

n

E

O

Ω

α

β

r0

BH

δ

dΠ

Figure 2. The emitter E emits isotropically in its rest frame. A photon is radiated at a directional
angle δ. It is received by observer O at infinity, i.e., at sufficiently large distance. The coordinates of
the received photon on the observer sky are [α,β].
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The impact parameters λ and q can be expressed in terms of the frequency shift g and
cosine of the directional angle δ defined by the normal n to the plane of the ring and photon
4-momentum k, taken both at the emitter position. From (4) one finds the formula

λ =
1
Ω

(
1−

f
g

)
,

where

f =
[

1−
2
re

(1− aΩ)2 − (r2
e + a2)Ω2 +

b
r2

e
(1− 2aΩ)

]1/2
.

The directional cosine of δ is given by the formula

cos δ =
n · k
ue · k

, (5)

which, for normal n = (1/
√
Σ)∂θ , leads to expression

cos δ =
qg
re

.

By introducingχ ≡ cos δ the Jacobian of transformation (λ, q)→ (g,χ) reads
∣∣∣∣
∂(λ, q)

∂(g,χ)

∣∣∣∣ =
re
Ω

f
g3 .

The final formula for solid angle dΠ then reads

dΠ =
1
d2

r2
e χ f

sin θog3Ω
√
r2

e χ
2 + a2g2 cos2 θ − 1

Ω2 ( f − g)2 cot2 θo
dgdχ . (6)

6 PROFILEDSPECTRALLINE

We directly apply the results of the previous section to determine the spectral line profile of
the bright ring in the equatorial plane of brany Kerr black hole.
Let the source radiates isotropically at a fixed frequency νe. The specific intensity Ie of

the source is then given by

Ie(νe) = ϵ(r)δ(νe − ν0) , (7)

where ϵ(r) is the local emissivity as a function of radial distance from the black hole, ν0 is
the rest frequency. Using (7) and (3)we arrive to the formula for the specific flux in the form

Fo(νo) =
∫
ϵ(r)g4δ(νo − gν0) dΠ .
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Using Eq. (6) one finally arrives to

Fo(νo) =
∫ gr2

eχ f

d2
o sin θoΩ

√
r2

eχ
2 + a2g2 cos2 θ − 1

Ω2 ( f − g)2 cot2 θo
dχ . (8)

In order to obtain the spectral line profile form (8), one must find all relevant pairs (λ, q),
which are related to pairs of g and χ , by integrating the Carter equations schematically
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Figure 3. Left: The pairs of impact parameters λ and q are plotted for the rotational parameter
a = 0.9981, radial coordinate of the emitter re = 7M, two representative values of the tidal
charge b = −2, 0 and three representative values of observer’s inclination angle θ0 = 30◦, 60◦
and 80◦. Right: The plots of the profiled spectral lines of monochromatically radiating thin ring,
plotted for the same parameters as the plots on the left.
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given by the formula

±
∫

θe

1
√
W (θ)

dθ = ±
∫

re

1
√
R(r)

dr .

The detailed calculation scheme in terms of the elliptic integrals can be found in Schee and
Stuchlík (2007).
We plot the pairs (λ, q) for representative values of the rotation parameter a = 0.9981,

tidal charge b = −2, radial coordinate of the emitter re = 7 and latitudinal coordinate of
the observer θo = 30◦ (60◦, 80◦) in Fig. 3. The results obtained for the tidal charge b = −2
are compared with the case of pure Kerr black holes with b = 0. It is clear that in the case
of the radiating ring there are two values of impact parameter q1(χ1), q2(χ2) for specified
impact parameter λ(g). Using the assumption that the source radiates isotropically, we can
simply sum both contributions

F(g,χ1,χ2) = F(g,χ1) + F2(g,χ2) .

Then the spectral line profiles can be immediately constructed. For some appropriately
chosen values of the black hole parameters, the radiating source and the inclination angle of
the observer, the typical results are plotted in Fig. 3.

7 CONCLUSIONS

In this paper we present some preliminary results concerning the study of the influence of
negative tidal charge on the spectral line profile of bright, thin ring rotating in the equatorial
plane of the brany Kerr black-hole. We have shown that with tidal charge decreasing to
more negative values, the width of the spectral line is increasing. The profile of the linewith
decreasing value of (negatively-valued) b is flattened.
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ABSTRACT
In the framework of the brany models, rotating black holes are described by the Kerr
metric with a tidal charge representing the influence of the shear effects of the bulk
space Weyl tensor onto the black hole spacetime. Here we study the influence of
the tidal charge onto some optical phenomena in rotating black hole spacetimes.
The photon motion is given in terms of constants of the geodetical motion related
to the spacetime symmetries and escape photon cones are given for special families
of locally non-rotating, circular geodetical and radially freely-falling observers. The
shadow of a rotating black hole and the shape of an equatorial thin accretion disk are
given and classified in terms of the black hole rotational and tidal parameters.

1 INTRODUCTION

One way of realisation of the M-theory describing gravity as a truly higher-dimensional in-
teraction becoming effectively 4D at low-enough energies is represented by the braneworld
models, where the observable universe is a 3-brane (domain wall) to which the standard
model (non-gravitational) matter fields are confined, while gravity field enters the extra
spatial dimensions the size of which may be much larger than the Planck length scale
lP ∼ 10−33 cm (Arkani-Hamed et al., 1998). Therefore, future collider experiments can test
the braneworld models quite well, including the hypothetical mini black hole production on
the TeV-energy scales (Emparan et al., 2002). On the other hand, the braneworld models
could influence astrophysically important properties of black holes, enabling other tests of
these models.
As shown in Randall and Sundrum (1999), gravity can be localized near the brane at low

energies even with a non-compact, infinite size extra dimension with the warped spacetime
satisfying the5DEinstein equationswithnegative cosmological constant. Thenanarbitrary
energy-momentum tensor could be allowed on the brane (Shiromizu et al., 1999).
The Randall–Sundrummodel gives 4D Einstein gravity in low energy limit, and the con-

ventional potential of Newtonian gravity appears on the 3-brane with high accuracy (Ran-
dall and Sundrum, 1999). Significant deviations from the Einstein gravity occur at very
high energies, e.g., in the very early universe, and in vicinity of compact objects (Maartens,
2004; Dadhich et al., 2000; Germani andMaartens, 2001; Aliev andGümrükçüoǧlu, 2005).
Gravitational collapse of matter trapped on the brane results in black holes mainly localized
on the brane, but their horizon could be extended into the extra dimension. The high-energy
effects produced by the gravitational collapse are disconnected from the outside space by

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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the horizon, but they could have a signature on the brane, influencing properties of black
holes (Maartens, 2004). There are high-energy effects of local character influencing pres-
sure in collapsingmatter, and also non-local corrections of “backreaction” character arising
from the influence of the Weyl curvature of the bulk space on the brane – the matter on the
brane induces Weyl curvature in the bulk which makes influence on the structures on the
brane due to the bulk graviton stresses (Maartens, 2004). The combination of high-energy
(local) and bulk stress (nonlocal) effects alters significantly the matching problem on the
brane, compared to the 4D Einstein gravity; for spherical objects, matching no longer leads
to a Schwarzschild exterior in general (Maartens, 2004; Germani and Maartens, 2001).
The Weyl stresses induced by bulk gravitons imply that the matching conditions do not
have unique solution on the brane; in fact, knowledge of the 5D Weyl tensor is needed as
a minimum condition for uniqueness (Germani andMaartens, 2001).1 Some solutions for
spherically symmetric black holes (Dadhich et al., 2000) and uniform density stars (Ger-
mani and Maartens, 2001) have been discussed. It is shown that in the black hole case the
matching conditions could be satisfied and the bulk effects on the black hole spacetimes
could be represented by a single “brany” parameter.
A promising way of generating exact localized solutions in the Randall–Sundrumbrane-

world models was initiated by Maartens and his coworkers (Maartens, 2004; Germani and
Maartens, 2001; Dadhich et al., 2000). Assuming spherically symmetric metric induced on
the 3-brane, the effective gravitational field equations on the brane could be solved, giving
Reissner–Nordström static black hole solutions endowed with a brany parameter b having
character of a “tidal” charge instead of the standard electric charge parameter Q2 (Misner
et al., 1973). The tidal charge reflects the effects of the Weyl curvature of the bulk space,
i.e., from the 5D graviton stresses (Maartens, 2004) with the bulk graviton tidal effects
giving the name of the charge. Note that the tidal charge can be both positive and negative,
and there are some indications that negative tidal charge should properly represent the
“backreaction” effects of the bulk spaceWeyl tensor on the brane (Dadhich et al., 2000).
The exact stationary and axisymmetric solutions describing rotating black holes local-

ized in the Randall–Sundrumbraneworld were derived in Aliev andGümrükçüoǧlu (2005),
having the metric tensor of the Kerr–Newman form with a tidal charge describing the
5D correction term generated by the 5D Weyl tensor stresses. The tidal charge has
an “electric” character again and arises due to the 5D gravitational coupling between
the brane and the bulk, reflected on the brane through the “electric” part of the bulk
Weyl tensor (Aliev andGümrükçüoǧlu, 2005), in analogy with the spherically symmetric
case (Dadhich et al., 2000).
When both the tidal and electric charge are present in the brany black hole, its character

is much more complex and usual Kerr–Newman form of the metric tensor is allowed only
in limiting case of small values of the rotation parameter, when in the linear approximation
in the rotation parameter a the metric arrives at the usual Boyer–Lindquist form describing
charged and slowly rotating brany black holes (Aliev and Gümrükçüoǧlu, 2005). For large
enough rotation parameter, additional off-diagonalmetric components grϕ, grt are relevant
along with the standard gϕt component, due to the combined effects of the local bulk on

1 At present, no exact 5D solution in the braneworldmodel is known.
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the brane and the dragging effect of rotation, which occur through the “squared” energy
momentum tensor on the brane. This distorts the event horizon which becomes a stack
of non-uniformly rotating null circles having different radii at fixed θ while going from the
equatorial plane to the poles (Aliev and Gümrükçüoǧlu, 2005). The uniformly rotating
horizon is recovered for the small enough rotation parameter a. In the absence of rotation,
themetric tensor reduces to theReissner–Nordström formwith correction termofnon-local
origin (Chamblin et al., 2001).
Herewe restrict our attention to theKerr–Newman type of solutions describing the brany

rotating (Kerr) black holes with no electric charge, since in astrophysically relevant situ-
ations the electric charge of the black hole must be exactly zero, or very small (Misner et al.,
1973). Then the results obtained in analysing the behaviour of test particles and photons or
test fields around the Kerr–Newman black holes could be used assuming both positive and
negative values of the brany tidal parameter b (used instead of charge parameter Q2).
The information on the properties of strong gravitational fields in vicinity of a compact

objects, namely of black holes, is encoded into optical phenomena of different kind that
enable us to make estimates of the black hole parameters, including its tidal charge, when
predictions of the theoreticalmodels are confrontedwith the observed data. From this point
of view, the spectral profiles of accretion discs around the black holes in galactic binaries,
e.g., in microquasars, are most promising (Narayan et al., 2007; McClintock et al., 2007),
along with profiled spectral lines in the X-ray flux (Laor, 1991; Bao and Stuchlík, 1992;
Stuchlík and Bao, 1992; Karas et al., 1992; Matt et al., 1993). Important information could
also be obtained from the quasiperiodic oscillations observed in the X-ray flux of some
low-mass black hole binaries of Galactic origin (Remillard and McClintock, 2006), some
expected intermediate black hole sources (Strohmayer et al., 2007), or those observed in
Galactic nuclei (Aschenbach, 2004, 2007). In the case of our Galaxy centre black hole
Sgr A∗, we could be able to measure the optical phenomena in detailed form as compared
with the other sources, since it is the nearest supermassive black hole with mass estimated
to be ∼ 4 × 106 M⊙ (Ghez, 2005), enabling to measure the “silhouette” of the black hole
and other subtle GR phenomena (Bardeen, 1973; Cunningham andBardeen, 1973).
In the present paper, we give an introductory study of the tidal charge influence on

the optical phenomena near a rotating Kerr black hole. After summarising properties of
brany gravitational field equations and their black hole solutions in Section 2, the effective
potential of the photon motion in brany Kerr spacetimes is discussed in Section 3. Then in
Section 4 the light escape cones are given for families of astrophysically interesting sources,
namelly in locally non-rotating frames, and frames related to circular geodetical motion
and radially free-falling sources (Schee et al., 2005). The silhouette of the black hole is
determined in dependence of the black hole parameters in Section 5. Finally we discuss
images of accretion discs in Section 6. Concluding remarks are presented in Section 7.

2 GRAVITATIONALFIELDEQUATIONSONTHEBRANE

In the 5D warped space models of Randall and Sundrum, involving a non-compact extra
dimension, the gravitational field equations in the bulk can be expressed in the form (Shir-
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omizu et al., 1999; Dadhich et al., 2000)

G̃ AB = k̃2
[
−Λ̃gAB + δ(χ)(−λgAB + TAB)

]
, (1)

where the fundamental 5D Planck mass M̃P enters via k̃2 = 8π/M̃3
P , λ is the brane ten-

sion, and Λ̃ is the bulk cosmological constant. Denoting χ = x4 as the fifth dimension
coordinate, χ = 0 determines location of the brane in the bulk space, at the point of Z2
symmetry; gAB = g̃AB − nAnB is the induced metric on the brane, with nA being the unit
vector normal to the brane.
The effective gravitational field equations induced on the brane are determined by the

bulk field Eq. (1), the Gauss–Codazzi equations and the generalisedmatching Israel condi-
tions with Z2-symmetry. They can be expressed as modified standard Einstein’s equations
containing additional terms reflecting bulk effects onto the brane (Shiromizu et al., 1999)

Gµν = −Λgµν + k2Tµν + k̃2Sµν − Eµν , (2)

where k2 = 8π/M2
P , with MP being the brany Planck mass. The relations of the energy

scales and cosmological constants are given in the form

MP =
√

3
4π

(
M̃2

P√
λ

)

M̃P ; Λ =
4π

M̃3
P

[

Λ̃+

(
4π

3M̃3
P

)

λ2

]

. (3)

Local bulk effects on thematter are determined by the “squared energy-momentum” tensor
Sµν , where

Sµν = 1
12T Tµν − 1

4T
α

µ Tνα + 1
24gµν

(
3T αβTαβ − T 2

)
, (4)

while the non-local bulk effects are given by the tensor Eµν representing the bulk Weyl
tensor C̃ABCD projected onto the brane, whereas

EAB = C̃ABCDnCnD . (5)

Symmetries of theWeyl tensor imply that E[AB] = E A
A = 0 and EABnB = 0. Therefore,

on the brane χ → 0, there is EAB → Eµνδ
µ

A δ ν
B . The Eµν tensor reflects influence of the

non-local gravitational effects in the bulk, including the tidal (“Coulomb”) and transverse
traceless (gravitational wave) imprints of the free gravitational field of the bulk.
Here we consider vacuum (both bulk and brany) solutions of the gravitational field equa-

tions on the brane, assuming zero cosmological constant on the brane (Λ = 0) implying
relation

Λ̃ = −
4πλ2

3M̃2
P

. (6)

In the absence of matter fields, there is Tµν = 0 = Sµν , i.e., we are not interested in
the properties of the squared energy-momentum Sµν representing local effects of the bulk.
In the vacuum case, the effective gravitational field equations on the brane reduce to the
form (Shiromizu et al., 1999)

Rµν = −Eµν , R µ
µ = 0 = E µ

µ (7)
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implying divergence constraint (Shiromizu et al., 1999)

∇µEµν = 0 , (8)

where∇µ denotes the brany covariant derivative.
Equation (8) represents Bianchi identities on the brane, i.e., an integrability condition

for the field equations Rµν = −Eµν . For stationary and axisymmetric (or static, spherically
symmetric) solutions Eqs (7) and (8) form a closed system of equations on the brane.
Clearly, the 4D general relativity energy-momentum tensor Tµν (with T µ

µ = 0) can be
formally identified to the bulkWeyl term on the brane due to the correspondence

k2Tµν ←→ −Eµν . (9)

The general relativity conservation law ∇µTµν = 0 then corresponds to the constraints
equation on the brane Eq. (8). This behaviour indicates that Einstein–Maxwell solutions in
general relativity should correspond to vacuum brany solutions. This was indeed shown in
the case of Schwarzschild (R–N) (Maartens, 2004; Dadhich et al., 2000) and Kerr (K–N)
spacetimes (Aliev andGümrükçüoǧlu, 2005). In both of these solutions the influence of the
non-local gravitational effects of the bulk on the brane are represented by a single “brany”
parameter b. The Coulomb-like behaviour in the Newtonian potential

Φ = −
M
M2

Pr
+

b
2r2 (10)

inspired the name tidal charge.
Because of its symmetry properties, Eµν can be decomposed with respect to a 4-velocity

field uµ (Maartens, 2004)

Eµν = −

(
k̃
k

)4 [
U
(
uµuν + 1

3hµν

)
+ Pµν + 2q(µuν)

]
, (11)

where hµν = gµν + uµuν is the standard projection tensor. Here, three new characteristic
quantities representing the influence of the non-local bulk effects are introduced. The
effective energy density on the brane due to the tidal effects of the bulk

U = −
(
k
k̃

)4
Eµνuµuν . (12)

The effective anisotropic stress representing the spatially tracefree and symmetric part of
the bulk influence

Pµν = −
(
k
k̃

)4 [
h α

(µ h β
ν) −

1
3hµνhαβ

]
Eαβ . (13)

The effective energy flux from the free gravitational field in the bulk

qµ =
(
k
k̃

)4
h α

µ Eαβuβ . (14)
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Assuming a static vacuum solution, and choosing uµ along direction of time Killing vector
field, we obtain qµ = 0, and the effective conservation lawEq. (8) is reduced to the form

1
3DµU + 4

3Uaµ + Dν Pµν + aνPµν = 0 , (15)

where Dµ is uµ-orthogonal projection of brany covariant derivative∇µ and 4-acceleration
field aµ = uν∇νuµ. In static and spherically symmetric spacetimes

aµ = a(r)rµ , Pµν = P(r)
(
rµrν − 1

3hµν

)
, (16)

where rµ is a unit radial vector, a(r), P(r) are functions of the radial coordinate only.
Under assumption of R–N field the solution of the conservation equation reads

U =
(
k
k̃

)4 B
r4 = −

1
2
P , (17)

where the constant B is brany parameter representing the tidal effects of the bulk on the
brane. Clearly, U represents an effective energy density of “radiation character,” and
sometimes is denoted as “dark radiation” energy density.
The spherically symmetric, static solution of the brany field equations takes a Reissner–

Nordström form

ds2 = −e2Φ(r) dt2 + e2Ψ (r) dr2 + r2(dθ2 + sin2 θ dϕ2) , (18)

with

e2Φ(r) = e−2Ψ (r) = 1−
2M
M2

P

1
r

+
B
r2 , (19)

where M is the mass of the black hole and the bulk parameter B is named tidal charge.
There is E t

t = E r
r = −E θ

θ = −E
ϕ

ϕ = B/r4.
Introducing a dimensionless brany parameter (tidal charge)

b = BM̃2
P , (20)

the spherically symmetric, brany black hole spacetime is characterized by the metric coeffi-
cients

−gtt = g−1
rr = 1−

(
2M
M2

P

)
1
r

+

(
b
M̃2

P

)
1
r2 , (21)

and by “energy-momentum” tensor

Eµν = −
(
b
M̃P

)
1
r4 (uµuν − 2rµrν + hµν) , (22)

with black hole horizons given by the relation

r± =
M
M2

P

(

1 ±

√

1− b
M4

P
M2M̃2

P

)

. (23)
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Contrary to the standard R–N solutions of general relativity, where b = e2 > 0, the tidal
charge b can be both positive and negative. For b > 0, there is 0 < r− < r+ < rS =
2M/M2

P and the black hole solutions are limited by the condition

b < bmax ≡
(
M̃P
MP

)2 ( M
MP

)2
. (24)

For b < 0, only one horizon exists, located above the Schwarzschild horizon

r+ =
M
M2

P

(

1−

√

1− b
M4

P
M2M̃2

P

)

> rS . (25)

Clearly, the physical singularity at r = 0 is then of spacelike character, contrary to the
case of b > 0, where it is of timelike character (Misner et al., 1973). While b > 0 weakens
the black hole gravitational field, negative tidal charge b < 0 strengthens the black hole
field; the effective “dark energy” density U is then negative, in accord with the classical
(Newtonian) result of negative energy density of isolated mass gravitational field (Dadhich
et al., 2000). The gravitational field of the brany black hole acts in the fifth dimension as an
attractive gravitational field with negative energy and the tidal acceleration measured by a
static observer along the direction nA reads

−R̃ABCDuAnBnCnD =

(
k̃
k

)4

U +
1
6
k̃Λ̃ . (26)

The negative bulk cosmological constant contributes to acceleration towards the brane,
according its confining gravitational character. In order for U to reinforce confinement, it
must be negative, and negative brany parameter b < 0 is physicallymore natural case (Dad-
hich et al., 2000).
Similar considerations hold in the case of the brany Kerr solutions discussed in Aliev and

Gümrükçüoǧlu (2005). Using representation of stationary and axially symmetric metric on
thebrane in theKerr–Schild form, standard inderivationof theKerrmetric (Kerr, 1963), we
are able to solve the gravitational equations on the brane. The Kerr–Schild ansatz assumes
that the exact metric can be given in terms of its linear approximation around flat metric,
i.e., in the form

ds2 = ηi j dxidx j + H (lidxi )2 , (27)

where H is the characteristic scalar function and li is a geodetical null vector field in both
flat and exact metric. There are two such vector fields, we call them ingoing and outgoing
principal null congruences (Misner et al., 1973).

3 NULLGEODESIC IN KERRSPACETIMEWITHATIDAL CHARGE

3.1 Geometry

Following the work of Aliev and Gümrükçüoǧlu (2005), and using the standard Boyer–
Lindquist coordinates (t, r, θ,ϕ) and geometry units (c = G = 1) we can write the line
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element of Kerr black-holemetric on the three-brane in the form

ds2 = −
(

1−
2Mr − b

Σ

)
dt2 +

Σ

∆
dr2 +Σ dθ2 +

A
Σ

dϕ2−2
2Mr − b
Σ

sin2 θ dtdϕ , (28)

where

Σ = r2 + a2 cos2 θ ,

∆ = r2 − 2Mr + a2 + b , (29)

A = (r2 + a2)2 − a2∆ sin2 θ .

M is the mass parameter, a = J/M is the specific angular momentum and the brany
parameter b is the tidal charge representing imprint of non-local gravitational effects from
the bulk space. The form of metric (28) is the same as the Kerr–Newmanmetric, where the
tidal charge is replaced by squared electric charge. The stress tensor on the brane Eµν takes
the form

E t
t = −E ϕ

ϕ = −
b
Σ3 [Σ − 2(r2 + a2)] ,

E r
r = −E θ

θ = −
b
Σ2 ,

E t
ϕ = −(r2 + a2) sin2 θ ,

E ϕ
t = −

2ba
Σ3 (r2 + a2) sin2 θ

that is fully analogical (b→ Q2) to the components of energy-momentum tensor for Kerr–
Newman spacetimes in Einstein’s general relativity (Aliev andGümrükçüoǧlu, 2005).
Therefore, the photon motion analysis for the Kerr–Newman spacetimes can be directly

used for brany Kerr spacetimes with a tidal charge. Of course, the brany parameter b can
be both positive and negative, with the negative values being astrophysically more plausible
(e.g., Dadhich et al., 2000).
The roots of∆ = 0 identify the type of brany Kerr spacetime. There are two possibilities,

a black hole or a naked singularity. By introducing a2/M2 → a2, b/M2→ b and r+/M →
r+ and puttingM = 1wewrite the roots of∆ = 0 in the form

r+ = 1 +
√

1− a2 − b , (outer horizon) (30)

and

r− = 1−
√

1− a2 − b , (inner horizon). (31)

Themetric given by the line elementEq. (28) determines the geometry of rotating black hole
in brany universe if

1 ≥ a2 + b . (32)

The strong inequality refers to case of two horizons r+ and r−. For extreme black holes
(1 = a2 + b) there is r+ = r− = 1. It is clear that in the case of b ≥ 0 the loci of the inner
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Figure 1. Left: The plot of a2 as a function of tidal charge parameter b for fixed values of r+. There
are two curves for two representative values of outer horizon r+ = 1 and r+ = 2. Right: The plot
of the inner horizon r− as a function of tidal charge parameter b. There are there curves for three
representative values of rotational parametera2 = 0.5, a2 = 1.0 and a2 = 1.5.

horizon r− is always positive. But if the value of tidal parameter is b < 0, the loci of the
inner horizon can also be at negative r , as illustrated in Fig. 1 (right). It is quite important
that there is a crucial difference in between the spacetimeswith r− > 0 and r− < 0, since in
the first case (r− > 0) the physical singularity is of time-like character, while in the second
case (r− < 0) it is of spacelike character, as stressed in Dadhich et al. (2000).
Writing the square of rotational parameter a2 as a function of b one arrives from Eq. (30)

to formula

a2 = 1− b − (−1 + r+)2 . (33)

One can easily verify that we can have a2 > 1 for particular choices of b < 0 and r+, as
illustrated in Fig. 1 (left). Notice that a2 > 1 is not allowed for standard (non-brany) black
holes (Misner et al., 1973).
The case of 1 < a2 +b refers to the branyKerr naked singularities. In this paperwe focus

on astrophysically interesting case of black holes, with emitting source and observer located
above the outer horizon.

3.2 Carter’s equations

In order to study the optical effects in brany Kerr spacetimes we have to solve equations of
motionof photons. It iswell known that photonsmove alongnull geodesics of the spacetime
under consideration. The geodesic equation reads

Dkµ

dw
= 0 , (34)

where kµ = dxµ/dw is the wave vector, tangent to the null geodesic and w is the affine
parameter. The geodesic equations can be found from the Lagrangian

L =
1
2
gµν

dxµ

dw

dxν

dw
(35)
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with the normalization condition

gµν
dxµ

dw

dxν

dw
= gµνkµkν = 0 . (36)

Equations (34) and (36) determine the motion of a photon unambiguously. Since the
components of the metric tensor do not depend on ϕ and t coordinates, the following
conjugatemomenta

kϕ ≡
∂L

∂(∂ϕ/∂w)
= gϕνkν ≡ Φ , (37)

kt ≡
∂L

∂(∂ t/∂w)
= gtνkν ≡ −E , (38)

are the integrals of motion. Carter found another integral of motion K as a separation
constant when solving Hamilton–Jacobi equation

gµν dS
dxµ

dS
dxν

= 0 , (39)

where he assumed the action S in separated form

S = −Et +Φϕ + Sr (r) + Sθ (θ) . (40)

Using Hamilton–Jacobi method, the equations of motion can be integrated and written
separately in the form

Σ
dr
dw

= ±
√
R(r) , (41)

Σ
dθ
dw

= ±
√
W (θ) , (42)

Σ
dϕ
dw

= −
PW

sin2 θ
+
aPR
∆

, (43)

Σ
dt
dw

= −aPW +
(r2 + a2)PR

∆
, (44)

where

R(r) = P2
R −∆K , (45)

W (θ) = K −
(
PW

sin θ

)2
, (46)

PR(r) = E(r2 + a2)− aΦ , (47)

PW(θ) = aE sin2 θ − Φ . (48)

It is useful to introduce integral of motion Q by the formula

Q = K − (E − aϕ)2 . (49)

The advantage of introducing this integral of motion comes from the fact that in the case of
astrophysically most important motion in the equatorial plane there is Q = 0.
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3.3 Radial and latitudinal motion

The photon motion (with fixed constants of motion E , Φ, Q) is allowed in regions where
R(r; E,Φ, Q) ≥ 0 and W (θ; E,Φ, Q) ≥ 0. The conditions R(r; E,Φ, Q) = 0 and
W (θ; E,Φ, Q) = 0 determine turning points of the radial and latitudinal motion, respect-
ively, giving boundaries of the region allowed for the motion. Therefore, the analysis of
the turning points of the r -motion and θ -motion is crucial for understanding properties of
the photon motion. Detailed analysis of the θ -motion can be found in Bičák and Stuchlík
(1976), while the radial motion was analysed (with restrictions implied by the θ -motion)
in Stuchlík (1981a,b). Here we extend this detailed analysis to the case of b < 0.
To study the behaviour of null geodesics in the brany Kerr spacetimes we employ the

Carter’s equations. The radial and latitudinal Carter’s equations read

Σ
( dr

dw

)2
=
[
E(r2 + a2)− aΦ

]2
−∆

[
L − 2aΦE + a2E2

]
, (50)

Σ

(
dθ
dw

)2
= L + a2E2 cos2 θ −

Φ2

sin2 θ
, (51)

where the new motion constant L = Q + Φ2 has been introduced besides the fourth
Carter’s separation constant Q. It should be stressed that photon motion does not depend
on E corresponding to the frequency of the photon due to equation E = hν. After rescaling
the affine parameterw, Eqs (50) and (51) read

Σ
( dr

dw′

)2
=
[
r2 + a2 − aλ

]2
−∆

[
L− 2aλ+ a2

]
, (52)

Σ

(
dθ
dw′

)2
= L + a2 cos2 θ −

λ2

sin2 θ
(53)

where we have introduced impact parameters

λ =
Φ

E
, (54)

L =
L
E2 =

Q + Φ2

E2 = q + λ2 , (55)

and rescaled affine parameter

w′ = Ew . (56)

The reality conditions (dr/dw′)2 ≥ 0 and (dθ/dw′)2 ≥ 0 lead to the restrictions on the
impact parameterL

Lmin ≤ L ≤ Lmax , (57)

where

Lmax ≡
(aλ− 2r + b)2

∆
+ r2 + 2r − b , (58)
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and

Lmin ≡

{
λ2 for |λ| ≥ a ,

2a|λ|− a2 for |λ| ≤ a .
(59)

The upper constraint, Lmax, comes from the radial-motion reality condition and the lower
constraint,Lmin, comes from the latitudinal-motion reality condition. The properties of the
photon motion are determined by the behaviour of the surface Lmax(r; λ, a, b), as given
by (58). The extrema of the surfaceLmax (determined by the condition ∂Lmax/∂r = 0) are
determined by

λ = λ+ ≡
r2 + a2

a
, (60)

λ = λ− ≡
r2 − br − a2 − r∆

a(r − 1)
. (61)

The values ofLmax at these extreme points are given by

L+ = 2r2 + a2 , (62)

L− =
2r
(
r3 − 3r + 4b

)
+ a2 (r + 1)2

(r − 1)2 . (63)

The character of the extrema follows from the sign of ∂2Lmax/∂r2. One finds that

∂2Lmax
∂r2 =

8r2

∆
for λ = λ+ , (64)

∂2Lmax
∂r2 =

8r2

∆
−

8r
(r − 1)2 , for λ = λ− . (65)

Incorporating the restrictions given by the latitudinal Eq. (59), we determine where

Lmax = λ2 for |λ| ≥ a , (66)

Lmax = 2a|λ|− a2 for |λ| ≤ a . (67)

We find that

Lmax = λ2 (68)

is fulfilled for

λ = λ̃± ≡
a(b − 2r ± r2√∆ )

r2 − 2r + b
, (69)

while

Lmax = 2a|λ|− a2
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is fulfilled for

λ = λ̄ ≡
1
∆

[
4r − r2 − 2b − a2 + 2

√
∆(b − 2r)

]
. (70)

The analysis of behaviour of curves λ±, λ̃± and λ̄ is used to classify the radial motion
in brany Kerr spacetime. The extreme points of curves λ̃±, which are also the intersection
points of these curves with λ−, are determined by the equation

f (r; a, b) ≡ r4 − 6r3 + (9 + 4b)r2 − 4(3b+ a2)r + 4b(b+ a2) = 0 . (71)

The equation f (r; a, b) = 0 determines loci of the photon circular orbits; in an implicit
form the radii are given by the condition

a2 = a2
ph±(r; b) =

r2(r − 3)2 + 4b(r2 − 3r + b)
4(r − b)

. (72)

The maxima of the curve λ̄, which also determine the intersections of curves λ̄ and λ− are
located on r satisfying the equation

2r3 − (3 + b)r2 + 2br + a2 = 0 . (73)

The brany Kerr spacetimes can be classified due to the properties of the photon motion
determined by the behaviour of the functions λ±, λ̃±, λ̄. The properties of these functions
are given by their divergences (i.e., by existence of the horizons) and the local extrema

Figure 2. Left: classification of Kerr spacetime in Brany universe according to value of a2 + b, b and
next (the number of extrema of the curves λ̃±, which is also the number of circular photon orbits in the
equatorial plane). The classification regions are: (I) for a2 + b ≤ 1 and next = 2, (II) for a2 + b ≤ 1
and next = 4, (III) a2 + b > 1 and b < 1 and next = 2, (IV) for a2 + b > 1 and b > 1 and next = 2,
(V) for a2 + b > 1 and next = 0, (VI) for a2 + b > 1 and b < 1 and next = 4, (VII) for a2 + b > 1
and b > 1 and next = 4. Right: zoom of the area in the dashed rectangle of the left plot, to uncover
regions VI and VII.
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determining equatorial photon circular orbits. There exist seven classes of the brany Kerr
spacetimes, with the criteria of separation being a2 + b ≶ 1, b ≶ 1 and the number of
equatorial circular orbits. There are seven regions in (b, a2) plot corresponding to different
behaviour of curves λ±, λ̃± and λ̄ representing properties of the photon motion. The
classification of the brany Kerr spacetime is represented in Fig. 2. There are two different
classes of the black-hole spacetimes, differing by the presence of the photon circular orbits
under the inner horizon. However, in the astrophysically relevant region outside the outer
horizon, both the classes are of the same character, having two equatorial photon circular
orbits, one corotating (at rph1) and the other counter-rotating (at rph2 > rph1).
Using the knowledge of the behaviour of Lmax and Lmin, we can construct the light

escape cones. In Figs 3, 4 and 5, we plot functions λ±, λ̃± and λ̄ for black hole spacetime
parameters a = 0.9 and b = −1.0. In this case, taken as an example characterizing Kerr
black holes, there exist ten significant values of λ:

• λA ≡ λ−(r = r̄) = λ̄(r = r̄),
• λB ≡ λ±(r = r+) = λ̃±(r = r+) = λ̄(r = r+),
• λC ≡ λ−(r = rcph3) = λ̃+(r = rcph3),
• λD ≡ λ−(r = rM),
• λE ≡ λ−(r = r−) = λ̃−(r = r−),
• λF ≡ λ−(r = rcph2) = λ̃+(r = rcph2),
• λG ≡ λ±(r = 0) = λ̃±(r = 0),
• λH ≡ λ−(r = rcph1) = λ̃+(r = rcph1),
• λI ≡ λ−(r = r̆) = λ̄(r = r̆),
• λJ ≡ λ−(r = rcph4) = λ̃+(r = rcph4),

where r̄ is the highest positive root of Eq. (73), r± are outer and inner horizons, rcph1–rcph4
are circular photon orbits in equatorial plane satisfying Eq. (71), rM = 1− (1− a2 − b)1/3

is the maximum of λ− and r̆ is the negative root of Eq. (73). (Notice that above r+, the
behaviour is the same for all black-hole spacetimes.)
The behaviour ofLmax = Lmax(r; λ) is qualitatively different in different intervals given

by subsequent values of λµ(µ ∈ A, . . . , J ). The plots ofLmax are depicted in Figs 6 and 7.
The allowed values of the impact parameterL lie between the limiting functionsLmin and

Lmax. If theminimumLmin
max ≡ Lmax(rmin,λ0) of the limiting functionLmax is less than the

value of the limiting function Lmin, the incoming photon (kr < 0) travelling from infinity
will return back for all values of L0 ∈ [Lmin; Lmax]. If the value of the minimum Lmin

max is
greater than the value of limiting function Lmin, the incoming photon (kr < 0) travelling
from infinity returns back if its impact parameter L0 satisfies the condition L0 ≥ Lmin

max.
The minimum Lmin

max determines a photon spherical orbit, i.e., a sphere where photons
move with r = const., but with varying latitude θ (and, of course, varying ϕ). When the
conditionL0 = Lmin is satisfied simultaneously, the spherical photon orbit is transformed
to an equatorial photon circular orbit. Photons with L0 = Lmin

max will wind up around the
photon sphere. Using these limiting values of L0, we are able to construct light escape
cones for any well defined family of local observers (radiating sources). Herewe restrict our
attention to the special sets of stationary observers, namely locally non-rotating observers,
those following circular equatorial geodesics, and the radially free-falling observers.
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Figure 3. The graphs of λ±, λ̃± and λ̄ function are plotted for representative values of space para-
meters a = 0.9 and b = −1.0. The two dashed rectangle areas labelled with numbers 1 and 2 are
zoomed in following figures. The horizontal gray dashed lines represents special values of the impact
parameterλ, denoted due to the text as λA, . . . , λJ.

Figure 4. Left panel: the zoom of dashed area labelled 1 in the previous figure. Right panel: the zoom
of dashed area labelled 2 in the previous figure. The dashed rectangle area here is zoomed in the next
figure.

Figure 5. The zoom of the dashed rectangle area in the previous figure.
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(a) (b)

(c)

Figure 6. Left images: plots of L = L(r; λ, a, b) are depicted for representative values of a = 0.9,
b = −1.0 and λ: (a) λ = λG, (b) λ = λH, (c) λ = λI. Right images: plots of zoomed area of relevant
left plot.

(a) (b)

(c) (d)

(e)

Figure 7. Left images: here we plots of L = L(r;λ, a, b) are depicted for representative values of
a = 0.9, b = −1.0 and λ: (a) λ ∈ [λB, λA], (b) λ ∈ [λC, λB], (c) λ ∈ [λD, λC], (d) λ ∈ [λE, λD],
(e) λ ∈ [λF, λE], (f) λ ∈ [λG, λF]. Right images: plots of zoomed area of relevant left plot.

4 CONSTRUCTIONOFLIGHT ESCAPECONES

We construct light escape cones of the brany Kerr black holes to filter out photons that
after being radiated by a specific source at a given position characterized by the coordinates
(r0, θ0) fall under the horizon from photons that after reaching a radial turning point return
to infinity when the source is located above the photon circular orbit, or the photons escap-
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ing to infinity from those being captured by the black hole after reaching a radial turning
point when the source is located under the photon circular orbit. Here we apply the light
escape cone construction developed and discussed in Schee et al. (2005).
Projection of a photon 4-momentum k onto the local tetrad of an observer is given by the

formulae

k(t) = −k(t) = 1 , (74)

k(r) = k(r) = cosα0 , (75)

k(θ) = k(θ) = sinα0 cosβ0 , (76)

k(ϕ) = k(ϕ) = sinα0 sin β0 , (77)

where α0, β0 are directional angles of the photon in the local frame (see Fig. 8) and cos γ0 =
sin α0 sinβ0. We use the impact parameters in the convenient way

λ ≡
Φ

E
, q ≡

K − (Φ − aE)2

E2 , L ≡ q + λ2 . (78)

In terms of the local tetrad components of the photon 4-momentum and the related direc-
tional angles, the conserved quantities, namely, the azimuthal momentumΦ and energy E
read

Φ = kϕ = −ω(t)
ϕ k

(t) + ω
(r)
ϕ k

(r) + ω
(θ)
ϕ k

(θ) + ω
(ϕ)
ϕ k

(ϕ) , (79)

E = −kt = ω
(t)
t k

(t) − ω(r)
t k

(r) − ω(θ)
t k

(θ) − ω(t)
ϕ k

(ϕ) , (80)

and the third constant

K =
1
∆

{[
E(r2 + a2)− aΦ

]2
− (Σkr )2

}
. (81)

Figure 8. Definition of directional angles α0, β0 and γ0 in a local frame. Vectors er , eθ , eϕ are the
basic tetrad vectors. Position of the observer (source) is given by the coordinates (r0, θ0). Vector k
represents a photon as observed by the observer in the given tetrad and vector k′ is its projection into
the plane (eθ , eϕ).
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The impact parameters λ andL are thus fully determined by any double, D, of angles from
the setM = [α0,β0, γ0].

4.1 Local frames of stationary and free-falling observers

There are four local frames we introduce here. The stationary frames, LNRF (Locally
Nonrotatig Frame), SF (Static Frame), GF± (Circular Geodesic Frame) and RFF (Radially
Free-Falling Frame). All of the introduced frames are of direct astrophysical relevance.
Especially the LNRF are of highest importance since the physical phenomena take the
simplest form when expressed in such frames, because the rotational spacetime effects are
maximally suppressed there (Bardeen, 1973; Misner et al., 1973). The GF± are related
to radiation of Keplerian accretion discs, both corotating and counterrotating, while RFF
are related to free-falling spherical accretion. The SF, similarly to LNRF, correspond to
accelerated frames fixed relative to distant observers.
The radial and latitudinal 1-forms of the three stationary frame tetrads are common for

the all three stationary cases and read

ω(r) =
{

0,
√
Σ/∆, 0, 0

}
, (82)

ω(θ) =
{

0, 0,
√
Σ, 0

}
. (83)

LNRF corresponds to observers with Φ = 0 (zero angular momentum observers). Their
time and azimuthal 1-forms read

ω(t) =

{√
∆Σ

A
, 0, 0, 0

}

, (84)

ω(ϕ) =

{

−ΩLNRF

√
A
Σ

sin θ, 0, 0,

√
A
Σ

sin θ

}

. (85)

where

ΩLNRF =
a(2r − b)

A
(86)

is the angular velocity of LNRF as seen by observers at infinity.
The tetrad of SF observers, i.e., observers withΩ = 0 as seen by observers at infinity, is

given by the formulae

ω(t) =

{√
1−

2r − b
Σ

, 0, 0,
a(2r − b) sin2 θ

√
Σ2 − (2r − b)Σ)

}

, (87)

ω(ϕ) =

{

0, 0, 0,

√
∆Σ

Σ − (2r − b)
sin θ

}

. (88)

The GF± observers move along ϕ coordinate in the equatorial plane with velocity VGF±
(+ denotes corotating, − counterrotating) relative to the LNRF observers. In general,
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formula for the velocity VGF± reads

VGF± =
U (ϕ)

U (t) =
ω

(ϕ)
µU

µ

ω
(t)

µUµ

and using the results of Bardeen et al. (1972), we arrive to

VGF± = ±
(r2 + a2)Y ∓ a(2r − b)
√
∆(r2 ± aY )

, (89)

where we have introduced Y =
√
r − b. The Lorentz transformation of LNRF to GF± has

the form

Λ(V ) =

⎛

⎜⎜⎝

γ 0 0 −γ V
0 1 0 0
0 0 1 0
−γ V 0 0 γ

⎞

⎟⎟⎠ (90)

with γ = 1/
√

1− V 2 and V = VGF±. Using Eq. (89), the Lorentz transformation of the
LNRF tetrad gives the tetrad ofGF± in the form

ω
(t)
± =

{
r2 − 2r + b ± aY

Z±
, 0, 0,∓

(r2 + a2)Y ∓ a(2r − b)
Z±

}
, (91)

ω
(ϕ)
± =

{

∓
√
∆Y
Z±

, 0, 0,

√
∆(r2 ± aY )

Z±

}

, (92)

where

Z± = r
√
r2 − 3r + 2b ± 2aY .

Note that the GF± family of frames is restricted to the equatorial plane.
The RFF observers pass the LNRFwith velocity

VRFF =
{
V (r), V (θ), V (ϕ)

}
(93)

as measured in LNRF, and in the case of radially free-falling (or free-escaping) observers
starting at infinity there is V (θ) = 0 as they move with θ = const and V (ϕ) = 0. Using the
results of Stuchlík et al. (1999), we find the velocity components of the free-falling frames
in the LNRF frames

V (r) = ±
√

1−
Σ∆

A
, (94)

V (θ) = 0 , (95)

V (ϕ) = 0 . (96)



240 J. Schee and Z. Stuchlík

Clearly, the free-falling (free-escaping) observers move only radially in the LNRF, rep-
resenting thus generalisation of static observers and radially moving particles in static,
Schwarzschild spacetimes (Stuchlík et al., 1999). The Lorentz transformation of the LNRF
tetrad with the square of speed parameter V 2 = (V (r))2 has the form

Λ(V ) =

⎛

⎜⎜⎝

γ −γ V 0 0
−γ V γ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ (97)

where γ = 1/
√

1− V 2. For the radially free-falling sources, the tetrad components ω(θ)

and ω(ϕ) coincide with those of the LNRF tetrad, while ω(t) and ω(r) are transformed. The
local Lorentz transformation of the LNRF to the RFF± tetrad thus yields

ω
(t)
± =

{

γ
∆Σ

A
,∓
√
Σ

∆
V , 0, 0

}

, (98)

ω
(r)
± =

{

∓γ
√
∆Σ

A
V ,

√
Σ

∆
γ , 0, 0

}

, (99)

ω
(θ)
± = {0, 0,

√
Σ, 0} , (100)

ω
(ϕ)
± =

{

−ΩLNRF

√
A
Σ

sin θ, 0, 0,

√
A
Σ

sin θ

}

. (101)

4.2 Escape cones

In the situations related to accretion phenomena and their optical appearance, it is a crucial
problem to calculate what portion of radiation emitted by a source moving in the black
hole vicinity could escape to infinity (and, complementary, what portion is trapped by the
black hole). For each direction of emission in the local frame of the source, there is a
corresponding pair of values of the impact parameters λ and L which can be related to the
directional cosines of the photon trajectory in the local frame at the position of the source.
Of course, the analysis of the turning points of the radialmotion of photons presented in the
previous section is crucial in determining the local escape cones.
Having defined the source frame, we can construct light escape cones assuming fixed

coordinates of the source r0, θ0. Their construction proceeds according to the following
steps:

• for given D, say D = [α0,β0], we calculateλ = λ(α0,β0);
• λ determines the behaviour ofLmax = Lmax(r; λ);
• from the analysis presented in the previous sectionwe calculateminimumofLmax, which
readsLmin

max = Lmax(rmin; λ);
• we search for such a double D which satisfies equationL0(α0,β0) = Lmax(rmin; λ).

We present in detail the construction of light escape cones in a particular case, namely of
the LNRF observers. The procedure is analogous for the other stationary observers.
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Figure 9. Left: The function Lmax and Lmin = λ2
0 are plotted together with representative con-

stant functions L1 and L2 to demonstrate the construction of the photon escape cone. Right: The
intersection ofLmax(γ0)withλ2(γ0) gives the interval of relevant values of γ0 ∈ [γmin; γmax].

One easily finds that impact parameter λ expressed in terms of the angle γ0, related to the
LNRF, reads

λ0 =
1

ΩLNRF0 + Σ0
√
∆0

A0 sin θ0 cos γ0

, (102)

where index ’0’ refers to the frame with coordinates [r0, θ0]. The loci of minimum of Lmax
is at

rmin =

{√
aλ− a2 for λ ≥ λG = a ,

1− k1
k2

+ k2
3 for λ < λG = a ,

(103)

where

k1 = a2 + 2b + aλ− 3 , (104)

k2 =
{

27(1− a2 − b) + 2
√

3
√

27(1− a2 − b)2 + k3
1

}1/3
. (105)

The relevant values of L lie between Lmax and Lmin given by Eqs (58) and (59). The
intersection of functions Lmax = Lmax(γ0) and Lmin(γ0) gives the relevant interval of
angles γ ∈ [γmin, γmax] (see Fig. 9). For each γ from [γmin, γmax] we calculate minimal
value of the photon impact parameter L, for which the photon reaches the turning point
rmin and escapes to infinity. This minimal value is the minimum of Lmax which is located
at rmin, e.g., Lmax = Lmax(rmin; λ0(γ0), a, b), where rmin is given by (103). We now can
calculate the value of α0 using equation

cosα0 =
k(r)

k(t) =
ω

(r)
LNRF µk

µ

ω
(t)
LNRF µkµ

. (106)

We arrive to the formula

cosα0 = ±
√
A0

√
(r2

0 + a2 − aλ0)2 −∆0(Lmin
max − 2aλ0 + a2)

−a(a sin2 θ0 − λ0)∆0 + (r2
0 + a2)(r2

0 + a2 − aλ0)
,
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where A0 = A(r0, θ0), ∆0 = ∆(r0) and Lmin
max = Lmax(rmin; λ0, a, b). The angle β0

can be calculated from the formula (77). In this way we obtain angles from the arc β0 ∈
⟨−π/2; π/2⟩. The remaining arc β0 ∈ ⟨π/2; 3π/2⟩ can be obtained by turning the arc
β0 ∈ ⟨−π/2; π/2⟩ around the symmetry axis determined by angles β0 = −π/2 and
β0 = π/2. This procedure canbedonebecausephotons releasedunder anglesβ0 andπ−β0
have the same constants of motion. Clearly, for sources under the radius corresponding to
the corotating equatorial photon circular orbit, only outward directed photons with no
turning point of the r -motion can escape. With radius of the source approaching the event
horizon (r0 → r+), the escape cone shrinks to infinitesimal extension, except the case
of extreme black hole (see Bardeen, 1973). For the other frames considered here, the
procedure of the related light escape cone construction can be directly repeated, but with
the relevant tetrad 1-form components being used in the procedure. Some examples of
behaviour of the escape cones in dependence of the brany parameter b are given in Fig. 10
for the LNRF and the geodetical frames. Clearly, for fixed rotation parameter a, the escape
cone of the geodesic frames GF+ becomes more symmetric relative to the outward radial
direction with the negative brany parameter decreasing to the higher negative values.
Assuming astrophysically relevant sources in Keplerian accretion discs, their loci must

be at orbits located above themarginally stable orbit rms, determined by the condition (Aliev
andGümrükçüoǧlu, 2005; Stuchlík and Kotrlová, 2007)

a = ams(r; b) ≡
4(r − b)3/2 ∓ r

√
3r2 − 2r(1 + 2b) + 3b

3r − 4b
.

We demonstrate behaviour of the escape photon cones of the GF+ illustrating the effects
of the brany parameter in Fig. 11. We explicitly show the shift in the behaviour of the

Figure 10. Two typical plots of the light escape cones for GF+ (solid), LNRF (dashed) and SF (dot-
dashed) sources in the equatorial plane of the black hole are given. The square of rotational parameter
of the black hole is a2 = 0.9 and the radial coordinate of the source is r0 = 5 for both left and right
images. The left image is plotted for brany parameterb = 0, while the right one is plotted for b = −1.
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(continued on next page)
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(continuation from previous page)

Figure 11. Left: The plots of light escape cones for the geodetical source following circular or-
bit at r0 = 8 in the equatorial plane of brany Kerr black hole, plotted for the representative
value of rotational parameter a2 = 0.6303 and five representative values of brany parameter
b = −3,−1,−0.1, 0.0, 0.1. The value of the rotational parameter a2 was taken to demonstrate
that for given brany parameter b = −0.1, the escaping emission angle α0 = π represents the mar-
ginal value of α0 for β0 = π/2. For values b ≤ −0.1 the photons that escape to infinity must be
characterized by the angle doubles [α0,β0] located inside the area delimited by the bold curve, while
for b > −0.1 the photons that escape to infinity must have the values of doubles [α0,β0] outside the
area delimited by the bold curve. This particular marginal value of b = −0.1 holds for a2 = 0.6303.
Right: The plots of radii of circular photon orbits, rcph, marginally stable orbits of corotating observer,
rms, static radius in equatorial plane, rstat, and outer horizon of branyKerr spacetime, rh, as functions
of square of rotational parameter a2 are constructed to show the position of the source relative to
abovementioned radii, as their relations change substantially when b is changed for fixed a2.
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photon escape cone demonstrating explicitly the “conversion” case, when α0 = π and
β0 ∈ (0,π/2).
Clearly, at a fixed radius in spacetimes with fixed rotation parameter a2, the rotational

effects become stronger with growing of the brany parameter b, shifting the escape cone in
the rotation direction.

5 SILHOUETTEOFAKERRBLACKHOLE INBRANYUNIVERSE

In principle, it is of astrophysical importance to consider a black hole in front of a source
of illumination whose angular size is large compared with the angular size of the black
hole (Bardeen, 1973). A distant observer will see a silhouette of the black hole, i.e., a black
hole in the larger bright source. The rim of the black hole silhouette corresponds to photon
trajectories spiralling around the black hole many times before they reach the observer. Of
course, the shape of the silhouette enables, in principle, determination of the black hole
parameters. But we have to be aware of the strong dependence of the silhouette shape on
the observer viewing angle; clearly the shape will be circular for observers on the black hole
rotation axis, and its deformation grows with observer approaching the equatorial plane.
Assuming that distant observers measure photon directions relative to the symmetry

centre of the gravitational field, the component of the angular displacement perpendicular
to the symmetry axis is given by−p(ϕ)/p(t) (for black hole rotating anticlockwise relative to
distant observers), while for angular displacement parallel to the axis is given by p(θ)/p(t).
These angles are proportional to 1/r0, therefore, it is convenient to use the impact paramet-
ers in the form independent of r0 (Bardeen, 1973)

α̃ = −r0
p(ϕ)

p(t) = −
λ

sin θ0
, (107)

and

β̃ = r0
p(θ)

p(t) =
(
q + a2 cos2 θ0 − λ2 cot2 θ0

)1/2
=
(

L + a2 cos2 θ −
λ2

sin2 θ0

)1/2
. (108)

Photon trajectories reaching the observer are represented by points in the α̃-β̃ plane being a
small portion of the celestial sphere of the observer.
The shape of the black hole silhouette is the boundary of the no-turning-point region, i.e.,

it is the curveL = Lmax(λ) expressed in the α̃-β̃ plane of impact parameters. For observers
in the equatorial plane (θ0 = π/2), α̃ = −λ, β̃ = (L− λ2)1/2 = q1/2.
Themarginal values of impact parametersλ0 andL0 (q0, respectively) are obtained from

the light escape cone. Using the stationarity of the brany Kerr spacetime we “shoot out”
virtual photons from observer (static frame at infinity or at very large distance r0) and we
are looking for the light escape cone of this virtual source (using the results of the previous
section). The trapped light cone of this virtual source is constructed from the light escape
cone of the virtual source by transformations of directional angle α0 to ᾱ0 = π − α0 and
directional angleβ0 to β̄0 = β0. In this waywe getmarginal directions for received photons
from bright background behind the black hole. Thenwe can use the Eqs (79), (80) and (81)
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Figure 12.Wedefine shift s and ellipticity ϵ = x/y parameters to evaluate themagnitude of distortion
of Kerr black hole shadow shape inBrany universe.

Figure 13. Left: the plot of shi f t (b) = s(b; θ0 = 90◦) − s(b; θ0 = 0◦). Right: elli ptici t y(b) =
ϵ(b; θ0 = 90◦)− ϵ(b; θ0 = 0◦).
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Figure 14. The plots are calculated for r0 = 104 and a2 = 0.9995. Top figure (first and second):
the shift s as a function of θ0 and the ellipticity ϵ as a function of θ0 are plotted for b = −3.0. Top
figure(third and fourth): the shift s as a function of θ0 and the ellipticity ϵas a function of θ0 are plotted
for b = −0.4. Bottom figure(first and second): the shift s as a function of θ0 and the ellipticity ϵ as a
function of θ0 are plotted for b = 0.0. Bottom figure(third and fourth): the shift s as a function of θ0
and the ellipticity ϵ as a function of θ0 are plotted for b = 0.0004.
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to calculate the marginal values of λ0 and q0 in order to obtain the silhouette of brany Kerr
black hole in the plane (α̃ − β̃), i.e., the set of doubles (α̃0, β̃0) from Eqs (107) and (108).
Herewe plotted the silhouette directly from the trapped light cone (ᾱ0 , β̄0) on the observer’s
sky (ᾱ0 sin β̄0, ᾱ0 cos β̄0). Note that the angle ᾱ0 is the radial coordinate and the angle β̄0 is
the polar coordinate in the polar graph of the silhouette.
In order to characterize the influence of the tidal charge on the silhouette of a Kerr black

hole we define shift s and ellipticity ϵ of the silhouette as quantities, in principle measurable

Figure 15. The silhouettes of rotating brany black hole on a bright background are plotted on four
images on this figure. Each image contains three black hole shapes for three representative values of
observer’s inclination angle θ0 = {0◦(solid), 45◦(dashed), 90◦(dotted)}, observer’s radial coordinate
r0 = 104 and the rotational parameter a2 = 0.9995. Top left image: b = 0.0004. Top right image:
b = 0.0. Bottom left image: b = −0.4. Bottom right image: b = −3.0.
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Figure 16.The (ᾱ0, β̄0) plots of silhouettes of branyKerr black hole for rotational parametera2 = 0.6
and four representative values of tidal charge parameter b = −3.0, b = −0.4, b = 0.0 and b = 0.4.
The observer is located at r0 = 104 and θ0 = 90◦.

by distant observers, in the form

s = α̃(βm) sin(βm − π) , (109)

ϵ =
α̃(β = 90◦) + α̃(β = 270◦)

2α̃(βm) cos(βm − π)
, (110)

whereβm is defined by α̃(βm) sin(βm−π) ≥ α̃(β) sin(β−π) ∀β ∈ [π/2, 3/2π]. In Fig. 12
the definition of shift s and ellipticity ϵ is depicted.
We calculated shift s and ellipticity ϵ as functions of tidal parameter b for the Kerr black

hole with rotational parameter a2 = 0.9995 see Fig. 13. The dependence on the viewing
angle θ0 is given in Figs 14 (top) and 14 (bottom).
The silhouettes of the Kerr black hole are plotted for three representative values of ob-

server’s inclination θ0 = 0◦, 45◦ and 90◦ and four representative values of tidal parameter
b = −3,−0.4, 0.0 with fixed a2 = 0.9995 in Fig. 15. The rotational effect on the shape of
the silhouette become strongest when viewed in the equatorial plane (θ0 = π/2), then the
suppressing effect of the brany parameter is given in themost explicit form as demonstrated
in Fig. 16.
The negative values of the brany parameter have the tendency to make the silhouette of a

Kerr black hole (with a2 fixed and for r0, θ0 fixed) spherical, suppressing thus the rotational
effects.

6 DIRECTAND INDIRECT IMAGESOF ISORADIALGEODESICS

Themodelling of idealised situations like spectral line profiles of the thinbright rotating ring
in the equatorial plane of brany Kerr black hole or light curve of the isotropically emitting
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point source orbiting the brany Kerr black hole in the equatorial plane will give us informa-
tion about the influence of the brany parameter b on such phenomena and subsequently the
estimates of the influence of Kerr brany parameter in general astrophysically situations. We
can then, at least in principle, obtain estimates on the astrophysical acceptable value of the
brany parameter b.
Calculating images of the thin rotating ring in the equatorial plane of brany Kerr black

hole is the first step to calculatementioned optical phenomena. Generally one could obtain
a direct and an indirect image (see Figs 17 and 18), but in special cases the situation could
be much more complicated due to complicated latitudinal and azimuthal photon motion.
Here we focus our attention to the direct and indirect images of isoradial geodesics.
In order to find all relevant positions of points forming the rotating ring on observer’s sky,

we have to find photon trajectories between the ring particles and the observer, i.e., we seek
for such doubles of local observational angles [α0,β0] that satisfy the condition

IU(α0,β0; nu, usgn)− IM(α0,β0; n, p, s) = 0 . (111)

Here we introduced the modified radial coordinate u = 1/r and cosine of latitudinal co-
ordinate µ = cos θ (Rauch and Blandford, 1994). In the Eq. (111) nu is the number of
turning points in u coordinate, n is the number of turning points passed in µ coordinate,
p = mod(n, 2), s = (1 − µsgn)/2. In terms of u and µ we defined the functions IU and
IM by

IU(α0,β0; nu, usgn) ≡

{
−usgn

(∫ u0
ut +

∫ ue
ut

)
for nu = 1 ,

usgn
∫ ue
u0

for nu = 0 ,
(112)

Figure 17. Four plots of direct image of the rotating ring in the equatorial plane at re = 6 around
branyKerr black holewith rotational parameter a2 = 0.5 for four representative values of tidal charge
parameter b = −3.0, b = −0.4, b = 0.0 and b = 0.4. The observer is located at r0 = 104 and
θ0 = 85◦.
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Figure 18. Four plots of indirect image of the rotating ring in the equatorial plane at re = 6 around
branyKerr black holewith rotational parameter a2 = 0.5 for four representative values of tidal charge
parameter b = −3.0, b = −0.4, b = 0.0 and b = 0.4. The observer is located at r0 = 104 and
θ0 = 85◦.

and

IM(α0,β0; n, p, s) ≡ µsgn

[∫ µ+

µ0
+(−1)n+1

∫ µ+

µe
+

+ (−1)s[(1− p)n + p[(1− s)(n − 1) + s(n + 1)]]
∫ µ+

µ−

]
(113)

with
∫ u2

u1

≡
∫ u2

u1

du
√
U(u)

, (114)

U(u) = 1 + (a2 − λ2 − q)u2 + 2[(λ2 − a2)2 + q]u3 − [q(a2 + b) + b(a − l)2]u4 (115)

and
∫ µ2

µ1

≡
∫ µ2

µ1

dµ
√
M(µ)

, (116)

M(µ) = q + (a2 − l2 − q)µ2 − a2µ4 . (117)
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6.1 Integration of photon trajectories

We express the integrals Eqs (114) and (116) in the form of the standard elliptic integrals
of the first kind. Rauch and Blandford presented the tables of reductions of u-integrals
and µ-integrals for the case of photons in Kerr geometry (Rauch and Blandford, 1994).
Here we extended those reductions for the case of nonzero brany parameter b. Because the
integration of the µ-integral does not depend on brany parameter b, the transformations
are the same as in the case of Kerrmetric (see Rauch andBlandford, 1994), we present here
only tables of transformations of u-integral.
For distant observers we distinguish five relevant cases of the radial integral. These cases

depend on the character of roots of the quartic equation U(u) = 0, i.e., on the number
of turning points (nu = 0 or nu = 1) in the radial motion and the value of parameter
q̃ = q(a2 + b) + b(a − l)2. We have arranged those transformations into Table 1.
Denoting roots of the quartic equation U(u) = 0 by β1, β2, β3 and β4, the meaning of

each of the five cases is the following:

The case I: four distinct real roots ofU(u) = 0 forming the sequence β1 > β2 > β2 > 0
and β4 < 0. The value of modified constant of motion q̃ > 0.

The case II: four real roots as in the case I but their values form the following order:
β1 > β2 > 0 and β4 < β3 < 0. The value of modified constant of motion q̃ < 0.

The case III: two real and two complex roots of U(u) = 0: β1 being a complex root,
β2 = β̄1 and β4 < β3 < 0. The value of modified constant of motion q̃ < 0.

The case IV: only complex roots: β2 = β̄1 and β4 = β̄3. The value of modified constant
of motion q̃ < 0.

The case V: two real and two complex roots of U(u) = 0: β1 > 0, β4 < 0, β2 being a
complex root and β3 = β̄2.

Table 1. The reductions of
∫ u
u1

du′/
√
U(u′) = IU. (Kindly refer to Tables 2 and 3 on next page for

definitions.)

Case tanΨ m c1 u1

I
√

(β1−β3)(u−β4)
(β1−β4)(β3−u)

(β1−β2)(β3−β4)
(β1−β3)(β2−β4)

2√
q̃(b1−b3)(b2−b4)

β4

II
√

(β1−β2)(u−β3)
(β1−β3)(β2−u)

(β2−β3)(β1−β4)
(β1−β2)(β4−β3)

2√
−q̃(b1−b2)(b3−b4)]

β3

III 2c2(u)
|1−c2

2(u)|
4c4c5−(β3−β4)2−c4c5

4c4c5
1√
−q̃c4c5

β3

IV u−c3
ℑ(β1)(1+c2

2)+c2(u−c3)
1−

(
c4−c5
c4+c5

)2 2
(c4+c5)

√
−q̃

c3

V 2c2(u)
|1−c2

2(u)| 1− (c4+c5)2−(β1−β4)2

4c4c5
1√
q̃c4c5

β4
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Table 2.Definitions for Table 1.

Case c2 c3

III
[
c5(u−β3)
c4(u−β4)

]1/2
–

IV
{

4[ℑ(β1)]2−(c4−c5)2

(c4+c5)2−4[ℑ(β1)]2

}1/2
ℜ(β1) + c2ℑ(β1)

V
[
c4(u−β4)
c5(β1−u)

]1/2
–

Table 3.Definitions for Tables 1 and 2.

Case c4 c5

III
{
[ℜ(β1)−β3]2+[ℑ(β1)]2}1/2 {

[ℜ(β1)−β4]2+[ℑ(β1)]2}1/2

IV
{
[ℜ(β1)−ℜ(β3)]2+[ℑ(β1)+ℑ(β3)]2}1/2 {

[ℜ(β1)−ℜ(β3)]2+[ℑ(β1)−ℑ(β3)]2}1/2

V
{
[ℜ(β2)−β1]2+[ℑ(β2)]2}1/2 {

[ℜ(β2)−β4]2+[ℑ(β2)]2}1/2

Using presented transformations we canwrite the integral Eq. (114) in the form

∫ u

u1

1
√
U(ũ)

dũ = c1F (Ψ ;m) , (118)

where F is the elliptic integral of the first kind and u1 depends on the case of root distribu-
tion of quartic equationU(u) = 0 as given in Table 1. If, in the cases III and V, the value of
1− c2

2(u) < 0, we have to take instead of Eq. (118) the form
∫ u

u1

1
√
U(ũ)

dũ = c1(2K(m)− F (Ψ ;m)) , (119)

whereK is the complete elliptic integral of the first type. We consider two basic possibilities
of trajectories, namely those corresponding to direct and indirect images (Figs 19 and 20).

6.2 Calculated images

It is useful to demonstrate the influence of the brany parameter on the shape of images of
rings in the equatorial plane representing parts of Keplerian accretion discs. Of course,
as well known from the Kerr (and even Schwarzschild) black holes, the images strongly
depend on the latitude of the observer.
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 19. Two rings with radii rin = 6 and rout = 20 projected into observer’s sky at r0 = 104

are plotted on this figure for rotational parameter a2 = 0.5 and representative values of tidal charge
b = −3 (top plots),−0.4 (bottom plots) and observer’s inclination θ0 = 0◦, 30◦, 60◦ and 85◦ (plots
from left to right). Direct (indirect) images are plottedwith full (dashed) curves.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 20. Two rings with radii rin = 6 and rout = 20 projected into observer’s sky at r0 = 104

are plotted on this figure for rotational parameter a2 = 0.5 and representative values of tidal charge
b = 0.0 (top plots), 0.4 (bottom plots) and observer’s inclination θ0 = 0◦, 30◦, 60◦ and 85◦ (plots
from left to right).

We calculated the direct and indirect images of the flat disk in the equatorial plane around
Kerr black hole with rotational parameter a2 = 0.5 for four representative values of LNRF
observer’s inclination θ0 = 0◦, 30◦, 60◦ and 85◦ and for four representative values of tidal
parameter b = −3.0,−0.4, 0.0 and 0.4. The images are depicted in Figs 19 and 20.
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7 CONCLUSIONS

One of the most promising ways of estimating influence of hypothetical hidden external
dimensions, considered in the framework of the braneworld model with infinite external
dimension, as developed by Randall and Sundrum (1999), seems to be investigation of
the optical phenomena caused by the black hole backgrounds. It is because black holes
represent the only case when the non-local influence of the bulk space on the brany space-
time structure can be fully described by a single, brany parameter called tidal charge, with
assumed negative value (Aliev andGümrükçüoǧlu, 2005; Dadhich et al., 2000).
Here we have shown how the brany tidal charge can effect the basic optical phenomena,

especially the black-hole silhouette and the accretion disc shape. Generally, the rising neg-
ative value of the tidal charge leads to strengthening of the black hole field and suppressing
of the rotational phenomena for the black-hole rotation parameter fixed. The black-hole
silhouette is characterized by two parameters, shift of the centre and ellipticity, that could
be in principle measurable in the Galactic Center black-hole system SgrA∗, after expected
development of observational techniques.
Similarly, we can expect measurable phenomena due to spectral line profiles (Schee and

Stuchlík, 2007)]. The optical tests have to be confronted with the data obtained from
quasiperiodic oscillations observed in some special black-hole systems, namely microquas-
ars (Remillard andMcClintock, 2006)). Themost promising orbital resonancemodel gives
good estimates of the black-hole parameters (Török et al., 2005; Török, 2005a,b); thismodel
has been recently generalized to the case of brany Kerr black holes (Stuchlík and Kotrlová,
2007), and it is shown that in the case of microquasar GRS 1915+105 and Galactic Center
SgrA∗ the negative brany parameters are allowed by the observational data.
We can also expect interesting relations of the optical phenomena in the field of neut-

ron stars and the quasiperiodic oscillations observed in neutron-star binary systems, as
discussed, e.g., in the case of 4U 1636+53 source (Török, 2007; Török et al., 2007).
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ABSTRACT
The “Extended Orbital Resonance Model,” i.e., the idea of oscillations induced by
the hump of the orbital velocity profile (related to the locally non-rotating frames –
LNRF), which are proposed to excite the oscillations of Keplerian discs around
near-extreme Kerr black holes with epicyclic frequencies, is used to estimate the
mass and spin of three near-extreme Kerr black hole candidates GRS 1915+105,
XTE J1650−500, and NGC 5408 X-1. The hump-induced oscillations are char-
acterized by the so-called “humpy frequency,” and a non-linear resonant coupling
between these and epicyclic oscillations is expected. It it shown that the quasiperi-
odic variability (QPOs) observed in these sources can bematchedwith the proposals
of the model, giving for the mass and spin of their black holes values consistent with
the other observationally-establishedestimates.

Keywords: Black hole physics – relativity – accretion, accretion discs – X-rays:
individual: GRS1915+105, XTE J1650−500, NGC 5408 X-1

1 INTRODUCTION

The main goal is to show that perhaps in three black-hole candidates GRS 1915+105,
NGC 5408 X-1, and XTE J1650−500 the observed quasi-periodic variability in their X-
ray spectra could indicate the presence of so-called “Aschenbach effect” in their accretion
discs, i.e., the discs in which a region with positive radial gradient of the LNRF-related
orbital velocity exists, which further can be used to give the estimates on the mass and spin
of the central Kerr black holes in the framework of so-called “Extended Orbital Resonance
Model”.
Detailed analysis of the X-ray variable Galactic binary system GRS 1915+105 reveals

at least five high-frequency QPOs with centroid frequencies ν1 = 27 Hz (Belloni et al.,
2001), ν2 = 41 Hz, ν3 = 67 Hz (Morgan et al., 1997; Strohmayer, 2001), ν4 = 113 Hz,

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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ν5 = 167 Hz (Remillard, 2004).1 Moreover, careful and detailed analysis of the spec-
tral continuum from GRS 1915+105 indicates the presence of a near-extreme Kerr black
hole (McClintock et al., 2006) in the system. The black-holemass has been restricted obser-
vationally to M = (14.0 ± 4.4) M⊙ (see McClintock and Remillard, 2004; Remillard and
McClintock, 2006).
The X-ray transient Galactic binary black hole XTE J1650−500 seems to reveal just

one high-frequency QPO at 250 Hz, even if some other high-frequency features were
also reported (Homan et al., 2003). Moreover, the broad, skewed Fe Kα line profile,
being found by Miller et al. (2002) in the XMM-Newton/EPIC-pn spectrum from the
XTE J1650−500, suggests that this source hosts a stellar-mass near-extreme Kerr BH
in its centre. The R-band photometry enables to determine the optical mass-function,
f (M) = (2.73 ± 0.56) M⊙, and a lower limit to the inclination of the system of 50◦,
which both give an upper limit to the mass of the black hole in XTE J1650−500 of
MBH ! 7.3 M⊙ (Orosz et al., 2004).
Recently, more than one quasi-periodic oscillation (QPO) have been found in the

XMM-Newton/EPIC observations of the extra-Galactic ultra-luminousX-ray (ULX) source
NGC 5408 X-1 (Strohmayer et al., 2007). The best evidence is for a 20 mHz QPO, but
during the period when the 20 mHz QPO is the strongest, the 15 mHz QPO is also very
strong, suggesting a possibility of resonance in the frequency ratio 4 : 3. Moreover, there
is some evidence for the 3rd Lorentzian component at 27 mHz during the same period.
Strohmayer et al. (2007) also gave some estimations on the mass of the central black hole.
Comparing the timing and spectral properties of NGC 5408 X-1 with those of Galactic
black hole systems revealing qualitatively similar behaviour, they inferred the BH mass of
several 1000 M⊙, suggesting the presence of an intermediate-mass black hole (IMBH) in
the system, even if some indications for a lower mass closer to 100 M⊙ are also discussed.
Accreting IMBHs with typical masses (102–105) M⊙, capable to explain inferred iso-

tropic X-ray luminosities LX " 1039 erg s−1, are favoured candidates as power-engines of
most of ULXs observed in nearby galaxies (Miller and Colbert, 2004), even if there still
remain many unresolved questions. Assuming multi-colour black-body radiation of a geo-
metrically thin, optically thick accretion disc (in which each annulus of the disc radiates
as a black body with radius-dependent temperature) – so-called Multi-Color Disc model
(MCD), the temperature near the innermost stable circular orbit (ISCO) depends on the
mass of the black hole MBH, accretion rate Ṁ and location of the ISCO Rin as (Makishima
et al., 2000)

kTin ∝ (α2MBH/Ṁ)−1/4 , α = Rin/3RS , (1)

where RS = 2GMBH/c2 is the Schwarzschild radius, and α = 1 for non-rotating (Schwar-
zschild) BH but α = 1/6 for maximally rotating (extreme Kerr) BH and corotating disc.
In the case of NGC 5408 X-1, there is a general agreement (see, e.g., Soria et al., 2004;

Wang et al., 2004; Strohmayer et al., 2007) that a soft thermal component of the energy
spectrum corresponds to (0.13–0.15) keV. If this value represents the maximum colour

1 Belloni et al. (2006), however, did not confirm the QPO at 113 Hz still referred, e.g., by Remillard andMcClin-
tock (2006).
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temperature of the disc, kTin, it implies (for the standard accretion discmodel with Edding-
ton luminosity) the black-hole mass MBH > 104 M⊙. Wang et al. (2004) used so-called
Comptonized Multi-Color Disc model (CMCD), in which the accretion disc is described
by the MCD model but an inverse-Compton scattering of X-ray photons from the disc in
a corona is generated by Monte Carlo simulations, and obtained the mass estimate for a
non-spinning black holeMBH ≃ 103.43 M⊙

.= 2690 M⊙. If the black hole is rapidly rotating
Kerr BH, its mass could be higher even by a factor of tens for the same kTin, see Eq. (1).
Soria et al. (2004, 2006) argued that the X-ray and radio spectrum are consistent with an
accreting BH of mass MBH " 102 M⊙. Note that it is still unclear whether the soft thermal
component kTbb ∼ 0.1 keV, typical for many ULXs, comes from the accretion disc or from
the corona. King and Pounds (2003) suggested that these ULXs may be several 10 M⊙
accreting BHs during a super-Eddington accretion phase with the soft thermal component
coming from the photosphere of an optically-(Compton)-thick radiatively-driven outflow
from the accretion disc. If this is the case, the mass of the black hole in NGC 5408 X-1
should not exceed 50 M⊙, still consistent with a stellar origin (Soria et al., 2004).

2 EXTENDEDORBITALRESONANCEMODEL –BASIC ASSUMPTIONS

In the case of very rapidly rotating Kerr BHs (with a dimensionless spin parameter
a∗ = Jc/GM2

BH > 0.9953; J is the black-hole angular momentum), a test particle
orbital velocity V(ϕ), defined by appropriate projections of particle’s 4-velocity Uµ onto
the LNRF-tetrad (Bardeen et al., 1972),2 reveals a non-monotonic profile in the equat-
orial plane (Aschenbach, 2004). Stuchlík et al. (2005) shown that the analogous humpy
behaviour of V(ϕ) takes place also for non-geodesic motion of test perfect fluid orbiting
near-extreme Kerr BHs with a∗ > 0.9998 in marginally stable thick discs (tori), character-
ized by uniformdistribution of a specific angularmomentum, ℓ(r, θ) = −Uϕ/Ut = const.3
In both geometrically thin and thick accretion discs the positive part of ∂V(ϕ)/∂r is confined
to the ergosphere aroundBHbut located above the ISCO in the equatorial plane (θ = π/2),
see Fig. 1. Thus local processes in the inner part of accretion discs around near-extreme
Kerr BHs could carry a signature of the orbital velocity hump.
Aschenbach (2004) introduced a characteristic (critical) frequency of any process con-

nected with the velocity hump by the maximumpositive slope of the orbital velocityV(ϕ) as
a function of BL radius r . Its coordinate-independent definition using the maximal positive
rate of change ofV(ϕ) with proper radial distance r̃ ,

ν r̃crit =
∂V(ϕ)

∂ r̃

∣∣∣∣∣
max

, dr̃ =
√
grr dr , (2)

2 In rotating spacetimes a rotation of the space, causing so-called “dragging of inertial frames,” is superposed
on the own orbital motion of a matter in the disc. Locally non-rotating frames (LNRF) are dragged along with
the spacetime, thus the LNRF point of view should reveal local orbital properties of the disc in the clearest way,
similarly as the static observers do in non-rotating spacetimes. LNRF is the frame of ZAMO (Zero Angular
MomentumObserver).
3 Standard Boyer–Lindquist (BL) coordinates (t, r, θ,ϕ) are used.
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Figure 1. Test-particle orbital velocity profile determined by the locally non-rotating frames in the
case of very rapidly rotating Kerr BH with a dimensionless spin a∗ = 0.9985. The positive part of
the radial gradient of V(ϕ) is located close to but above the innermost stable circular orbit (ISCO). A
circle denotes the orbit where the radial gradient ofV(ϕ) in terms of the proper radial distance reaches
its maximal positive value used as the characteristic frequency of any local process triggered by the
orbital velocity hump.

was given by Stuchlík et al. (2004). Relating this locally defined characteristic frequency
ν r̃crit to a static observer at infinity we get so-called “humpy frequency” (Stuchlík et al.,
2007a)

νh =
√
−(gtt + 2ωgtϕ + ω2gϕϕ) ν r̃crit , (3)

where gµν are metric coefficients of the Kerr geometry (in BL coordinates), and ω =
−gtϕ/gϕϕ is the angular velocity of the LNRF (Bardeen et al., 1972).
Aschenbach (2004) also gave a heuristic assumption on possible excitation of particle’s

epicyclic motion in the inner part of Keplerian discs by the orbital velocity hump. The
epicyclicmotion is characterized by radial and vertical epicyclic frequencies νr, νθ (for their
explicit definition see, e.g., Aliev and Galtsov (1981)). Stuchlík et al. (2007a) shown that
for a∗ → 1 the ratios of the epicyclic frequencies to the humpy frequency, being evaluated
at the so-called “humpy radius” (the definition BL radius of ν r̃crit), reach asymptotic, i.e.,
almost spin-independent, values νθ : νr : νh ≃ 11 : 3 : 2 suggesting an idea of resonant
coupling between the hump-induced and epicyclic oscillations of Keplerian discs around
near-extreme Kerr BHs. Moreover, in the region with positive slope of V(ϕ) the resonant
orbits r3:1 and (for a∗ " 0.996) r4:1, where the vertical and radial epicyclic frequencies are
in ratios 3 :1 and 4 :1, are located (see Aschenbach, 2004; Stuchlík et al., 2007a) supporting
the general idea of connection between the humpy profile ofV(ϕ) and epicyclic oscillations
through resonant phenomena.
The “Extended Orbital ResonanceModel” relies on the following assumptions (Stuchlík

et al., 2007a):
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• Excitation of epicyclic oscillation modes in accretion discs around near-extreme Kerr
black holes by processes related to the velocity hump (and characterized by the humpy
frequency);
• non-linear resonant phenomena are expected to be in play (as well as in the standard
orbital resonancemodel of Kluźniak and Abramowicz (2001)).

3 APPLICATIONOFTHEEXTENDEDRESONANTMODELTOTHE
QUASI-PERIODICVARIABILITY INGRS 1915+105, XTE J1650−500,
ANDNGC 5408X-1

3.1 GRS 1915+105

Themodel, inwhich the resonant coupling between the hump-induced and epicyclic oscilla-
tions is assumed,was first applied to theX-ray variableGalactic BH-sourceGRS1915+105
(see Stuchlík et al., 2006, 2007b). The humpy frequency and excited radial epicyclic fre-
quency (at the humpy radius rh) are identified with ν2 = 41 Hz and ν3 = 67 Hz QPOs,
ν2 ≡ νh, ν3 ≡ νr, the only two QPOs observed simultaneously in GRS 1915+105 (Belloni
et al., 2006), while the remaining three QPOs, ν1 = 27 Hz, ν4 = 113 Hz, and ν5 = 167 Hz,
are explained, within the range of their errors being typically 1–5 Hz, by the combinational
frequencies of the humpy frequency and both epicyclic frequencies evaluated at the same
radius rh (νθ = 237 Hz there), ν1 ∼ (νr − νh), ν4 ∼ (νr + νh), ν5 ∼ (νθ − νr). Since the
ratios of frequencies ν2 : ν1 and ν5 : ν4 are close to 3 : 2 ratio, ν3 : ν2 and ν4 : ν3 are close
to 5 : 3 ratio, and ν5 : ν2 ∼ 4 : 1, relatively strong resonant phenomena are expected to be
in play. The model predicts near-extreme spin of the central BH, a∗ = 0.9998, which is
in a good agreement with results given by spectral continuum fits, a∗ > 0.98, presented
byMcClintock et al. (2006), and the black-holemassMBH ∼ 14.8 M⊙, beingwell inside the
interval (14.0 ± 4.4) M⊙ given by other observationalmethods (Remillard andMcClintock,
2006). The results are summarized in Table 1 and Fig. 2.
Note that the orbital resonance model of Kluźniak and Abramowicz (2001) assumes

non-linear resonant interaction between the orbital and/or epicyclic modes. When the
parametric resonance between the vertical and radial epicyclic oscillations in the frequency
ratio 3 : 2, represented by the uppermost pair of referred frequencies, 113 Hz and 167 Hz,
is taken into account, the orbital resonance model also gives the spin a > 0.98, but for
M ≃ 18 M⊙ (Török, 2005). Moreover, the Extended Orbital Resonance Model seems

Table 1.Mass and spin of the Kerr black hole candidates following from the suggested applications of
the ExtendedOrbital ResonanceModel to quasi-periodic variabilities in their X-ray spectra.

BH-candidate BH-mass BH-spin
GRS 1915+105 14.8 M⊙ 0.9998
XTE J1650−500 5.1 M⊙ 0.9982
NGC 5408 X-1 62× 103 M⊙ 0.9985



262 P. Slaný and Z. Stuchlík

0.996 0.997 0.998 0.999 1.000
0

500

1000

1500

a∗

ν
[(
M

/M
⊙
)−

1
H

z]

MBH = 5.1 M⊙→

62 × 103 M⊙ ❄
[mHz] 14.8 M⊙→ [Hz][Hz]

83

167

250

333

7.5

12.5

20

27.5

26

41

67

108

NGC5408 X-1
XTE J1650-500 GRS1915+105

νh

νr − νh

νr + νh

νr

Figure 2. Spin dependence of the humpy and radial epicyclic frequency, νh and νr, and their com-
binational frequencies νr ± νh. All frequencies are calculated at the same radius, where the rate of
change of the orbital velocity in terms of the proper radial distance reaches themaximal positive value
for a given a∗. Moreover, the values of frequencies and corresponding black-hole mass and spin, im-
plied by the “ExtendedOrbital ResonanceModel,” are presented for three sources: GRS 1915+105,
NGC 5408 X-1 and XTE J1650−500. The bold-faced values of frequencies are comparable with
centroid frequencies of previously referredQPOs for each source; see the text for concrete references.
Note that from the point of view of the presentedmodel, the humpy frequency at 7.5 mHz is observed
through its first overtone at 15 mHz. Remainingvalues of frequencies are predicted by themodel.

to be the first one able to match consistently the whole high-frequency pattern of the
source (Aschenbach, 2007).

3.2 XTE J1650−500

As it was mentioned above, XTE J1650−500 belongs among the near-extreme Kerr BH
candidates. Miller et al. (2002), analyzing profiles of the Fe Kα emission line, give the
spin-estimate of a∗ ≃ 0.998, which suggests that the effects of non-monotonic orbital
velocity profile could take place in this source. Remarkably, for Keplerian discs and the
spin a∗ = 0.9982, the frequency ratio of the radial epicyclic frequency and the humpy
frequencyat the same, i.e., “humpy”radius is close to3 :1, thus the strong resonant coupling
between the hump-induced and radial epicyclic oscillations is expected. Identifying the
strong 250 Hz QPO with the radial epicyclic frequency which, for the spin a∗ = 0.9982,
reaches the value of 1275 (M/M⊙)−1 Hz at the “humpy” radius, we get for the mass of the
Kerr BH the value of MBH ≃ 5.1 M⊙, in accordancewith the proposed upper limit.
For completeness, the humpy and combinational frequencies, corresponding to the pro-

posed radial epicyclic frequency and the resonant ratio νr : νh = 3 : 1, are given in Fig. 2.
Although it isnotnecessary toobserve them,note, however, that somebroadhigh-frequency
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features near the frequencies 80 Hz (Kalemci et al., 2003) and 168 Hz (Homan et al., 2003)
were reported.

3.3 NGC 5408X-1

In a spirit of application for GRS 1915+105, we suggest to match the strongest QPO
at 20 mHz with the frequency of radial epicyclic oscillations of the Keplerian disc at the
orbit where the proper radial gradient of the orbital velocity in the LNRF reaches the
maximal positive value, corresponding to the humpy frequency νh ≃ 7.5 mHz. Next we
suggest to match the 15 mHz QPO with the first overtone of the humpy frequency νh, i.e.,
2νh ≃ 15 mHz, and νr ≃ 20 mHz, both being determined at the same resonant orbit.
The ratio of suggested humpy and radial epicyclic frequencies, being well represented by

the ratio of integer numbers, νr :νh ∼ 8 :3, is in accordwith the predicted resonant coupling
between the hump-induced and epicyclic oscillations (Stuchlík et al., 2007a). Because the
ratio is given by relatively distant and high numbers, the resonance should be weak, and
due to this fact a QPO at frequency∼ 7 mHz should be also weak to be directly observable.
On the other hand, due to non-linear (anharmonic) oscillations expected in the system, the
resonance at frequency being twice the basic humpy frequency νh, i.e., at 2νh, could be
strong, as the ratio of νr :2νh ∼ 4 :3 is represented by close and small integers. Moreover, in
non-linear oscillating systems the combinational frequencies are allowed as well (Landau
and Lifshitz, 1976). Combining the humpy and radial epicyclic frequencies, in the lowest
order we get (νr + νh) ≃ 27.5 mHz which is very close to the 3rd, not so strong as the
previous ones, referred feature at 27 mHz, see Fig. 2. The same order of non-linearity
admits also a combination (νr − νh) ≃ 12.5 mHz, which seems to be not directly observed,
even though it is relatively close to the faint 11.4 mHz Lorentzian component in the best fit
of the average power spectrum from all the data analysed by Strohmayer et al. (2007).
Presumed resonant coupling between the hump-induced and radial epicyclic oscillations,

being represented by the 8 : 3 ratio, enables to determine the spin of the Kerr BH. If the
both frequencies are expected to originate at the same radius rh, we get a∗ ≃ 0.9985.
Taking into account the 1/M scaling of the humpy frequency νh, we can also determine the
black-holemass. For the spin a∗ = 0.9985, the humpy frequency νh

.= 468 (M/M⊙)−1 Hz.
Comparing it with the expected value 7.5 mHzwe getMBH ≃ 62× 103 M⊙, still consistent
with the soft thermal component of the energy spectrum, kTin ∼ 0.15 keV, related to the
innermost part of the accretion disc in the system with near-extreme Kerr BH.

4 CONCLUSIONS

The “Extended Orbital Resonance Model,” like other strong-gravity models, e.g., the “Re-
lativistic PrecessionModel” of Stella et al. (1999) or the orbital resonancemodel ofKluźniak
andAbramowicz (2001), is able to give the estimates for themass and spin of theKerr BH, if
more than one frequency or one of the BH-parameters are known. The results are summar-
ized in Table 1. Of course, the model can be applied only to near-extreme BH candidates,
because only in this case the LNRF-related orbital velocity of the accretion disc reveals the
non-monotonic behaviour in its inner part close to the ISCO.
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ABSTRACT
Humpy radial profiles of the LNRF-related orbital velocity was found for a circular
motion of test particles and test perfect fluid orbiting near-extreme Kerr black holes
and Kerr naked singularities. Preliminary results of an analogical study of the cir-
cular motion of test particles and fluid in the Kerr–(anti-)de Sitter spacetimes are
presented.

Keywords: Black hole physics – relativity – accretion, accretion discs – cosmolo-
gical constant

1 INTRODUCTION

Humpy radial profile of the LNRF-related orbital velocity1 was found for a circular motion
of test particleswithKeplerian angularmomentumdistribution, orbiting near-extremeKerr
black holes (BH) with spin a > 0.9953 (Aschenbach, 2004). Subsequently, Stuchlík et al.
(2005) showed that the same non-monotonic behaviour, being called “Aschenbach effect,”
takes place also for the Keplerian motion of test particles around Kerr naked singularities
(NS) with spin 1 < a < 4.1942, and for non-Keplerian motion with uniform (constant)
specific angular momentum distribution, ℓ(r, θ) = const, in the Kerr backgrounds with
0.99964 < a < 1.5043. Supposing that the ℓ = const motion corresponds to the angular
momentum distribution in marginally stable barotropic perfect fuid tori, Stuchlík et al.
(2005) shows that the Aschenbach effect is fully relevant for accretion discs around near-
extreme Kerr BHswith a " 0.9998.
Recently, it was shown in Stuchlík et al. (2007) that the Aschenbach effect in a Kep-

lerian disc orbiting Kerr BH with mass 14.8 M⊙ and spin a = 0.9998 could be respons-
ible for excitation of epicyclic oscillations in the X-ray variable binary black hole system

1 LNRFmeans Locally Non-Rotating Frame (see, e.g., Bardeen et al., 1972 for its definition).

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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GRS 1915+105; for more details and also for other applications of the idea of orbital-
velocity-hump-induced oscillations see previous contribution of Slaný and Stuchlík in this
volume.
Here, preliminary results of an analogical study of the circular motion of test particles

and fluid in the Kerr–(anti-)de Sitter spacetimes are presented, including influence of the
cosmological constant on the range of BH/NS spins, for which the Keplerian discs and
marginally stable barotropic perfect fluid tori reveal humpy radial profiles of their orbital
velocities in locally non-rotating frames.2

2 ORBITALVELOCITYRELATEDTOTHE LNRF

In the Boyer–Lindquist coordinates (t, r, θ,φ) and geometrical units (c = G = 1) the
Kerr–(anti-)de Sitter spacetime, characterized by the central-mass parameterM , rotational
parameter (spin) a > 0 and cosmological constant Λ (Λ > 0 in asymptotically de Sitter
backgrounds, andΛ < 0 in asymptotically anti-de Sitter backgrounds), is described by the
line element

ds2 = −
∆r∆θρ2

I 2A
dt2 +

A sin2 θ

I 2ρ2 (dφ − ω dt)2 +
ρ2

∆r
dr2 +

ϱ2

∆θ
dθ2 , (1)

where

∆r = r2 − 2Mr + a2 − 1
3Λr

2(r2 + a2) , ∆θ = 1 + 1
3Λa

2 cos2 θ ,

ρ2 = r2 + a2 cos2 θ , A = (r2 + a2)2∆θ − a2∆r sin2 θ ,

I = 1 + 1
3Λa

2 , ω =
a
A

[
(r2 + a2)∆θ −∆r

]
.

(2)

The orbital velocity of matter is given by appropriate projections of its 4-velocity U onto
the tetrad of a locally non-rotating frame (LNRF) e(µ), and corresponds to the locally
measured azimuthal component of 3-velocity in the LNRF

V(φ) =
Uµe(φ)

µ

U νe(t)
ν

=
A sin θ

ρ2√∆r∆θ
(Ω − ω) , (3)

whereω = −gtφ/gφφ , given by (2), is the angular velocity of the LNRF, and

Ω = −
ℓgtt + gtφ
ℓgtφ + gφφ

(4)

is the angular velocity ofmatter orbitingwith the specific angularmomentum ℓ = −Uφ/Ut .
Instead ofΛwe introduce the “cosmological parameter”

y = 1
3ΛM

2 , (5)

and reformulate relations (1)–(2) into the completely dimensionless formbyputtingM = 1
hereafter.

2 Similar analysis has been done by Müller and Aschenbach (2007); a comment to their results can be found
in Slaný and Stuchlík (2007).
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2.1 Keplerian discs

Matter in the Keplerian disc follows stable circular geodesics in the equatorial plane
(θ = π/2), and is described by the “Keplerian” distribution of the specific angular mo-
mentum and corresponding Keplerian angular velocity (Stuchlík and Slaný, 2004; Slaný
and Stuchlík, 2005)

ℓK±(r; a, y) = ±
(r2 + a2)

√
1− yr3 ∓ a

√
r [2 + r(r2 + a2)y]

r
√
r [1− (r2 + a2)y]− 2

√
r ± a

√
1− yr3

, (6)

ΩK±(r; a, y) =
1

a ± r
√
r/(1 − yr3)

, (7)

where± refers to twodistinct families of orbits in theK(a)dS spacetimes. Theminus-family
represents retrograde orbits only (from the point of view of the LNRF)while the plus-family
can be both the direct or retrograde.
The Keplerian orbital velocity is given by the relation

V
(φ)
K±(r; a, y) =

(r2 + a2)
√

1− yr3 ∓ a
√
r [2 + r(r2 + a2)y]

√
∆r [a

√
1− yr3 ± r

√
r ]

. (8)

For y = 0 the non-monotonic behaviour of V(φ) was found for the plus-family or-
bits (Aschenbach, 2004) therefore here (for y ̸= 0) we restrict to this family only.
Spin-dependence of the Keplerian orbital velocity profile in KdS backgrounds is presen-

ted in Fig. 1 (left panel). The positive radial-gradient part of the Keplerian orbital velocity
is located close to but above the marginally stable orbit of the given KdS spacetime. The
analogical humpy behaviour near the marginally stable orbit is present also in KadS back-
grounds where, nevertheless, an additional non-monotonicity in Keplerian orbital velocity
profile is present independently of the spin a, see Fig. 1 (right panel). This local minimum
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Figure 1. Left: Spin-dependence of the Keplerian orbital velocity profile in KdS backgrounds. Right:
Λ-dependence of the Keplerian orbital velocity profile inK(a)dS backgrounds.
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is given clearly by interplay between the cosmic attraction (represented by Λ < 0), in-
creasingwith increasing radius r , and gravitational attraction of the centre, increasingwith
decreasing radius r .

2.2 Marginally stable barotropic perfect fluid tori

Structure of test barotropic perfect-fluid tori with the uniform distribution of the specific
angularmomentum

ℓ(r, θ) = const , (9)

in K(a)dS spacetimes is determined by the equipotential surfaces W (r, θ) = const (Slaný
and Stuchlík, 2005), where

W (r, θ) = ln
[
ρ2

I 2
∆r∆θ sin2 θ

∆θ (r2 + a2 − aℓ)2 sin2 θ −∆r (ℓ− a sin2 θ)2

]1/2

. (10)

In all BH and most NS backgrounds closed equipotential surfaces, describing stationary
tori, exist only if ℓ ∈ (ℓms, ℓmb) for y ≤ 0, where ℓms (ℓmb) corresponds to the specific an-
gular momentum of the marginally stable (marginally bound) equatorial circular geodesic,
or ℓ ∈ (ℓms(i), ℓms(o)) for y > 0, where ℓms(i) (ℓms(o)) are the specific angular momenta of
the inner (outer) marginally stable equatorial circular geodesics. In NS backgrounds with
spacetime-parameters being close to the extreme-BH case the situation is more complex,
and in some cases the stationary tori exist even for ℓ ∈ (−∞,+∞) (see Slaný and Stuchlík,
2005 for details). A boundary of each torus is given by a concrete closed equipotential
surface but there always exists a limit on the thickness and diameter of the disc orbiting
particular black hole (naked singularity), which is given by the critical, marginally closed,
equipotential surface, self-crossing in the cusp. Whenmatter in thedisc overfills this critical
surface, it violates the hydrostatic equilibrium, and an outflow ofmatter through the cusp is
necessary. In KdS backgrounds (Λ > 0), there are three types of stationary tori (Slaný and
Stuchlík, 2005):

Accretion discs: the critical point (cusp) of the marginally closed equipotential surface is
located in the equatorial plane at the inner edge of the disc,

Excretion discs: the critical point (cusp) of the marginally closed equipotential surface is
located in the equatorial plane at the outer edge of the disc,

Marginally bound accretion discs: the criticalmarginally closed equipotential surface is
self-crossing in both the inner and the outer cusps.

In Kerr and KadS backgrounds (Λ ≤ 0) only the marginally closed equipotential surfaces
with the inner cusps, exist.
The orbital velocity of the fluid with ℓ = const angular momentum distribution is de-

termined by the relation:

V(φ)
tor (r, θ; a, y, ℓ) =

ρ2ℓ
√
∆r∆θ

{A − [∆θ (r2 + a2)−∆r ]aℓ} sin θ
. (11)
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Figure 2. Spin-dependence of the ℓ = const orbital velocity profile in KdS black-hole (left panel) and
naked-singularity (right panel) backgrounds.
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Figure 3.Λ-dependence of the ℓ = const orbital velocity profile in K(a)dS backgrounds.

Local extrema of the orbital velocity are given by the condition for the specific angular
momentum

ℓ =ℓex(r; a, y) ≡

a +
r2[(r2 + a2)(r − 1− yr(2r2 + a2))− 2r∆r ]

ar [r − 1− yr(2r2 + a2)][2 + yr(r2 + a2)] + 2a∆r(1− yr3)
. (12)

Here we restrict to the case ℓ > 0 but there are also NS spacetimes with humpy profiles of
V

(φ)
tor for ℓ < 0.
Spin-dependence of the ℓ = const orbital velocity profile in KdS backgrounds is presen-

ted in Fig. 2. The analogical behaviour can be found also in KadS backgrounds, see Fig. 3
where theΛ-dependence of the ℓ = const orbital velocity profile is shown.



272 P. Slaný and Z. Stuchlík

3 KERR–(ANTI-)DESITTERBACKGROUNDSWITHHUMPYORBITAL
VELOCITYPROFILESOFACCRETIONDISCS

Geometrically thin/thick accretion discs orbiting K(a)dS black holes (or even naked-
singularities) are well represented by axisymmetric Keplerian/non-Keplerian circular mo-
tion of test particles/fluid in the particular black-hole (naked-singularity) background.
The range of spacetime parameters (a, y), for which the geometrically thin, i.e., Kep-

lerian, accretion discs with humpy orbital velocity profiles exist, is presented graphically in
Fig. 4 (left panel). Critical black-hole spin, for which the Aschenbach effect in Keplerian
discs is getting to exist, increaseswith the cosmological parameter y (i.e., with the cosmolo-
gical constantΛ) from ymin

.= −0.01535 up to the value of yc(ms+)
.= 0.06886, correspond-

ing to maximal value of the cosmological parameter which allows stable equatorial circular
geodesics belonging to the plus-family in KdS spacetimes. In the range y ∈ (−10−3, 10−3)
aΛ-dependence of this critical spin can be well described by the linear relation (Slaný and
Stuchlík, 2007):

acrit = 0.99529 + 1.35395y = 0.99529 + 0.45132Λ . (13)

In the case of geometrically thick accretion discs existence of the Aschenbach effect was
studied for the marginally stable barotropic perfect fluid tori, i.e., the tori with uniformly
distributed specific angular momentum ℓ(r, θ) = const. To recognize when the Aschen-
bach effect can be relevant for the torus in the given spacetime we compare the maximal
extension of the disc in the spacetime, given by the critical marginally closed equipotential
surface, with the positions of local minimum in the orbital velocity profile for given values
of a, y, and ℓ. The critical black-hole spin, for which the marginally stable barotropic
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Figure 4. Left: Kerr–(anti-)de Sitter spacetimes in which the Keplerian discs with humpy LNRF-
related orbital velocity profiles exist. Right: Critical black hole spin, for which the radial profile of
the LNRF-related orbital velocity of marginally stable barotropic perfect fluid tori begins to contain
positive radial gradient part for some physically relevant value of ℓ.
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perfect fluid tori begin to contain the region with positive radial gradient of V(φ) in K(a)dS
backgroundswith y ∈ (−10−3, 10−3), can be obtained from the linear relation

acrit = 0.99986 + 1.00977y = 0.99986 + 0.33659Λ (14)

which describes the linear fit through numerically determined values presented in Fig. 4
(right panel).

4 CONCLUSIONS

Comparing radial profiles of the LNRF-related orbital velocity for a fixed value of the cos-
mological parameter y (i.e., for a fixed value of the cosmological constant Λ) and for a
fixed spin a we conclude that in both cases of discussed angular momentum distributions,
i.e., the Keplerian distribution and the uniform distribution, a decrease of the cosmological
parameter y for a fixed value of the spin parameter a acts on the orbital velocity profile like
an increase of a for a fixed value of y.
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ABSTRACT
The innermost parts of accretion discs around black holes are subject to strong
gravity and may be the realm where quasi periodic oscillations (QPOs) originate.
Several X-ray binaries with knownmass estimates show at high frequencies a stable
QPO pair in a 3 : 2 ratio. We found that non-slender fluid tori around Kerr black
holes oscillate for any given spin parameter a with lower epicyclic frequencies than
free particles. These pressure corrected epicyclic frequencies of non-slender tori in
Kerr metric were used tomodel the upper and lower QPO as a combination of radial
and vertical epicyclic frequency with the Keplerian orbital frequency to estimate the
black hole spin.

Keywords: Accretion discs – quasi periodic oscillations – Kerr metric – black hole
spin

1 QPOSANDTHEBLACKHOLE SPIN

Accretion discs are as manifold as their accreting central objects. We divide them roughly,
depending on their radiative efficiency and their accretion flow,whether it is advection dom-
inated (ADAF) or not, into different forms from geometrically thin discs to geometrically
thick discs. Close to the innermost stable circular orbit (ISCO)where the gravitational field
is strong, the accretion flow onto a black hole shows quasi periodic oscillations (QPOs).
One way to describe such QPOs in the accretion flow is, that radial pressure gradients set
up a fluid torus which supports discrete hydrodynamicmodes (Abramowicz et al., 2006).
Several low mass X-ray binaries (LMXRB) show apart from broad low frequency QPOs

at a few Hertz (Hz) narrow high frequency QPOs, which are observed in the kHz range and
comewith some remarkable properties (McClintock andRemillard, 2004). High frequency
QPOs often appear in pairs of twin peaks which are, in the case of a black hole, in almost
exact 3 : 2 ratio which in turn may indicate a resonance between two oscillation modes.
As a matter of fact, this peculiar ratio may be explained as a non-linear resonance between
two modes of disc oscillations (Kluźniak and Abramowicz, 2002). Another intriguing
observation is that the very same high frequency QPOs reappear after years of quiescence
in the binary system (Homan et al., 2005) after the disc has been rebuilt completely. QPO
frequencies seem to be memorised and thus, are most likely determined by the central
compact object.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Black holes are rotating objects causing tremendous gravitational fields to literally drag
space and time around themselves as they spin. Theory predicts that such astrophysical
black holes are described by just two numbers: the massM , and the angularmomentum J .
The dimensionless version of J ,

a =
Jc

GM2 , (1)

is often called the black hole spin. Kerrmetric describes the space-time geometry of rotating
black holes in terms of these twoparameters,M and |a| < 1. Aswe only observe black holes
indirectly, examining fromgreat distances radiation emitted bymatter that is being accreted
into a black hole, we encounter severe difficulties in accurately calculating the properties
of the radiation emitted by accretion flows. And although radiation properties depend on
the Kerr metric close to the black hole, and therefore contain an exact information on the
black hole spin, important ingredients of the accretion physics, particularly viscosity and
radiative transfer, remain not sufficiently known. Thus, estimating the black hole spin by
spectral methods like fitting the observed Kα iron line profiles to these calculated (see, e.g.,
George and Fabian, 1991) or fitting the observed continuous electromagnetic spectra of
micro-quasars when they are in quiescent states to these calculated (see, e.g., McClintock
et al., 2006; Middleton et al., 2006) is not yet an affair of great precision.
We report here on a recent progress in sharpening theoretical tools needed in a very

different method that is not influenced by details of the radiative transfer, but depends only
on the orbital disc mechanics: fitting the observed QPO frequencies to those calculated
from the QPO 3 :2 resonancemodel (Abramowicz andKluźniak, 2001; Török et al., 2005).

2 EPICYCLIC FREQUENCIES INKERRMETRIC

The relevant oscillation modes of the black hole accretion flow are the normal modes.1 We
consider the idealised configuration of a thick disc with a non-slender, constant angular
momentum torus of a barotropic fluid in hydrostatic equilibrium (Blaes et al., 2007) in Kerr
geometry. Slender tori behave like free particles and exhibit radial and vertical epicyclic
frequencies. Non-slender tori have epicyclic frequencies which are likewise determined by
linear perturbations of the stationary and axisymmetric torus equilibrium, receive however
pressure corrections. The corresponding perturbation equation has been derived by Papa-
loizou and Pringle (1984) in Newtonian theory and by Abramowicz et al. (2006) in general
relativity. In Kerr metric, the radial and vertical epicyclic frequencies for non-slender tori
can be derived, as shown by Straub and Šrámková (2007), by rewriting the relativistic
Papaloizou–Pringle equation as eigenvalue equation and expanding the eigenvalue prob-
lem around the torus centre in β, where

β2 ≡
2(n + 1)p0

A2
0r

2
0Ω

2
0ρ0

(2)

1 Blaes et al. (2006) derived the lowest order eigenfunctions and eigenfrequencies of relativistic slender tori.
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is a dimensionless parameter which determines the thickness of the torus. The subscript
zero refers to the pressure maximum located at the torus centre.
In lowest order the free particle solution is recovered, the first order vanishes and the

second order adds negative corrections to both epicyclic frequencies. As a result the os-
cillation frequencies are for 0 < β ≪ 1 generally lower than for β = 0. For, e.g., a
Schwarzschild black hole of ten solar masses the pressure corrected radial and vertical
frequencies rise from the ISCO νr = νz = 0 to a maximum at νr (β) ≈ 66–72 Hz and
νz(β) ≈ 100–180 Hz respectively, depending on the torus thickness, and then asymptot-
ically go to the slender torus solution. The maximal thickness of the torus is the largest
value of β for which the 3 : 2 resonance between the oscillation modes occurs. Of course,
the combination of modes responsible for the upper and lower QPO frequencies in ratio
νU :νL = 3 :2 has to be taken into account. It is obvious thatwith rising black hole spin both
epicyclic frequencies rise but remain ever below the slender torus frequencies. Thus, a fairly
thick torus around a very fast rotating black holemay have the same epicyclic frequencies as
a rather slender torus around a slower spinning black hole.

3 BLACKHOLE SPIN ESTIMATION

Having these calculations in hand we can estimate the black hole spin for LMXRBs with
well known black hole mass estimations. Based on the resonance model we assume that
the higher and lower QPO peaks are composed of radial and vertical epicyclic frequencies
and the Keplerian frequency. What we do not know, however, is the proper combination,
such that we have to consider a set of plausible solutions. We studied behaviour of different
combinations of radial epicyclicωr , vertical epicyclicωz andKeplerianωK modesmodelling
the νU : νL = 3 : 2 resonance for a slender and slightly non-slender torus. We find that
there is no combination of frequencies that would give the spin estimates consistent with
the estimates obtained by the spectral fitting method. This may have two equally justifiable
reasons: either we have not found the correct combination of modes yet, or the estimations
are still not accurate enough. Bursa (2005) realised that the high frequencyQPOs inmicro-
quasars aremost likely due to the 3 :2 resonance between the axisymmetric vertical epicyclic
mode and the one-arm non-axisymmetric radialmode, i.e., the combinationωz/(ωK −ωr ).
In this case and assuming a slightly (not maximally) non-slender torus, we predict for the
micro-quasar GRO 1915+105 a black hole spin of a = 0.5–0.7. We conclude, however,
that further investigations need to be done inwhat concerns the actually involved oscillation
modes aswell as the set-up for a thin accretion disc.
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ABSTRACT
Trapping of neutrinos in brany extremely compact stars is studied,using the simplest
model with massless neutrinos and uniform-density star. The influence of bulk ten-
sion on the trapping is given for two solutions, namelywith theReissner–Nordström-
-type of geometry described by a single brany parameter, and the second one determ-
ined by the energy density of the star and the brane tension.

Keywords: Trapping of neutrinos – brany star – brany universe

1 INTRODUCTION

It is a well-known fact that in the internal Schwarzschild spacetimes of uniform energy
density with radius R < 3GM/c2 bound null geodetics exist, being concentrated around
the stable circular null geodesic. Moreover, it follows from the behavior of the effective
potential of null geodesics in the vacuum Schwarzschild spacetimes that any spherically
symmetric, static interior spacetime with radius R < rph ≡ 3GM/c2 admits existence of
bound null geodesics. Such objects are called extremely compact objects.
It is of considerable interest to look for possible existence of extremely compact objects

and their astrophysical relevance in the case of brany universe. However, in the Randall–
Sundrum II-type braneworld, the vacuum exterior of a spherical star is not in general a
Schwarzschild spacetime; moreover, there are at least two solutions becoming asymptotic-
ally flat in the Schwarzschild-likeway (Germani andMaartens, 2001).
Existence of bound null geodesics in extremely compact objects has astrophysical con-

sequences. It was shown by Abramowicz et al. (1997) that the trapped modes of gravita-
tional waves influence instabilities in such objects. There is also other interesting problem
of trapped neutrinos in the strong gravitational field of extremely compact objects. This
matter should be important for the following reasons. First, a distant observer canmeasure
suppressed neutrino flow and secondly, trapped neutrinos in the interior of the extremely
compact star can influence cooling processes of this star. Cooling process could be realized,

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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as was pinpainted in Stuchlík et al. (2004), in a “two-temperature” regime. The temper-
ature profile in the interior of the star with no trapped neutrinos differs from the profile
established in the external layer with trapped neutrinos. We can cogitate for the neutrino
dominated period of cooling process that in region where trapping of neutrinos reaches the
highest efficiency (external layer near the radius of stable null circular geodesic) the temper-
ature acquires higher values in comparison with the interior of the star. It is possible that
such a non-uniformity leads to an inflow of heat from the external layer to the interior of the
star. Such a process could influence the structure of the star. It can even end in developing
of “self-organized” structures (Stuchlík et al., 2004). Therefore the standard picture given
byWeber andGlendenning (1992) could bemodified significantly.
Deep analysis of this idea requires sophisticated analytical estimates and numerical sim-

ulations. But the first step in our understanding of the role of trapped neutrinos in extremely
compact stars is estimation of the efficiency of the trapping effect. This effect is determined
by the ratio of trapped neutrinos to all neutrinos produced in the extremely compact object.
The effect of trapping on neutrino luminosity of the star can be expressed by a luminosity
trapping coefficient relating the total number of trapped neutrinos and the total number of
radiated neutrinos, per unit time of distant observers. Influence on the cooling process can
we rendered by a local cooling trapping coefficient and a global cooling coefficient. The first
of them is given by ratio of trapped and radiated neutrinos at any radiuswhere the trapping
occurs, and the second one is given by ratio of trapped and radiated neutrinos (per unit time
of distant observers) integrated over whole the region where trapping occurs.
The trapping and cooling coefficients were introduced in Stuchlík et al. (2004). They

cogitated trapping in the internal Schwarzschild spacetimewith uniform distribution of en-
ergy density and isotropic and uniform distribution of local neutrino luminosity. This work
was complemented by estimation of the internal Schwarzschild–(anti-)de Sitter spacetimes
in Stuchlík et al. (2005). Here we consider the trapping of neutrinos in the framework
of the braneworld generalization of exact uniform-density solutions of effective Einstein’s
equations. We shall consider both of the known asymptotically flat solutions for uniform
density stars (Germani andMaartens, 2001).
Section 2 contains a brief summary of the braneworld uniform density star properties.

In Section 3, null geodesics of the spacetimes are given in terms of an effective potential.
Section 4 is dedicated to determination of trapping neutrinos. Efficiency coefficients of the
neutrino trapping are given in Section 5. In Section 6 concluding remarks are presented.
As the first approximation to solution of this problem we assume zero rest energy of

neutrinos. We assume the period of evolution of the compact stars when the temperature is
low enough to allow geodetical motion of neutrinos, i.e., we assume the neutrino free mean
path larger than the dimension of the star R.
We shall use the high energy physics units, h̄ = c = kB = 1.

2 SPACETIMEGEOMETRY

We consider stars in Randall–Sundrum II type braneworld. In the simplest case of static
spherical star with uniform density the solution of effective field equations is given in Ger-
mani and Maartens (2001). The spherically symmetric metric in static Schwarzschild
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coordinates reads (Misner et al., 1973)

ds2 = −A2(r) dt2 + B2(r) dr2 + r2 dΩ2 ,

where

B2(r) =
[

1−
2Gm(r)

r

]−1

and the mass function

m(r) = 4π

∫ r

a
ρeff(r ′)r ′2 dr ′ ,

while the integrating interval is taken from a = 0 for the interior solution and from a = R
for the exterior solution.
In the interior, considering the uniform distribution of energy density ρ = const, we

obtain

A−(r) =
α

ρ + p(r)
, where α = const .

Under the condition of uniform density, the interior mass function is reduced to

m−(r) = M
(

1 +
3M

8πλR3

)( r
R

)3
,

where M = (4/3)πR3ρ. Thus

B−(r) = 1/∆(r) ,

where

∆(r) =
[

1−
2GM
r

( r
R

)3 (
1 +

ρ

2λ

)]1/2
,

and the pressure radial profile is given by

p(r)
ρ

=
[∆(r)−∆(R)](1 + ρ/λ)

3∆(R)−∆(r) + [3∆(R)− 2∆(r)]ρ/λ
,

with λ being the brane tension (Germani andMaartens, 2001).
There exist two exterior solutions having asymptotically the Schwarzschildian character.

The first one is the Reissner–Nordström-like solution given by

(A+)2 = (B+)−2 = 1−
2GM

r
+

q
r2 .

The matching condition implies the brany parameter q to be given by (see Germani and
Maartens, 2001)

q = −
3GMRρ

λ
,
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the effective gravitationalmass

M = M
(

1−
ρ

λ

)
,

and

α = ρ∆(R) .

Since we require M > 0, the condition on the brane tension in the form λ > ρ must be
satisfied.
The second exterior solution is given by (Germani andMaartens, 2001)

(A+)2 = 1−
2GN

r
,

(B+)−2 = (A+)2
[

1 +
C

λ(r − 3/2GN )

]
.

From thematching conditions we arrive to the expressions

N = M
1 + 2ρ/λ

1 + 3GMρ/Rλ
,

C = 3GMρ
1− 3GM/2R

1 + 3GMρ/Rλ
,

α =
ρ∆(R)

(1 + 3GMρ/Rλ)1/2 .

3 NULLGEODESICSANDEFFECTIVEPOTENTIAL

We assume free motion of massless neutrinos. Such neutrinos are moving along null
geodesics. Their 4-momentum pµ satisfies the equation

Dpµ

dλ
= 0

with the normalization condition

pµ pµ = 0 .

The orbits in a central force field lie in a central plane. For a single particle it is reasonable
to choose the equatorial plane (θ = π/2 and dθ/dλ = 0). Both the considered metrics are
time independent and spherically symmetric. Each symmetry in themetric corresponds to a
Killing vector field, i.e., the temporal (∂/∂ t) vector field and the azimuthal one (∂/∂φ). The
related conserved quantities represent the projection of the neutrino 4-momentum

E = −pt , L = pφ ,



Trapping of neutrinos in brany extremely compact stars 283

where E is the energy and L is the axial angularmomentum.
It is useful to describe null geodesics in terms of the impact parameter

ℓ =
L
E

.

The relevant equation governing the radialmotion then reads

(pr )2 = A−2(r)B−2(r)E2
(

1− A2(r)
ℓ2

r2

)
,

and the radial motion is restricted by an effective potential defined for the external and the
internal spacetime separately

(1) for the Reissner–Nordström-like exterior solution

ℓ2 ≤

⎧
⎪⎨

⎪⎩

V int
eff = ∆−2(R)r2

(
1 + p(r)

ρ

)2
for r ≤ R ,

V ext
eff = r2

{
1− GM

r

[
2− ρ

λ

(
2− 3R

r

)]}−1
for r > R ,

(2) for the second exterior solution

ℓ2 ≤

⎧
⎪⎨

⎪⎩

V int
eff = ∆−2(R)(1 + 3GM

R
ρ
λ )r2(1 + p(r)

ρ )2 for r ≤ R ,

V ext
eff = r2

{
1− 2GM

r

(
1+ 2ρ

λ

1+ 3GM
R

ρ
λ

)}−1
for r > R .

Figure 1. The behaviour of the effective potential for typical neutron star with ρ ∼ 109 MeV4,
M ∼ 4 × 1057 GeV4, with the brane tension λ = 1.3 × 109MeV4. The numbers 1 and 2 depict the
type of the brany solution.
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Figure 2. Behaviour of Veff for the first type of
the brany solution with λ = 1.3 × 109 MeV4,
ρ = 109 MeV4,M ∈ (3.5–4.1)× 1057 GeV4.

Figure 3. Behaviour of Veff for the first type
of the brany solution with λ ∈ (1.3–1.7) ×
109 MeV4, ρ = 109 MeV4,M = 4×1057 GeV4.

Circular null geodesics are given by the local extrema of the effective potential Veff. Typical
behaviour of the effective potential is depicted in Fig. 1. Figures 2 and 3 demonstrate the
influence of varying values of the parameters M or λ on the behaviour of the effective
potential Veff in the Reissner–Nordström-like spacetimes.

4 TRAPPINGOFNEUTRINOS

We can see that the stable bound null geodesics can exist in both spacetimes. Thus, some
part of produced neutrinos is prevented from escaping such static objects. The stable cir-
cular null geodesics of the internal spacetime are located on the radius we denote rc(i). The
local minimum of V ext

eff at rc(e) corresponds to the unstable circular null geodesic of the ex-
ternal spacetime,wherewe get for the related impact parameter the following prescriptions:

(1) for the Reissner–Nordström-like exterior solution

ℓ2
c(e) =

[
3GM(λ− ρ) +

√
24GMRρλ+ 9G2M2(λ− ρ)2

]4

8GMλ2
{

3GM(λ− ρ)2 + 6Rρλ+
√

3GM[3GM(λ− ρ)2 + 8Rλρ](λ− ρ)
} ,

(2) for the second exterior solution

ℓ2
c(e) = 27G2M2

(
1 + 2 ρλ

1 + 3GM
R

ρ
λ

)2

.

4.1 Regions of trapping

In principle, bound neutrinos may appear outside the extremely compact objects, but they
are trapped by the strong gravitational field of these objects and they enter them again. For
this reason it is useful to divide the trapped neutrinos into two families (see Fig. 4).
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Figure 4. Illustrative scheme of the effective potential Veff with parts corresponding to the trapped
neutrinos.

(1) Internal bound neutrinos: Their motion is restricted inside the object; they corres-
pond to the upper part of the shadow area in Fig. 4, having impact parameter between
ℓ2

int(R) and ℓ2
c(i).

(2) External boundneutrinos: May leave theobject, but they re-enter the object; depicted
by the lower part of the shadow area in Fig. 4, having impact parameter between ℓ2

c(e)
and ℓ2

int(R).

The cooling process can slow down by the bound neutrinos with mean free path higher
than the radius R. From Weber and Glendenning (1992) we know that this condition is
fulfilled in a few days old neutron stars. Of course, such neutrinos will be re-scattered due
to finiteness of the mean free path.
The nature of re-scattering effect on the trapped neutrinos is a complex process. Nu-

merical methods simulating such processes could be based on the Monte Carlo methods.
This concerns only neutrinos produced above rb(e) that can be re-scattered. Those produced
below rb(e) freely escape to infinity.

4.2 Directional angles

If we consider an equatorial motion, we can define the directional angle relative to the
outward pointed radial direction measured in the emitter system (i.e., the local system of
static observers in the internal spacetime) by the relations

sinψ =
p(φ)

p(t) , cosψ =
p(r)

p(t) ,
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where

p(α) = pµω(α)
µ , p(α) = pµeµ

(α)

are the neutrino 4-momentum components as measured by static observers.1 Because
pθ = 0, there is

p(φ) =
L
r

, p(t) =
E
A(r)

.

Weobtain the directional angles in the form

sinψ = A(r)
ℓ

r
, cosψ = ±(1− sin2ψ)1/2 .

The interval of relevant radii is r ∈ (rb(e), R). The impact parameter ℓ2
c(e) determines the

directional angle limit for the bound neutrinos. For twometrics under consideration we get
limiting angles

sinψe =
A(r)

√
8GM rλ

×

[
3GM(λ− ρ) +

√
24GMRρλ+ 9G2M2(λ− ρ)2

]2

{
3GM(λ− ρ)2 + 6Rρλ+

√
3GM[3GM(λ− ρ)2 + 8Rλρ] (λ− ρ)

}1/2 , (1)

for the Reissner–Nordström-like solution and

sinψe =
A(r)
r

3
√

3GM
1 + 2 ρλ

1 + 3GM
R

ρ
λ

. (2)

for the second solution. Conspicuously, the condition ψi > ψe holds at any given radius
r < R.

4.3 Local escaped to produced neutrino ratio

We assume that neutrinos are locally produced by isotropically emitting sources. Then the
escaped-to-produced-neutrinos ratio depends on geometrical argument only. This ratio is
determined by the solid angle 2Ω corresponding to escaping neutrinos. Inward emitted
neutrinos could not be omitted as they can be radiated away, as indicated in Fig. 5.
Labelling the number of produced, escaped and trapped neutrinos per unit time of an

external static observer at infinity as Np, Ne and Nb, we introduce the global correction
factors by relations

E(R,λ) ≡
Ne(R,λ)

Np(R,λ)
, B(R,λ) ≡

Nb(R,λ)

Np(R,λ)
.

1 The tetrads of 1-forms ω(α)
µ and 4-vectors eµ(α) related to static observers have to be used (Hledík, 2002;

Stuchlík, 2002).
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Figure 5. Guide illustration of the bound-escape ratio at radius r ∈ (rb(e), R) in the internal space-
time. Direction of the neutrinomotion with respect to the static observers is related to e(r) giving the
outward oriented radial direction. Figure taken from (Stuchlík et al., 2004).

Figure 6.Local coefficient of coolingβ; for typical neutron star ρ ∼ 109 MeV4,M ∼ 4× 1057 GeV4;
λ = 1.3× 109 MeV4 for both spacetimes under consideration.
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It is useful to introduce the local correction factor for escaping neutrinos at a given ra-
dius r ∈ (rb(e), R). The solid angle 2Ωe(ψe) completely determines the ratio of escaped-
produced neutrinos. In the case of non-isotropic emission of neutrinos it is reasonable to
define this angle by relation

Ωe(ψe) =
∫ ψe

0

∫ 2π

0
p(ψ) sinψ dψdφ ,

where p(ψ) is directional function of emission (scattering) process.
In our approximation with isotropically emitting sources of neutrinos, the escape solid

angle is given simply by

Ωe(ψe) =
∫ ψe

0

∫ 2π

0
sinψ dψdφ = 2π(1− cosψe) ,

and the escaping correction factor reads

ϵ(r, R,λ) =
dNe(r,λ)
dNp(r,λ)

= 1− cosψe(r, R,λ) .

The complementary factor for trapped neutrinos is given by

β(r, R,λ) = 1− ϵ(r, R,λ) =
dNb(r,λ)
dNp(r,λ)

= cosψe(r, R,λ) .

The coefficient β(r, R,λ) determines the local efficiency of the neutrino trapping. The
local maxima of the function β(r, R,λ) (with R, λ being fixed) are given by the condition
∂β/∂r = 0which is satisfied at radius r = rc(i). This implies coincidencewith the radius of
the stable circular null geodesic.
Figure 6 demonstrates the behaviour of local cooling coefficient β for both estimated

spacetimes.

4.4 Neutrino production rates

The neutrino production is a complex process depending on detailed structure of an ex-
tremely compact object. It is possible to express the locally defined neutrino production rate
in the form

ℓ(r{A}) =
dN(r{A})

dτ (r)
,

where dN is the number of interactions at radius r , τ is the proper time of the static observer
at the given r , {A} is the full set of quantities relevant for the production rate. The number
of interactions can be written in the form

dN(r) = n(r)Γ (r) dV (r) ,

where n(r), Γ (r) and dV (r) are the number density of particles entering the neutrino
production processes, the neutrino production rate and the proper volume element at the
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radius r , respectively. Functions n(r) andΓ (r) are given by detailed structure of the object,
dV (r) is given only by the spacetime geometry.
We shall assume, considering the uniform density stars, the local production rate to be

proportional to the energy density and therefore we can rewrite the local neutrino produc-
tion rate to the form

ℓ(r) =
dN

dτ
∝ ρ = const .

The local neutrino production rate related to the distant static observers is given by the
relation including the time-delay factor

I =
dN
dt

= ℓA(r) .

The number of neutrinos produced at a given radius in a proper volume dV per unit time of
a distant static observer is given by the relation

dNp(r) = I (r) dV (r) = 4πℓA(r)B(r)r2 dr .

Integrating through the compact object, we arrive to the global neutrino production rate

Np(R) = 4πℓ

∫ R

0
[A−(r)B−(r)]r2 dr ,

and in an analogical way, we can give the expression for the global rates of escaping and
trapping of the produced neutrinos in the form

Ne(R) = 4πℓ

∫ R

rb(e)

(1− cosψe)[A−(r)B−(r)] r2 dr + Np(rb(e)) ,

Nb(R) = 4πℓ

∫ R

rb(e)

cosψe[A−(r)B−(r)] r2 dr .

5 EFFICIENCYOFNEUTRINOTRAPPING

To characterize the efficiency of neutrino trapping, we introduce some coefficients describ-
ing the trapping effect in connection to the total neutrino luminosity and the cooling process
in theperiod of the evolutionof the star corresponding to the geodeticalmotionof neutrinos.

5.1 Trapping coefficient of total neutrino luminosity

The influence of the trapping effect on the total neutrino luminosity can be appropriately
given by the coefficientBL defined by the relation

BL =
Nb
Np

.
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The coefficient relates the number of neutrinos produced inside the whole compact star
during unit time of distant observer and the number of those of the produced neutrinos that
will be captured by the gravitational field of the star.
The complementary “escaping” luminosity coefficient is then determined by

EL(R) = 1−BL(R) .

It is useful, moreover, to define other global coefficients: for the “internal” neutrinos with
motion restricted to the interior of the star by

QL(R) =
Nint
Np

and for the “external” neutrinos by a a complementary coefficient

χL =
Next
Np

= BL −QL .

After numerical calculation we get for typical neutron star (ρ ∼ 109 MeV4, M ∼ 4 ×
1057 GeV4) with brany tension fixed at λ = 1.3 × 109 MeV4 the value BL = 0.644 for
the first type of spacetime solution and BL = 0.666 for the second type of solution. What
is really interesting is the strong dependence of BL and QL on the brane tension λ (see
Fig. 7). As mentioned in Germani andMaartens (2001), from the big bang nucleosynthesis
we know that λ " 1 MeV4. Stronger bound arises from negative results of sub-millimetre
tests ofNewton’s lawλ " 108 GeV4. The existence of neutron stars leads us to put the value
of λ somewhere between these limits.

Figure 7.Dependence ofBL and QL on brane tension λ (ρ ∼ 109 MeV4, M ∼ 4 × 1057 MeV4) for
both estimated spacetimes.
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5.2 Trapping coefficient of neutrino cooling process

The efficiency of the influence of neutrino trapping on the cooling process is most effect-
ively described by the local coefficient of trapping bc relating the captured and produced
neutrinos at a given radius of the star, i.e., we can define

bc ≡ β(r; R) .

The behaviour of the local cooling coefficient is shown in Fig. 6. As intuitively expected,
the maximum of bc(r; R) for a given R is located at the radius of the stable null circular
geodesics.
The cooling process could be appropriately described likewise in a complementary man-

ner by a global coefficient for trapping, restricted to the “active” zone, where the trapping
of neutrino occurs.

6 CONCLUSION

We have demonstrated how the trapping effect by strong gravitational field of extremely
compact stars can influence the total neutrino luminosity and cooling process. It is
straightforward that the trapping of neutrinos can play an modified role in the case of
Schwarzschild–(anti-)de Sitter spacetimes, as has been investigated in details by Stuchlík
et al. (2005), as well as in the case of extremely compact stars in the brany universe. We
used only “toy”model of real-world situation, but theworking out foreshadows its relevance
in realistic models of extremely compact objects. Especially, if we consider the cumulative
nature of this phenomenon. Another step on this way should be accomplished by study-
ing polytropic structures (Tooper, 1964; Stuchlík, 2002; Stuchlík and Hledík, 2005; Hledík
et al., 2007; Mrázová et al., 2005).
We would like to give prominence to dependence of luminosity trapping coefficient on

the value of brane tension. Today, we do not know its exact value. So it is a question if the
trapping effect could be used for estimating the brany tension from future observations, but
the subsequent task is how cooling process will be modified by cumulation of neutrinos in
more realisticmodels of neutron or quark stars.
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ABSTRACT
High-frequency QPOs in neutron-star binary systems could be explained by models
based on parametric or forced resonance between oscillationmodes of the accretion
disc around the neutron star (with frequencies related to the Keplerian and epicyclic
frequencies of the disc) and the relative rotational motion between the disc material
and either the neutron star or the binary companion.

UsingNewtonian theory, we discuss the possibility of forced resonant phenomena
being excited by means of gravitational perturbations coming from surface features
on the neutron star and from the companion star. For each potential perturbation
source, we have determined the Fourier decomposition of the gravitational perturb-
ing forces acting on disc elements in the radial and vertical directions. The analysis
presented for the binary companion can be applied also to black hole systems but the
surface features would not be present in that case.

The oscillations induced by the binary partner are of a different character from
those which would be induced by a mountain or by the accretion columns. In the
case of symmetric accretion columns, the excitation frequency in the radial direction
is twice that in the vertical direction and higher order modes could be relevant for
parts of the disc very close to the neutron star. In this inner region, the influence
of the accretion columns is greater than that of the binary companion for producing
forced oscillations in both the radial and vertical directions; in the intermediate
part, the vertical oscillations are induced by the accretion columns while the radial
oscillations are excited by the binary partner (if appropriate conditions are fulfilled);
sufficiently far from the neutron star, the binary companion has the greater effect.
The limits on the magnitude of neutron star deformations given by the possibility to
excite observable QPOs coincide with restrictions coming from (non-)observations
of gravitationalwaves by LIGO.

Keywords: Neutron stars – binary systems –QPOs – accretion discs
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1 INTRODUCTION

Quasi-periodic oscillations (QPOs) of X-ray brightness have been observed in a number of
accreting binary systems containing neutron stars (see van der Klis, 2000; Belloni et al.,
2005;Homan et al., 2002; Barret et al., 2005 for a review) and black holes (Remillard, 2005;
Remillard and McClintock, 2006) both at low frequencies (Hz) and at high frequencies
(kHz). For the kHz QPOs, the spectrum often shows twin peaks at frequencies correlated
with the X-ray intensity. The ratio of the twin peak frequencies observed in black-hole
systems is exactly, or almost exactly 3 : 2 (Török, 2005b), while in the neutron star systems
the ratio is concentrated around 3 : 2, but has a much wider range than for the black-hole
systems. An anticorrelation effect has been noted for the neutron-star systems, giving an
indication of the likely relevance of resonant phenomena (Abramowicz et al., 2005b). In
each of the neutron-star systems, there is a linear relation between the upper and lower twin
peak frequencies (νU and νL)

νU = AνL + B , (1)

and the slope A and the shift B are anti-correlated following the relation

A ≈
3
2
−

B
600 Hz

, (2)

pointing to an intersection whose frequencies [∼ 600 Hz,∼ 900 Hz] can be interpreted as
the oscillation eigenfrequencies νo

U, ν
o
L having the 3 :2 ratio. The anticorrelation is predicted

by the resonance model and is observed for the twelve neutron-star systems for which we
have the relevant data (Abramowicz et al., 2005a,b).
Török discovered a significant effect concerning the relative energies of the upper and

lower frequency oscillations that suggests a significant role for forced resonant phenomena
(Török and Stuchlík, 2005b; Török et al., 2006; Török, 2007; Török and Barret, 2007). He
showed that in the neutron star systems, the energy difference between the upper and lower
twin peak oscillations (characterized by the rms amplitude difference between the twin
peaks) is zero for the resonant frequency ratio 3 :2 at a specific (lower) frequency ν3:2

l which
is fixed for a particular system,while it is positive for frequencies below ν3:2

l and negative for
frequencies above it with a dependence on the lower frequency given by the “Török curve”
which has a sinusoidal shape. Up to now, Török curves have been determined for three
neutron-star systems: 4U 1728−34, 4U 1608−522, 4U 1636−536 (Török et al., 2006). It
is probably significant that when the energy difference is given in terms of the frequency
ratio νU : νL (νU : νL ≷ 3 : 2 for νL ≶ ν3:2

L ) there seems to be an identical Török curve for
all of the systems under consideration (Török and Barret, 2007), which is relatively well
defined in the range νU : νL ∈ (1.25, 1.7). This result, if confirmed by studies of other
neutron-star systems, would indicate the general relevance both of the Török energy-switch
effect at the frequency ratio νU : νL = 3 : 2, and of the functional dependence of the energy
difference on the frequency ratio throughout the above interval. Therefore we could expect
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the effectiveness of pumping energy into the upper and lower frequency oscillations by a
forced resonance to be dependent on the frequency ratio (Török and Stuchlík, 2005a).1

In some black-hole sources, other small-integer frequency ratios have been observed
(e.g., in microquasar GRS 1915+105 by Belloni et al. (2001); Strohmayer (2001); Re-
millard (2004) or extragalactic black hole NGC 5408 by Strohmayer et al. (2007)), but
the evidence for them is usually not as clear as in the case of the 3 : 2 ratio (Abramowicz
et al., 2004). The resonant oscillation model (Abramowicz and Kluźniak, 2001) seems
to be promising for explaining QPOs in both black-hole and neutron-star systems (Ab-
ramowicz et al., 2005b; Török et al., 2005; Kluźniak et al., 2007) and even in Sgr A∗ (Török,
2005a). However, other possibilities, such as the relativistic precession model for neutron
stars (Stella and Vietri, 1999), oscillations of a warped disc (Kato and Fukue, 1980; Kato,
2004a,b) or simple p-mode oscillations of fluid tori (Rezzolla, 2004; Rezzolla et al., 2003)
also remain viable. Nevertheless, in all of the models, forcing of the oscillations should be
addressed.
In order to initiate the oscillations and the resonance phenomena, it is necessary to

have some internal and/or external perturbation mechanism. One example of an internal
mechanism is the so-called Aschenbach effect, related to the presence of a hump in the
velocity profile of the disc, as measured by locally non-rotating observers (Bardeen, 1973),
which appears both for thin, Keplerian discs (Aschenbach, 2004, 2006) and for thick tori
(Stuchlík et al., 2004, 2005, 2006, 2007a,b) orbiting extremely rapidly rotating black holes;
the so-called extended resonant model is then able to explain all five high-frequency QPOs
observed inGRS1915+105(Stuchlík et al., 2007c). The relevanceof this effect still remains
to be clarified by detailed studies, however. Other examples of internalmechanisms include
oscillation modes of warped thin discs (Kato and Fukue, 1980) or turbulent motions in
the disc. Possible external mechanisms include the effects of gravitational perturbations
caused by the binary partner or, in the case of neutron-star systems, by asymmetries of the
neutron star. Other possibilities include perturbations caused by an orbiting satellite or by
a neutron-star magnetic field.
Here, we focus on neutron-star systems and on external perturbations caused by the

binary partner or by asymmetries of the neutron star. These two types of perturbation
clearly induce different behaviours: the frequency of the force arising from the influence
of the binary partner (the difference between the rotational frequency of the disc and the
orbital frequency of the binary partner) is essentially equal to the disc rotation-frequency,
since this exceeds theorbital frequencybymanyorders ofmagnitude,whereas the frequency
of the force caused by asymmetries of the neutron star is equal to the difference between
the rotation frequencies of the disc and of the neutron star (Pétri, 2005). We give estimates
on the forcing magnitude implied by the restrictions given by deformations of the neutron
stars.

1 Quite recently, it has been shown that multi-resonant phenomena could be relevant in the neutron star systems
with resonant points in the frequency ratios 3 :2 and 5 :4 as shownby Török et al. (2007c); Stuchlík et al. (2007d,e)
and Török et al. (2007a) for the 4U 1636−536 source. In some other sources (4U 1820−30 and 4U1735−44),
the frequency ratio 4 : 3 is relevant (Török, 2007). The relevance of the two resonant radii corresponding to the
3 :2 and 5 :4 frequency ratios has been shown also in the framework of the relativistic precessionmodel (Stella and
Vietri, 1999) by Török (2007).
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2 BACKGROUNDIDEAS ABOUTFORCEDOSCILLATIONS

We summarise here some background ideas about forced oscillations which may not be
well-known and which are fundamental for our discussion in this paper. We follow closely
the presentation in Section 22 of Landau&LifshitzMechanics (Landau andLifshitz, 1976).
Consider first the idealised case of a test particle undergoing forced oscillations with the
equation ofmotion being

ẍ + ω2x = Fp(t)/m , (3)

where x is the displacement from the mid-point of the oscillation, ω is the intrinsic oscil-
lation frequency, m is the mass of the particle and Fp(t) is an external perturbative force
which is varying with time t . We take Fp(t) to be a simple periodic function of time

Fp(t) = fp cos(γ t + β) , (4)

where fp is its amplitude, γ is its frequency and β is a phase constant. The motion of the
particle is then given, in general, by

x = a cos(ωt + ϕ0) +

[
fp

m
(
ω2 − γ 2

)
]

cos(γ t + β) , (5)

where a and ϕ0 are further constants whose values are fixed by the initial conditions. This
is the general solution but it becomes indeterminate when resonance occurs (γ = ω). To
obtain the solution in that case, one can proceed by first rewriting Eq. (5) as

x = a cos(ωt + ϕ0) +
fp
m

[
cos(γ t + β)− cos(ωt + β)

ω2 − γ 2

]
, (6)

where a and ϕ0 now take different values from before, and then applying l’Hôpital’s rule to
the contents of the square bracket to find its limit as γ → ω. The solution at resonance is
then given by

x = a cos(ωt + ϕ0) +
(

fp
2mω

)
t sin(ωt + β) , (7)

which has a fundamentally different behaviour from the non-resonant solution, with the
amplitude of the second term increasing cumulatively with time. This linear regime of
forced resonance ends when the oscillation amplitude becomes large enough so that non-
linear phenomena and/or dissipative processes become relevant (see Landau and Lifshitz,
1976).
We consider now the particular case of Keplerian orbital motion in the equatorial plane

of a slowly-rotating compact object, with the motion being basically circular but with the
possibility of having epicyclic oscillations around the circular path. Wedenote the frequency
of the circular orbital motion at a general radius r by ΩK (=

√
GM/r3) and write the

epicyclic frequency as ω = αΩK where α is, in principle, a known function of r for each
particular type of epicyclic motion. If there is a periodic perturbing force acting, there will
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clearly be some radius at which the frequency of the perturbing force will be in resonance
with the epicyclic frequency andwe focus here on that. Considering a timewhen the second
term of Eq. (7) has grown to dominate over the first one, Eq. (7) can be re-written as

( x
r

)
=

π

α

(
fp
f0

) (
t
τK

)
sin(ωt + β) , (8)

where f0 is the main gravitational force from the central object ( f0 = GMm/r2, with M
being the mass of the central object) and τK = 2π/ΩK is the period of the circularKeplerian
motion. The time taken for the amplitude of the resonant oscillations xmax to grow to a
particular value is then

t =
( xmax

r

) (α
π

) ( fp
f0

)−1
τK . (9)

The discussion above is for test particle motion whereas for the context discussed in this
paper one is dealingwith fluid elements for which the situation becomes more complicated.
Nevertheless, the above discussion gives an indication of how the mechanism works. For
kilohertz QPOs, we are concerned with oscillations occurring in the very innermost parts
of accretion discs around compact objects: we then have τK ∼ 10−3 s and also the α for
radial epicyclic motion becomes small compared with unity as the marginally stable orbit
is approached (this is well-known in the case of the Kerr metric and applies also in metrics
appropriate for neutron stars (see, e.g., Stuchlík et al., 2007d). It then follows that the
oscillation amplitude can rise rather rapidly to relevant values even when the force ratio
( fp/ f0) is quite small.

3 GRAVITATIONALFORCEFROMTHEPERTURBINGSOURCES

In the case of an external excitation mechanism, the resonant phenomena are determined
by coincidence of the frequency of the perturbing force, as observed in the frame comoving
with the disc at a given radius, with the epicyclic frequency (radial or vertical), the orbital
frequency, or a combination of these. Three kinds of resonance can be distinguished:

(1) Corotating resonance, when Ωs = Ωd at some given radius r (where Ωs denotes
the angular velocity of the gravitational perturbation source and Ωd(r) denotes the angu-
lar velocity profile of the accretion disc, both measured in the frame of stationary distant
observers); Ωs = Ωns in the case where the perturbation comes from neutron-star asym-
metries,Ωs ∼ 0 in the case where it comes from the binary partner of the neutron star or a
black hole.
(2) Forced (driven) resonance, when at the given radius one of the epicyclic frequencies

ω equals the frequency of somemodem of the gravitational perturbation, i.e.,

m|Ωd −Ωs| = ωr(θ) .

Note that in the case of forced resonance, beat frequencies could also be observed (Landau
and Lifshitz, 1976). If beat frequencies enter the resonance, the condition generalizes to the
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form

m|Ωd −Ωs| =
k
l
ωr(θ) ,

where k and l are small integers.
(3) Internal parametric resonance related to a sinusoidally time-varying epicyclic fre-

quency as described by the Mathieu equation (Landau and Lifshitz, 1976) and determined
by the relation

m|Ωd −Ωs| =
2
n
ωr(θ) ,

with integer n ≥ 2.

Naturally, the resonance conditions must be related to the restriction coming from the
orbital angular velocity at the innermost stable circular orbit which determines (approx-
imately) the inner boundary of the accretion disc if it is above the surface of the neutron
star. Note that the current widely-accepted upper limit for observed neutron star rotation
frequencies is νns(max) ∼ 700 Hz, while for the disc frequency νd(max) ∼ 1300 Hz, and so
the resonance conditions can easily be satisfied.
We assume a basically isotropic neutron star of mass MA and radius RA spinning about

its rotation axis with angular velocityΩA and with the symmetry plane of the accretion disc
being orthogonal to the rotation axis, as can be expected out to radii R ∼ 103 RA because of
the Bardeen–Peterson effect (Bardeen and Peterson, 1975).
The neutron-star asymmetries are approximated as point-like sources with mass m loc-

ated on the surface of the star at a positiongivenby the latitudinal angle θA . Weuse spherical
coordinates (R, θ,ϕ) with the origin of the coordinate system coinciding with the centre of
the neutron star. The binary partner having mass MB (radius RB) is assumed to be moving
along an orbit with constant distance d from the neutron star and with its position given
by the latitudinal coordinate θB; the situation for a single mountain is illustrated in Fig. 1
(we return later to the case of two mountains). For thin discs, the angular velocity pro-
file is generally well-approximated as being Keplerian, i.e., Ωd(r) = ΩK(r) (Novikov and
Thorne, 1973; Abramowicz et al., 1992) but for thick (or slim) discs, there is a deviation
away from this because of the action of pressure forces (Jaroszyński et al., 1980; Kozłowski
et al., 1978). We here determine the radial and vertical components of the gravitational
force produced by the perturbing sources in a purely Newtonian way. This is an approxim-
ation, but we do not expect that a relativistic analysis would greatly change the qualitative
features of our results. For simplicity the force will be determined in the equatorial plane,
i.e., in the symmetry plane of the disc; this is completely correct for the thin, Keplerian
discs, and gives good estimates for slim discs. The time evolution of the perturbing force
components will be determined for a fixed point on the disc characterized by the coordin-
ates (R, θ = π/2,ϕ = Ωdt), with the natural restriction put on the radial coordinate
RA < R < 103 RA. We treat separately the three cases (a single mountain, two symmetric
mountains and the binary partner), giving both the exact formulae for the perturbing forces
and also approximate results obtained under the conditions d ≫ R, RB;m ≪ MA,MB. We
give expressions both for the total forces and for their oscillatory parts.



Excitation of oscillations in accretion discs orbiting compact objects 299

Figure 1. Schematic picture illustrating generation of a gravitational perturbative force in an equat-
orial accretion disc by a single mountain on the surface of a neutron star (MA, RA) or by a binary
partner (MB, RB).

3.1 Onemountain

Here, and in the following, we consider the force acting on a comoving unitmass element of
the accretion disc located at a given radius R in the symmetry plane of the disc. The vertical
component of the perturbing gravitational force FAV is given by

FAV(t) =
Gm
R2

A

(
RA

R

)3
cos θA

[

1− 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

, (10)

while the radial component is given by

FAR(t) =
Gm
R2

A

(
RA

R

)2 (
1−

RA

R
sin θA cosωAt

)

×

[

1− 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

, (11)

where

ωA ≡ |ΩA −Ωd| . (12)

The oscillations have an anharmonic character. Local extrema for both FV and FR are given
by

sinωAt = 0 . (13)

For the radial force FR, there are additional extrema that occur only inside the neutron star
and not in the disc, where 0 < x < 1 (RA < R). The relevance of these extrema inside the
neutron star has been discussed by Stuchlík andHledík (2005).
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The vertical force has the mean value (given by Eq. (10) with cosωAt = 0)

FAV(mean) =
Gm
R2

(
RA

R

)3
cos θA

[

1 +
(
RA

R

)2
]−3/2

(14)

and oscillates around this with frequencyωA and amplitude AV ≡ FAV(max) − FAV(mean) given
by the relation

AV =
Gm
R2

A

(
RA

R

)3
cos θA

⎧
⎨

⎩

[

1− 2
RA

R
sin θA +

(
RA

R

)2
]−3/2

−

[

1 +
(
RA

R

)2
]−3/2

⎫
⎬

⎭ . (15)

The behaviour of this amplitude is discussed in Stuchlík andHledík (2005). The radial force
oscillates around the mean value

FAR(mean) =
Gm
R2

A

(
RA

R

)2
[

1 +
(
RA

R

)2
]−3/2

. (16)

with frequencyωA and amplitude AR given by

AR =
Gm
R2

A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− RA
R sin θA

[
1− 2 RA

R sin θA +
(
RA
R

)2
]3/2 −

1
[

1 +
(
RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (17)

The behaviour of AR(x, θA) is discussed in Stuchlík and Hledík (2005).
Note that the anharmonic oscillations given by Eqs (10) and (11) are strictly periodic.

With a suitable choice of origin for the time axis, they can be Fourier decomposed to give

FAV(t) =
Gm
R2

A

(
RA

R

)3
cos θA

∞∑

m=0
f mAV

(
RA

R
, sin θA

)
cos(mωAt) , (18)

FAR(t) =
Gm
R2

A

(
RA

R

)2 ∞∑

m=0
f mAR

(
RA

R
, sin θA

)
cos(mωAt) , (19)

where

f mAV =
1

2π

∫ 2π/ωA

0

cos(mωAt) dt
[

1− 2 RA
R sin θA cosωAt +

(
RA
R

)2
]3/2 , (20)

f mAR =
1

2π

∫ 2π/ωA

0

(
1− RA

R sin θA cosωAt
)

cos(mωAt) dt
[

1− 2 RA
R sin θA cosωAt +

(
RA
R

)2
]3/2 . (21)
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Figure 2.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by a single “mountain” located on the surface of a rotating neutron star, and acting on elements
of an encircling equatorial accretion disc. The mountain is assumed to be located at θA = 45◦.
The oscillatory forces (at R = 8 RA, 5 RA, 3 RA, 2 RA, 1.25 RA from top to bottom, full curves) are
generally anharmonic and their behaviour is shown at some typical radii in the vicinity of the neutron
star. These are compared with the behaviour of the forces at R = 10 RA (dotted curves), where the
oscillations approach a harmonic character. Notice that the vertical and radial force oscillations are
mutually in phase and this does not change when approaching the surface R = RA.
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Figure 3. Fourier amplitude spectral density corresponding to oscillations of the radial component
(left column) and vertical component (right column) of the gravitational force from an isolatedmoun-
tain acting on the equatorial disc. From top to bottom, the frames refer to R = 8 RA, 5 RA, 3 RA, 2 RA
and 1.25 RA. The zero-frequency peak (corresponding to the constant part of the force) has been
removed and the peaks are normalized to a maximum of 1. Higher harmonics become noticeable
when approaching the stellar surface for both the radial and vertical forces, in accordance with the
discussion of Fig. 2.
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The Fourier components f mAV ( f mAR) determine the m-th mode of the force amplitude (see
Figs 2 and 3).

3.2 Two symmetricmountains

We consider two symmetric diametrically-opposed mountains which we represent as equal
point masses, each of mass mD, located at opposite ends of an axis tilted at angle θA with
respect to the rotation axis (see Fig. 4). We can use the results already obtained for a single
isolatedmountain with suitablemodification. In fact, we can use the simple relations

FDV(t) = FAaV(t)− FAbV(t) , FDR(t) = FAaR(t) + FAbR(t) , (22)

where FAaV, FAaR (FAbV, FAbR) give the vertical and radial forces produced by the moun-
tains above (and below) the equatorial plane. The values of the azimuthal angle ϕ in the
expressions for the forces FAa and FAb are different byπ. The vertical force is then given by

FDV(t) =
GmD

R2
A

(
RA

R

)3
cosθA

⎧
⎨

⎩

[

1− 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

−

[

1 + 2
RA

R
sin θA cosωAt +

(
RA

R

)2
]−3/2

⎫
⎬

⎭ , (23)

Figure 4. Schematic picture illustrating the generation of gravitational perturbation forces in an
equatorial accretion disc by two symmetric diametrically-opposed mountains on the surface of a
neutron star.
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and the radial force

FDR(t) =
GmD

R2
A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− RA
R sin θA cosωAt

[
1− 2 RA

R sin θA cosωAt +
(
RA
R

)2
]3/2

+
1 + RA

R sin θA cosωAt
[

1 + 2 RA
R sin θA cosωAt +

(
RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (24)

Once again, these are anharmonically oscillating forces, but the frequency for the radial
force is doubled because of the symmetry of the mountains.
The vertical force oscillates around the mean value FDV(mean) = 0 with frequency ωA and

amplitude

DV =
GmD

R2
A

(
RA

R

)3
cos θA

⎧
⎨

⎩

[

1− 2
RA

R
sin θA +

(
RA

R

)2
]−3/2

−

[

1 + 2
RA

R
sin θA +

(
RA

R

)2
]−3/2

⎫
⎬

⎭ . (25)

The radial force oscillates around the mean value

FDR(mean) =
2GmD

R2
A

(
RA

R

)2
[

1 +
(
RA

R

)2
]−3/2

(26)

with frequencyωDR = 2ωA and amplitude

DR =
GmD

R2
A

(
RA

R

)2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− RA
R sin θA

[
1− 2 RA

R sin θA +
(
RA
R

)2
]3/2 −

2
[
1 +

(
RA
R

)]3/2

+
1 + RA

R sin θA
[

1 + 2 RA
R sin θA +

(
RA
R

)2
]3/2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (27)

Again, the anharmonic forces can be Fourier decomposed in an analogous way as for
Eqs (18) and (20) as shown in Figs 5 and 6.
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Figure 5.The oscillatory radial (left column) and vertical (right column) gravitational forces generated
by two mountains of equal mass located at opposite ends of an inclined axis (θA = 45◦, 135◦,
and ∆ϕA = 180◦) on the surface of a rotating neutron star, and acting outside the star on
elements of an equatorial accretion disc. The oscillatory forces are generally only slightly an-
harmonic; their behaviour is shown at some typical radii in the vicinity of the neutron star (at
R = 8 RA, 5 RA, 3 RA, 2 RA, 1.25 RA from top to bottom, full curves). In each case they are com-
pared with the behaviour of the forces at R = 10 RA (dotted curves), where the oscillations approach
a harmonic character. Note the double frequency of the radial component compared with the vertical
one, and that the phase does not changewhen approaching the surface R = RA from above.
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Figure 6. Fourier amplitude spectral density corresponding to oscillations of the radial compon-
ent (left column) and vertical component (right column) of the gravitational force generated in
the equatorial disc by symmetric accretion columns. From top to bottom, the frames refer to
R = 8 RA, 5 RA, 3 RA, 2 RA and 1.25 RA. The zero-frequency peak (corresponding to the constant
part of the force) has been removed and the peaks are normalized to a maximum of 1. The symmetry
of the columnsmakes the higher harmonics generally smaller than in the case of an isolatedmountain.
Note the frequency doubling of the radial force. This is in accordance with the discussion for Fig. 5.
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3.3 Binary companion

In this section, we consider the influence of the binary companion which we take to be
orbiting the neutron star at a constant distance d, with angular velocity ΩB (see Fig. 1).
Of course, in the range of interest for accretion disc radii (RA < R < 103 RA), we have
Ωd ≫ ΩB. The vertical component of the force on the accreting material caused by the
binary companion is given by

FBV(t) =
GMB

d2 cos θB

[

1− 2
(
R
d

)
sin θB cosωBt +

(
R
d

)2
]−3/2

, (28)

while the radial component of the force is

FBR(t) =
GMB

d2
sin θB cosωBt − R

d[
1− 2

( R
d
)

sin θB cosωBt +
( R
d
)2]3/2 , (29)

where the angular velocity

ωB = |ΩB −Ωd| ≈ Ωd . (30)

Generally, these relations represent anharmonically oscillating forces. However, in the
present case and for the relevant range of accretion disc radii, we can assume R/d ≪ 1 and
the resulting approximate formulae then correspond to harmonically oscillating forces:

FBV(t) ∼
GMB

d2 cos θB

[
1 + 3

(
R
d

)
sin θB cosωBt

]
, (31)

and

FBR(t) ∼
GMB

d2

[
sin θB cosωBt +

(
R
d

)(
−1 + 3 sin2 θB cos2 ωBt

)]
. (32)

The vertical force oscillates around the mean value

FBV(mean) =
GMB

d2 cos θB (33)

with frequencyωB = Ωd and amplitude

BV ≈ 3
GMB

d2

(
R
d

)
cos θB sin θB . (34)

The radial force oscillates around the mean value

FBR(mean) ≈ −
GMB

d2

(
R
d

)
(35)

with frequencyωB ≈ Ωd and amplitude

BR ≈
GMB

d2 cosΩB . (36)
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4 NEUTRON-STARASYMMETRIES

We now turn to obtaining estimates for the effective values of the point masses which
we are using to model the asymmetries of the neutron star, considering various possibly-
relevant cases in turn. First, we consider a classical crystalline mountain on the surface of
the neutron star and magnetically constrained accretion columns above its magnetic poles.
Both of these are seen to be either inadequate or problematic for the present purposes.
However, there are some different observationally-motivated scenarios in the literature,
giving rise tomisaligned quadrupolemomentswhich could be relevant here, andwediscuss
these in the third subsection below.

4.1 Crystallinemountains

Here we assume that the basic nature of the mountain on the surface of the neutron star is
the same as for mountains on planets. In other words, we assume the average density of
the material in the mountain to be the same as the surface density of the neutron star. The
condition for stability is that the pressure at the base of themountain should be less than the
shear stress of the surfacematerial.
The pressure at the base of the mountain is given by

Pmnt = ρmntgnshmnt , (37)

where ρmnt is the average density of the material in the mountain, gns is the surface gravity
of the neutron star and hmnt is the height of the mountain. The base of the mountain would
be located at the outermost solid surface layer of the neutron star. The relevant density to
take for this layer is rather uncertain but for our present rough calculationwe will take it as
being ∼106 gm cm−3 and put ρmnt equal to that. The surface gravity is given by

gns =
GMns
R2

ns
, (38)

where Mns and Rns are the mass and the radius of the neutron star. For a neutron star of
mass 1.4 M⊙ and radius 10 km, gns is typically 1014 cm s−2.
Following Strohmayer et al. (1991), the shearmodulus of the neutron star surfacemater-

ial is given by

µ =
0.1194

1 + 1.781× (100/Γ )2
n(Ze)2

a
, (39)

where n is the ion number density, a is the inter-ionic distance, Z is the atomic number of
the dominant ionic species, and Γ is the Coulomb coupling parameter (Γ > 103 for all
practical purposes). The typical values of n, a, Z are as follows,

Z = 26 , n ≃ 1028 cm−3 , a ≃ 7× 10−10 cm ;

assuming the dominant ionic species in the stellar surface to be Fe56
26. The maximum shear

strain in the surface of theneutron star has been calculated tobe (Smoluchowski andWelch,
1970),

Θ ∼ 10−5–10−3 , (40)
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although there are suggestions that it might also be as high as 10−2 (Ushomirsky et al.,
2000). Taking the complete range, the shear stress on the surface of a typical neutron star
would be

S = µΘ ≃ 1018–1021 dynes cm−2 . (41)

The maximum height of a mountain on the surface of a neutron star is then obtained
when Pmnt = S, and is given by

hmax
mnt ≃ 0.01–10cm . (42)

Themaximummass contained in such amountain would be

Mmnt ∼ ρmnt(hmax
mnt )

3 ∼ 109 g ∼ 10−24–10−25 Mns , (43)

which is very small comparedwith the total stellar massMns.
Of course, these estimates are made assuming an isolated, cold neutron star. If the star

is accreting then the temperature of the surface regions would increase andmay perhaps be
sufficient to melt the topmost layers. In that case the possible height of any mountain and
the totalmass containedwithin itwould even be smaller than the above estimates. However,
Ushomirsky et al. (2000) estimated the maximum quadrupole in the accreting system due
to horizontal temperature variations to be Q/MR2 < 10−8, which could represent a point
mass of sizem ∼ 10−8 M⊙.

4.2 Accretion columns

For an accreting neutron star with a strong enough magnetic field, accreting matter suf-
ficiently close to the neutron star can be diverted away from the accretion disc by the
magnetic field and form into accretion columns above the magnetic poles (Woosley and
Wallace, 1982; Hameury et al., 1983). If the amount of matter in the columns is sufficiently
large, this might then provide another significant source of neutron-star asymmetry which
could again bemodelled in terms of “mountains” on the neutron-star surface (probably two
symmetric ones in this case). This may well be of significant interest for discussions of
gravitational wave emission but its relevance in the present context is doubtful, particularly
in view of the fact that a neutron star with a sufficiently strong magnetic field for producing
the accretion columns seems unlikely to allow the presence of a nearly-Keplerian accretion
disc reaching in to small radii, as would be required for our QPO model. Nevertheless,
since this type of picture has been widely discussed and since the detailed physics involved
in truncation of the disc is not very clearly established, we include a discussion here of the
effective masses whichmight be involved.
The height of the columns above the neutron-star surface can be determined from the

condition that the flowwill develop a sideways componentwhen the pressure of thematerial
in the column becomes large enough to bend the magnetic field lines outwards. This
typically becomes significant when the pressure of the matter in the column is about a
hundred times greater than the magnetic pressure responsible for confining it (Brown and
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Bildsten, 1998). Following Shapiro and Teukolsky (1983), the area of the polar cap can be
estimated as

AP ∼ 1010 cm2
(

Bs
1012 G

)−4/7 ( Mns
1.4 M⊙

)1/7 ( Rns
106 cm

)9/7

×
(

Ṁ
10−9 M⊙/yr

)2/7

, (44)

where Bs is the strength of the surface dipole field and Ṁ is the accretion rate.
The height of the accretion column is determined by the condition that the pressure at the

bottom of the column should be ∼100 times as large as the magnetic pressure, i.e.,

Pac ∼ 4× 1024
(

Bs
1012 G

)2
. (45)

Hydrostatic equilibrium requires that this pressure should be the same as the pressure
elsewhere in the crust (outside the polar cap) at the same distance from the centre of
the neutron star as the bottom of the column. Fortunately, the pressure for the density
range 106 gm cm−3 ≤ ρ ≤ 1010 gm cm−3 can be expressed using the following fitting
formula (Baym et al., 1971):

log P = 13.65 + 1.45 logρ . (46)

The relationbetween thefield strengthand the density at the bottomof the accretion column
is then roughly given by

(
ρbot

106 gm cm−3

)
∼ 35

(
Bs

1012 G

)1.38
(47)

giving the scale height of the column, hac, as

hac ∼ Pac/(ρbot gns) ∼ 103
(

Bs
1012 G

)0.62
cm . (48)

The density profile within the column can be described by an “atmosphere” solution (Bild-
sten and Cutler, 1995). Using this, the total mass contained in the accretion column is given
by

Mac ∼ AP

∫ 0

h
ρbot e−x/hdx

∼ 2× 10−13 Mns

(
Bs

1012 G

)1.43 ( Mns
1.4 M⊙

)−6/7 ( Rns
106 cm

)9/7

×
(

Ṁ
10−9 M⊙/yr

)2/7

. (49)
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This is again a rather small number. We note that some recent work (Melatos and Payne,
2005) has suggested that magnetically constrained accretion columns might have masses
much higher than those quoted above in the case of magnetars, with Mac ∼ 10−5 Mns, but
the continued existence of aKeplerian accretion disc down to small radii then becomes even
more unlikely.
It should be mentioned here that in the discussion above we have assumed a symmetric

dipolar magnetic field. However, a complex multipolar field near to the surface of the
neutron star is not ruled out, as has been indicated by Gil andMitra (2001). In the presence
of amultipolar field structure that is asymmetricwith respect to the twopoles (still assuming
the stellar field to be largely dipolar) the shapes and sizes of the accretion columns over the
two poles may not remain equal. Such a situation would give rise to a further asymmetry
over and above the mass quadrupole moment generated by a symmetric pair of accretion
columns.

4.3 Quadrupolemoments inferred from limiting pulsar spin rates

The mass estimates for the crystalline mountains are far too small to be of interest for
our present purposes and the possibility of the magnetically-constrained accretion columns
being relevant here is problematic, as discussed above. However, there are other scenarios
advocated in the literature which look much more promising. Many accreting weakly-
magnetised neutron stars in the galaxy are found to have spin frequencies in a rather
narrow range around 300 Hz (van der Klis, 1998), which is a much lower frequency than
that corresponding to centrifugal break-up. Since these objects are thought to have been
accreting for long enough so as to gain sufficient angularmomentum to reach the break-up
limit, it seems that some mechanism is halting the spin-up. One possibility is that this may
be due to magnetic braking but it has also been suggested (Bildsten, 1998) that it could
have been halted because of the accretion torque becoming balanced by a gravitational-
wave torque resulting from an asymmetry of the neutron star. Taking the asymmetry to be
represented by an l = m = 2 perturbation, one finds that the magnitude of the misaligned
quadrupolemoment required for attaining this equilibrium at a frequency νs is given by

Qeq = 3.5× 1037 g cm2
(

Mns
1.4 M⊙

)1/4 ( Rns
106 cm

)1/4

×
(

Ṁ
10−9 M⊙/yr

)1/2 (300 Hz
νs

)5/2
, (50)

where the accretion rate Ṁ is typically in the range 10−10–2× 10−8 M⊙/yr for LMXBs. In
terms of our simplified model of representing the asymmetry by means of point masses on
the surface of an otherwise spherical neutron star, this corresponds to

Mquad ∼ 10−8 Mns

(
Mns

1.4 M⊙

)−3/4 ( Rns
106 cm

)−7/4

×
(

Ṁ
10−9 M⊙/yr

)1/2 (300 Hz
νs

)5/2
, (51)
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for the canonical parameter values. Bildsten suggested that a quadrupole moment of the
required size might be produced because of non-axisymmetric temperature variations in
the outer crust leading to asymmetric electron captures and hence to density variations
giving rise to the required quadrupole moment. A subsequent more detailed analysis
by Ushomirsky et al. (2000) showed that temperature variations in the outer crust could
not, in fact, produce a large enough quadrupole moment but that the mechanism could be
effective for the inner crust although it would need the breaking strain to be very high in
some cases. A further analysis by Haskell et al. (2006) included relativistic corrections and
found that these enhanced the effect, raising the maximum values of the quadrupole mo-
ment by about an order of magnitude for the same breaking strain, easing the requirements
for the latter. Another variant of this picture is that there may have been lateral composition
gradients produced directly which could also produce a similar quadrupole moment. The
considerations involved in all of this discussion are quite intricate andwe refer the reader to
the original papers for the details.
There are also other possibilities discussed in the literature for producing large mis-

aligned quadrupole moments. One type of picture is concerned with strange quark mat-
ter either comprising the whole star or appearing in the cores of hybrid stars consisting
of a strange quark core surrounded by an outer region of standard neutron-star mat-
ter (Glendenning, 1996). Within this context, Owen (2005) estimated maximum quad-
rupole moments corresponding to Mquad ∼ 5 × 10−6 Mns in the case of hybrid stars
and ∼ 2 × 10−4 Mns for pure strange stars. For crystalline, colour superconducting quark
cores (Mannarelli et al., 2007), the corresponding values ofMquad might even reach as high
as ∼ 10−3 Mns (see Haskell et al., 2007a) although, as the latter authors pointed out, such
extreme values are already ruled out by current LIGO observations, at least for the galactic
sources that we are discussing. Another possibility is that the quadrupolemoment could be
produced by a large internalmagnetic field (Cutler, 2002; Haskell et al., 2007b). Depending
on the circumstances, this might give Mquad/Mns ∼ 10−12–10−6. However, for interior
magnetic fields sufficiently strong to give a value ofMquad interesting for our purposes, it is
very doubtful whether the external field could be small enough to allow a nearly-Keplerian
accretion disc to continue down to sufficiently small radii, giving a similar problem to that
with the accretion columns.
Our point here is not to be specific about the process leading to the occurrence of the

quadrupole deformation but rather to note that values of the deformation large enough
to be capable of explaining the limiting pulsar spin rate may also be large enough for the
present purposes: in the following, we take the value for the point mass given by Eq. (51),
and check onwhether this same valuewould also be large enough to be relevant for inducing
the QPO behaviour. We note that, depending on the circumstances, this sort of asymmetry
might be represented in terms of either a single point particle on the surface of the neutron
star or by two diametrically-opposed point particles.

5 THEMAGNITUDESOFTHEOSCILLATINGFORCES

A first question to ask after the discussion of the preceding section is whether the mag-
nitudes for the effective point masses calculated there would be sufficiently large to provide
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a plausible explanation for the QPO phenomena. Recalling the discussion of Section 2,
we showed there that the time taken for the amplitude xmax of resonant oscillations in our
simplified picture to grow to a particular value is

t =
( xmax

r

) (α
π

) ( fp
f0

)−1
τK , (52)

where fp is the amplitude of the perturbing force, f0 is the main gravitational force from
the central object, τK = 2π/ΩK is the period of the circularKeplerianmotion at the location
being considered and the epicyclic frequency of the perturbation being excited is ω =
αΩK. The dimensionless radial and vertical “epicyclic functions” satisfy αR(V)(r) < 1
everywhere. At r = rms, αV ∼ 1 but αR → 0 there and is small in the adjoining region,
where some of the most important resonances occur, significantly raising the efficiency of
the forced-resonant oscillation amplification. Note that since τK ∼ 10−3 s, the amplitude
magnification in 1 second is ∼103.
We consider here forces acting on an element of unit mass, so that f0 = GMA/R2 and

fp represents the oscillation amplitude of either the vertical or radial perturbing force, as
calculated in Section 3. We denote these here as fV and fR respectively.
In the case of the influence of the binary partner, for the radial perturbing force

fR
f0
∼
(
MB

MA

)(
R
d

)2
∼ 10−8 MB

MA

(
R

106 cm
1010 cm

d

)2

. (53)

In contact binary systems (e.g., 4U 1820), d ∼ 1010 cm, and in the inner part of the disc
where R ∼ 106 cm the dimensionless oscillation amplitude xmax/r would grow above 10−3

(as required in order for it to potentially explain the observed effect) in ∼103 s if the binary
companion has a mass of ∼ 0.1MA (with shorter times for higher mass companions).
However, for the vertical perturbing force

fV
f0
∼
(
MB

MA

)(
R
d

)3
∼ 10−12 MB

MA

(
R

106 cm
1010 cm

d

)3

, (54)

which gives the time for reaching xmax/r > 10−3 as ∼105 s.
In the case of a singlemountain on the neutron star surface, we have

fR(V)

f0
∼

m
MA

(
RA

R

)3(4)

fα(β) , (55)

where fα(β) (with α = R, V) are anharmonicity factors which are of order unity for R "
10 RA but grow rapidly as R → RA. Taking m ∼ 10−8 MA, as discussed in the previous
section, the time for reaching xmax/r > 10−3 is then∼ 102 s in the inner parts of the disc
for both radial and vertical oscillations. Timescales! 103 s are reasonable for our purposes
(as we discuss later) and so this encourages further investigation of the scenario.
Clearly, these asymmetries of the neutron star tend to dominate the behaviour in the

inner part of the disc while the effect of the binary partner is more significant further
out. We now analyse the relative strengths of these perturbations in more detail. For
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doing this, we can use the asymptotic forms of the amplitudes AV, AR, DV, DR, whenever
10 RA < R < 103 RA, while for the binary companion, where d ≫ R, the approximate
formulae can always be used.
The ratio of the amplitudes of the oscillating forces is given by the following relations. For

the ratio between the vertical oscillatory forces produced by the binary partner (with mass
MB) and by a singlemountain (with massm), we obtain the relation

RV(B/A) =
BV

AV
= 3

(
MB

M⊙

)(
M⊙
m

)(
R⊙
d

)3 ( RA

R⊙

)3 ( R
RA

)4 cos θB sin θB

cos θA

×

⎧
⎨

⎩

[

1− 2
(
RA

R

)
sin θA +

(
RA

R

)2
]−3/2

−

[

1 +
(
RA

R

)2
]−3/2

⎫
⎬

⎭

−1

. (56)

This reduces to the approximate relation

R̃V(B/A) ∼
(
MB

M⊙

)(
M⊙
m

)(
R⊙
d

)3 ( RA

R⊙

)3 ( R
RA

)5 cos θB sin θB

cos θA sin θA
(57)

when R ≫ RA. Here, and in an analogous way in the following, the approximate ratio
R̃V(B/A) relates the amplitudes BV and AV in situations where the oscillations of the force FA
can be considered as being harmonic, e.g. it can be used when R > 10 RA. For the radial
oscillatory force, we obtain

RR(B/A) =
BR

AR
=
(
MB

M⊙

)(
M⊙
m

)(
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d

)2 ( RA

R⊙
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sin θB (58)

giving the approximate expression

R̃R(B/A) ∼
1
2

(
MB

M⊙

)(
M⊙
m

)(
R⊙
d

)2 ( RA

R⊙

)2 ( R
RA

)3 sin θB

sin θA
, (59)

when R ≫ RA.
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The ratio between the vertical oscillatory forces produced by the binary companion and
by the two symmetric mountains (eachwith massmD) is

RV(B/D) =
BV

DV
= 3

(
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, (60)

giving the approximate form

R̃V(B/D) ∼
1
2
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The ratio of the radial oscillatory forces for this case is then given by

RR(B/D) =
BR

DR
=
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which reduces to the approximate form

R̃R(B/D) ∼
1

24

(
MB

M⊙

)(
M⊙
mD

)(
R⊙
d

)2 ( RA

R⊙

)2 ( R
RA

)4 sin θB

sin2 θA
(63)

when R ≫ RA.
We now apply these formulae to a range of cases, again taking RA ∼ 10 km, focusing on

misaligned quadrupole moments which, following the discussion of Section 4.3, could be
represented as either single or double effective mountains with masses of ∼10−8 M⊙, and
considering radii in the disc within the range RA < R < 103 RA for the reasons mentioned
earlier.
For the case of a singlemountain, the approximate expression Eq. (57) gives

R̃V(B/A) ∼ 4× 10−7
(
MB

M⊙

)(
R⊙
d

)3 ( R
RA

)5 sin 2θB

sin 2θA
. (64)
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According toCarroll andOstlie (1996), the binary systems can for our purposes be classified
into three groups: primordial systems,with the orbital separationof the stars ∼70–460 R⊙,
intermediate systems, with orbital separation ∼ 10–65 R⊙, and gravitational wave radiat-
ing systems, with orbital separation ∼ 0.2–1.4 R⊙. Taking d ∼ 0.2 R⊙ and R ∼ 103 RA at
one extreme, and d ∼ 102 R⊙ and R ∼ RA at the other, we find that R̃V(B/A) sin 2θA/ sin 2θB

ranges from ∼ 1012 down to ∼ 10−15 and so either one may dominate. (Note that the
asymptotic formulae cease to be valid for R < 10 RA but we use them throughout the above
range here so as to get a feel for the problem and return afterwards to a further discussion of
this.)
For the radial forces, we arrive at the formula

R̃R(B/A) ∼ 10−2
(
MB

M⊙

)(
R⊙
d

)3 ( R
RA

)5 sin θB

sin θA
(65)

which gives R̃R(B/A) sin θA/ sin θB in the range between ∼ 1017 and ∼ 10−8 again allowing
for either type of perturbation to dominate. However, we note that in the inner parts of
the disc, which are of most interest for high frequency QPOs, the perturbation from the
mountain is always dominant.
For the two symmetric mountains, the situation is basically the same for the vertical

perturbations but rather different for the radial ones. For the vertical perturbations we
obtain the relation

R̃V(B/D) ∼ 2× 10−7
(
MB

M⊙

)(
R⊙
d

)3 ( R
RA

)5 sin 2θB

sin 2θA
(66)

which is the same as Eq. (64) apart from a factor of two. However, for the radial perturba-
tions, we have

R̃R(B/D) ∼ 10−3
(
MB

M⊙

)(
R⊙
d

)2 ( R
RA

)4 sin θB

sin2 θA
, (67)

which gives R̃R(B/D) sin2 θA/ sin θB in the range between ∼ 105 and ∼ 10−3. Again, we find
that either mechanism can dominate but the neutron-star asymmetry is more important for
the region close to the neutron star. A separate analysis would be needed for each particular
binary system.
In making the above discussion, we have used the formulae in their asymptotic form

appropriate for R ≫ RA, when the forces are harmonic in character. This is convenient in
order to get a feeling for the working of the problem but closer to the neutron star (R <

10 RA), where the forces FAR and FDR are anharmonic, the amplitude of the perturbations
coming from the neutron-star asymmetries grows substantially, while that from the binary
partner continues to decrease. The effect of the anharmonic character of the oscillations for
RA < R < 10 RA can again be represented by anharmonicity factors fα(B/β), now defined by
the relation

Rα(B/β) = f −1
α(B/β) R̃α(B/β) , (68)

where α = V, R and β = A, D. The anharmonicity factors fα(B/β) grow substantially when
R→ RA; plots showing their behaviour are shown in Fig. 7.
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Figure7.Left column: 3Dplots of the anharmonicity factors for the ratio between the radial oscillatory
forces produced by the binary partner and by the isolatedmountain (top) and for the ratio between the
radial oscillatory forces produced by the binary companion and by the symmetric accretion column
(bottom). Right column: 3D plots of the anharmonicity factors for the ratio between the vertical
oscillatory forces produced by the binary partner and by the isolated mountain (top) and for the
ratio between the vertical oscillatory forces produced by the binary companion and by the symmetric
accretion column (bottom).

6 CONCLUSIONS

From analysis of observational data for the neutron-star sources it seems that the high-
frequency twin-peak QPO behaviour observed in some atoll (and Z) sources could be fitted
well by the relativistic precession model (Stella and Vietri, 1999) or its generalization to
the so-called total precession model (Stuchlík et al., 2007d), where an oscillatory quasi-
circular orbital motion of a radiating blob is considered with resonant frequencies being a
combination of the Keplerian frequency and the radial and vertical epicyclic frequencies.2

We expect that the resonances occur when the frequency ratios are close to small natural
number ratios, corresponding to situations where the 3D blob trajectory becomes closed.
Further, it has been shown (Stuchlík et al., 2007d; Bakala et al., 2007) that in the six

2 TheQPOs observed in the neutron star binary systems could also be explained by warped disc oscillations with
resonating inertial/acoustic modes (Kato, 2004b): namely, the upper frequency νU = 2νK − νθ and the lower
frequency νL = νK − νr could fit quite well the data observed for the six atoll sources discussed above and the
Z source Circinus X1 (Török et al., 2007b). Excitation of such oscillations and stability analysis of them was
carefully discussed by Kato.
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atoll sources discussed in the Introduction, the resonant phenomena with eigenfrequency
ratios 3/2, 4/3, 5/4 should occur in the immediate vicinity of the innermost stable circular
geodesic and the neutron star surface, at r ≥ rms ∼ 6 M⊙, while in the case of the Z-source
Circinus X1, with atypical eigenfrequency ratios 3/1 and 4/1, the resonances should occur
at larger distances r ≥ 10 M⊙, which are, nevertheless, still within the general relativistic
region of influence of the central object. Therefore, it is certainly relevant to consider
the excitation of the blob oscillations by gravitational perturbing forces, considering a
forced resonance between oscillations with the radial and vertical epicyclic frequencies
and the frequency of the oscillating perturbing force.3 In the atoll sources, the duration
of the observed QPO phenomena is typically ∼ 103 s and it is reasonable to look for an
excitation mechanism with a growth timescale of a similar order. Also, since the size of
the observed X-ray fluctuations is typically around 1–10 %, the oscillation dimensionless
amplitude xmax/r probably needs to reach values of " 10−3. As we have seen in Section 5,
it looks plausible to have xmax/r for oscillations in the inner part of the disc growing to
" 10−3 within 103 s as a result of gravitational perturbations coming either from neutron-
star asymmetries corresponding to misaligned quadrupole moments (radial and vertical
oscillations) or from a binary companion (probably only for radial oscillations).
The binary partner of the neutron star induces harmonic force oscillations in all relevant

situations, i.e. throughout the range RA < R < 103 RA while the neutron-star asym-
metries induce harmonic force oscillations for R " 10 RA, but anharmonic oscillations for
R ! 10 RA, becoming more strongly anharmonic as the surface of the neutron star is ap-
proached. The Fourier analysis clearly shows how progressively higher harmonics appear
in the spectrum when R → RA (see Fig. 3 for the case of a single mountain and Fig. 6 for
the case of two symmetric mountains).
We conclude that the types of gravitational perturbation considered in this paper provide

a plausible mechanism for inducing QPO behaviour although many details remain to be
worked out, particularly regarding how the oscillations of blobs in the disc lead to the
observed variations in the X-ray emission. We note, however, that directly explaining the
X-ray variations is a problem common to other proposed models as well. Although the
influence of the binary partner could be effective in providing the perturbations, the more
intriguing possibility is that they might be provided by the neutron-star asymmetries which
seem likely to be dominant for the inner parts of the disc most relevant for kilohertz QPOs.
It is striking that the same magnitude for the misaligned quadrupole moment advocated
elsewhere for explaining limiting pulsar periods, seems also to be effective for giving a
viablemechanism for inducingQPO behaviour.
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ABSTRACT
Rotating black holes in the brany universe of the Randall–Sundrum type with in-
finite additional dimension are described by the Kerr geometry with a tidal charge
b representing the interaction of the brany black hole and the bulk spacetime. We
investigate the role of the tidal charge in the orbital resonancemodel of quasiperiodic
oscillations (QPOs) in black hole systems. The orbital Keplerian frequency νK and
the radial and vertical epicyclic frequencies νr, νθ of the equatorial, quasicircular
geodetical motion are discussed, and the local maxima of their radial profiles related
to Keplerian accretion discs are given, assuming the inner edge of the disc located
at loci of the innermost stable circular geodesic. The resonant conditions are given
for possible direct (parametric) resonances of the oscillations with the radial and
vertical epicyclic frequencies and for some trapped oscillations of the warped discs
with resonant combinational frequencies involving the Keplerian and radial epicyc-
lic frequencies. It is shown, how the tidal charge could influence matching of the
observational data indicating the 3 : 2 frequency ratio observed in GRS 1915+105
microquasar with prediction of the orbital resonance model. The “magic” dimen-
sionless black hole spin enabling presence of strong resonant phenomena at the
radius, where νK :νθ :νr = 3 :2 :1, is determined in dependence on the tidal charge.
Such strong resonances could be relevant even in sources with highly scattered res-
onant frequencies, as those expected in Sgr A∗.

Keywords: Accretion – accretion disks – braneworld black hole physics – X-rays:
general

1 INTRODUCTION

In recent years, one of the most promising approaches to the higher-dimensional gravity
theories seem to be the string theory and M-theory describing gravity as a truly higher-
dimensional interaction becoming effectively 4D at low enough energies. These theories
inspired braneworld models, where the observable universe is a 3-brane (domain wall)
to which the standard-model (non-gravitational) matter fields are confined, while gravity
field enters the extra spatial dimensions, the size of which may be much larger than the
Planck length scale lP ∼ 10−33 cm (Arkani-Hamed et al., 1998). The braneworld models
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could therefore provide an elegant solution to the hierarchy problem of the electroweak and
quantum gravity scales, as these scales become to be of the same order (∼ TeV) due to
large scale extra dimensions (Arkani-Hamed et al., 1998). Therefore, future collider ex-
periments can test the braneworld models quite well, including the hypothetical mini black
hole production on the TeV-energy scales (Emparan et al., 2002; Dimopoulos and Lands-
berg, 2001). On the other hand, the braneworld models could influence astrophysically
important properties of black holes, enabling observational tests of these models.
Gravity can be localized near the brane at low energies even with a non-compact, infinite

size extra dimension with the warped spacetime satisfying the 5D Einstein equations with
negative cosmological constant (as shown by Randall and Sundrum, 1999). Then an
arbitrary energy-momentum tensor could be allowed on the brane (Shiromizu et al., 1999).
The Randall–Sundrummodel gives 4D Einstein gravity in low energy limit, and the con-

ventional potential of weak, Newtonian gravity appears on the 3-brane with high accuracy.
Significant deviations from the Einstein gravity occur at very high energies, e.g., in the very
early universe, and in vicinity of compact objects (see, e.g., Maartens, 2004; Germani and
Maartens, 2001; Aliev and Gümrükçüoǧlu, 2005). Gravitational collapse of matter trapped
on the brane results in black holes mainly localized on the brane, but their horizon could be
extended into the extra dimension. The high-energy effects produced by the gravitational
collapse are disconnected from the outside space by the horizon, but they could have a
signature on the brane, influencing properties of black holes (Maartens, 2004). There are
high-energy effects of local character influencing pressure in collapsing matter, and also
non-local corrections of “back-reaction” character arising from the influence of the Weyl
curvature of the bulk space on the brane – the matter on the brane inducesWeyl curvature
in the bulk which makes influence on the structures on the brane due to the bulk graviton
stresses (Maartens, 2004). The combination of high-energy (local) and bulk stress (non-
local) effects alters significantly the matching problem on the brane, as compared to the 4D
Einstein gravity; for spherical objects, matching no longer leads to a Schwarzschild exterior
in general (Maartens, 2004; Germani and Maartens, 2001). Moreover, the Weyl stresses
induced by bulk gravitons imply that the matching conditions do not have unique solution
on the brane; in fact, knowledge of the 5D Weyl tensor is needed as a minimum condition
for uniqueness (Germani andMaartens, 2001).1

Study of braneworld black holes is a rather complicated issue due to the “back-reactions”
between the brany structures and the bulk space. If the brany black hole horizon extension
is much smaller than the extra dimensions scale, the black hole could be considered as a
higher-dimensional object and can be described by the solutions of the higher-dimensional
vacuum Einstein equations (Aliev and Frolov, 2004; Frolov et al., 2003; Frolov and Sto-
jkovic, 2003).
When the horizon radius is much greater than the length scale of extra dimension, the

black hole becomes effectively 4Dwith a finite extension along the extra dimensions. Exact
description of such black holes is not found yet generally, but some reasonable approaches
were developed in the 3D braneworld of Randall and Sundrum (Emparan et al., 2000).

1 At present, no exact 5D solution in the braneworldmodel is known.
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There are two kinds of black hole solutions in the Randall–Sundrum braneworld model
with infinite extension of the extra dimension.
One kind of these solutions looks like black string from the viewpoint of an observer

in the bulk, while being described by the Schwarzschild metric for matter trapped on the
brane (Chamblin et al., 2000). The generalizations to rotating black string solution (Modgil
et al., 2002) and solutionswith dilatonic field (Nojiri et al., 2000)were also found. However,
the black string solutions have a curvature singularities at infinite extension along the
extra dimension (anti-de Sitter horizon of the Randall–Sundrum braneworld). There is a
proposal that the black hole strings could evolve to a localized black cigar solutions due to
the classical instability near the anti-de Sitter horizon (Chamblin et al., 2000; Gregory and
Laflamme, 1993), but it is not resolved at present (Horowitz and Maeda, 2001; Aliev and
Gümrükçüoǧlu, 2005).
Second kind of these solutions representing a promising way of generating exact loc-

alized solutions in the Randall–Sundrum braneworld models was initiated by Maartens
and his coworkers (Maartens, 2004; Germani and Maartens, 2001; Dadhich et al., 2000).
Assuming spherically symmetric metric induced on the 3-brane, the effective gravitational
field equations on the brane could be solved, giving a Reissner–Nordström static black hole
solutions endowed with a “tidal” charge parameter b (Dadhich et al., 2000) instead of the
standard electric charge parameter Q2 (Misner et al., 1973). The tidal charge reflects the ef-
fects of the Weyl curvature of the bulk space, i.e., from the 5D graviton stresses (Maartens,
2004) with bulk graviton tidal effect giving the name of the charge. Note that the tidal
charge can be both positive and negative, and there are some indications that the negative
tidal charge should properly represent the “back-reaction” effects of the bulk space Weyl
tensor on the brane (Maartens, 2004; Dadhich et al., 2000; Sasaki et al., 2000).
In the simplest model of a spherically symmetric star with uniform density profile the

high-energy and bulk graviton stress effects alter the matching conditions as compared
with general relativistic case and make them unambitious since we do not know exact 5D
Weyl tensor. Two different exact exterior solutions have been found, both satisfying the
braneworld matching conditions and having asymptotically Schwarzschild character (Ger-
mani and Maartens, 2001). The first of these external solutions is of the known Reissner–
Nordströmmetric form with a tidal charge characterizing the bulk graviton stress effect on
the brane that is related to the density parameter of the star. The second solution is more
complicated, and its metric tensor components explicitly depend on both the star density
and brane tension. These two external solutions differ significantly, e.g., in the behaviour of
the exterior curvature invariant (Germani andMaartens, 2001).
The exact stationary and axisymmetric solutions describing rotating black holes localized

in the Randall–Sundrum braneworld were derived in Aliev and Gümrükçüoǧlu (2005),
having the metric tensor of the Kerr–Newman form with a tidal charge describing the 5D
correction termgenerated by the 5DWeyl tensor stresses. The tidal charge has an “electric”
character again and arises due to the 5D gravitational coupling between the brane and the
bulk, reflected on the brane through the “electric” part of the bulk Weyl tensor (Aliev and
Gümrükçüoǧlu, 2005), in close analogywith the spherically symmetric case (Dadhich et al.,
2000).
When both the tidal and electric charge are present in the brany black hole, its character

is much more complex and usual Kerr–Newman form of the metric tensor is allowed only
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in the approximate case of the small values of rotation parameter a, when in the linear
approximation in a themetric arrives at the usual Boyer–Lindquist formdescribing charged
and slowly rotating brany black holes (Aliev and Gümrükçüoǧlu, 2005). For large enough
rotational parameters, when the linear approximation is no longer valid, additional off-
diagonal metric components grφ , grt are relevant along with the standard gφt component
due to the combined effects of the local bulk on the brane and the dragging effect of rotation,
which through the “squared” energy momentum tensor on the brane distort the event
horizon that becomes a stack of non-uniformly rotating null circles having different radii at
fixed θ while going from the equatorial plane to the poles (Aliev and Gümrükçüoǧlu, 2005).
The uniformly rotating horizon is recovered for the small enough rotation parameter. In
the absence of rotation, the metric tensor reduces to the Reissner–Nordström form with
correction terms of local and non-local origin (Chamblin et al., 2001).
Here we restrict attention to the Kerr–Newman type of solutions describing the brany

rotating black holes with no electric charge, since in astrophysically relevant situations the
electric charge of the black holemust be exactly zero, or very small (Zel’dovich andNovikov,
1971; Damour et al., 1978). Then the results obtained in analysing the behaviour of test
particles and photons or test fields around the Kerr–Newman black holes could be used
assuming both positive and negative values of the brany tidal parameter b (used instead of
the charge parameter Q2).
It is very important to test the role of the hypothetical tidal charge, implied by the theory of

multidimensional black holes in the Randall–Sundrumbraneworld with non-compactified
additional space dimension, in astrophysical situations, namely in the accretion processes
and related optical phenomena, including the oscillatory features observed in the black hole
systems. There are two complementary reasons for such studies. First, the observational
data from the black hole systems (both Galactic binary systems or Sgr A∗ and active galactic
nuclei) could restrict the allowed values of the tidal charge, giving a relevant information on
the properties of the bulk spacetime and putting useful additional limits on the elementary
particle physics. Second, the presence of the tidal charge could help much in detailed
understanding of somepossible discrepancies in the black hole parameter estimates coming
from observational data that are obtained using different aspects of modelling accretion
phenomena.
In fact, the black hole parameter estimates come from a variety of astrophysical obser-

vations (van der Klis, 2000, 2006; McClintock and Remillard, 2004; Remillard, 2005; Re-
millard and McClintock, 2006; McClintock et al., 2007). The black hole spin estimates are
commonly given by the optical methods, namely by X-ray line profiles (Laor, 1991; Karas
et al., 1992; Dovčiak et al., 2004; Fabian and Miniutti, 2005; Zakharov, 2003; Zakharov
and Repin, 2006) and X-ray continuum spectra (McClintock et al., 2006; Middleton et al.,
2006; Shafee et al., 2006), and by quasiperiodic oscillations, the frequency of which enable,
in principle, the most precise spin estimates, because of high precision of the frequency
measurements (Stuchlík et al., 2007b).2

Therefore, we discuss here in detail the orbital resonance model of QPOs, which seems
to be the most promising in explaining the observational data from four microquasars

2 But see some problems connected with the wide variety of the resonance models.
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GROJ1655−40,XTE1550−564,H1743−322,GRS1915+105 (Török et al., 2005; Török,
2005a,b; Stuchlík et al., 2007c) and in Sgr A∗ (Aschenbach, 2004; Aschenbach et al., 2004;
Török, 2005a) or some extragalactic sources asNGC 5408 X-1 (Strohmayer et al., 2007).
It is well known that in astrophysically relevant situations the electric charge of a black

hole becomes zero or negligible on short time scales because of its neutralization by ac-
creting preferentially oppositely charged particles from ionized matter of the accretion
disc (Zel’dovich andNovikov, 1971; Misner et al., 1973; Damour et al., 1978). Clearly, this
statement remains true in the braneworld model, and that is the reason why it si enough
to consider properties of brany Kerr black holes endowed with a tidal charge only. Of
course, the tidal charge reflecting the non-local gravitational effects of the bulk space is
non-negligible in general and it can have quite strong effect on the physical processes in
vicinity of the black hole.
In Section 2, the effective gravitational field equations on the brane are introduced and

briefly discussed. In Section 3, the Kerr black holes with a tidal charge, introduced by Aliev
and Gümrükçüoǧlu (2005), are described and their properties are briefly summarized. In
Section 4, the Carter equations of motion are given, the equatorial circular geodesics are
determined and properties of photon circular orbits and innermost stable orbits are dis-
cussed. Since the excitation of quasiperiodic oscillations and resonant phenomena between
these oscillations could be dependent on the energy efficiency of the accretion processes
in assumed thin Keplerian disc, we briefly summarize the properties of Keplerian circular
orbits in the brany Kerr spacetimes. In Section 5, the radial and vertical (latitudinal) epi-
cyclic frequencies νr and νθ , together with the Keplerian orbital frequency νK, are given. In
Section 6, their properties are discussed, namely their radial profiles through the Keplerian
accretion disc with its inner radius assumed to be located at the radius of the innermost
stable circular geodesic, where the radial epicyclic frequency vanishes. In Section 7, we
shortly discuss the resonance conditions for the direct resonance of the both epicyclic fre-
quencies (νθ : νr = 3 : 2) assumed to be in a parametric resonance (Török et al., 2005),
and the resonance of trapped oscillations assumed in warped disc as discussed by Kato
(2007) [(2νK − νr) : (νK − νr) = 3 : 2]. In Section 8 we determine the “magic” (dimen-
sionless) spin of brany Kerr black holes in dependence on the (dimensionless) tidal charge,
enabling presence of strong resonant phenomena because of the very special frequency ratio
νK :νθ :νr = 3 :2 :1; possibility of other small integer ratios of the three frequencies is briefly
discussed. Concluding remarks on the resonant phenomena in strong gravity of brany black
holes are presented in Section 9.
Notice that we focus our discussion on the case of the negative tidal charge, which is pre-

ferred physically because of contributing to confining the negative cosmological constant of
the bulk on the gravitational field (Maartens, 2004, 2000).

2 EFFECTIVEGRAVITATIONALFIELDEQUATIONSONTHEBRANE

Using the Gauss–Codazzi projective approach, Shiromizu et al. (1999) has defined the
effective gravitational field equations on a 3-brane in a 5D bulk spacetime. Aliev and
Gümrükçüoǧlu (2005); Aliev and Gümrükçüoǧlu (2004) has shown that an extension of
the Arnowitt, Deser and Misner (ADM) formalism (Arnowitt et al., 1962) of 4D Einstein
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gravitational theory to the 5D brany model is possible. The basic ideas of the 5D ADM
formalism can be summarized after Aliev andGümrükçüoǧlu (2005) in the following way.
Let us assume 5D bulk spacetime endowed with the metric gAB and coordinates x A

(A = 0, 1, 2, 3, 4) that includes a 3-brane with spacetime metric hαβ . Introducing an
arbitrary scalar function

Z = Z(x A) (1)

with Z = const describing family of non-intersecting timelike hypersurfacesΣZ filling the
bulk, we assume that the 3-brane is located at the Z = 0 hypersurface. We can introduce
the unit spacelike normal to the brane (Z = 0 = const)

nA = N∂A Z = (0, 0, 0, 0, N) , gAB nAnB = 1 , (2)

where the scalar function

N =
∣∣∣gAB∂AZ ∂B Z

∣∣∣
−1/2

(3)

is called lapse function. Using the parametric expression of the brane surface x A = x A(yα),
a local frame of four vectors can be given in the form

eAα =
∂x A

∂yα
, (4)

where yα are spacetime coordinates on the brane (α = 0, 1, 2, 3), which is orthogonal to
nA as

nA eAα = 0 . (5)

The brany spacetime is then determined by the inducedmetric

hαβ = gAB eAα e
B
β , (6)

while the bulk spacetimemetric can be given in the form

gAB = nAnB + hαβ eαA e
β
B . (7)

It is crucial to introduce a spacelike “evolution vector” into the fifth dimension Z A, given by
the relation

Z A∂AZ = 1 , (8)

where Z is the parameter along orbits of vector Z A. Since Z A is tangent to a congruence
of curves intersecting the hypersurfaces Z = const in the slicing of the spacetime, the
evolution vector can be decomposed into normal and tangential parts

Z A = NnA + NαeAα , (9)
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with Nα being the shift vector. Then we can always define coordinate system (yα, y5) =
(yα, Z) on the bulk spacetime and decompose the spacetimemetric in the form

ds2 = gAB dx Adx B = hαβ dyαdyβ + 2Nα dyαdZ + (N2 + NαNα) dZ2 , (10)

corresponding to the standard ADM approach.
The brane bending in the bulk is determined by the extrinsic curvature tensor KAB

defined by the relation

∇AnB ≡ KAB + nAaB , KAB nA = 0 , (11)

where ∇ denotes covariant derivative related to gAB , and the 5-acceleration of the normals
reads

aA = nB ∇B nA . (12)

The brane-projected extrinsic curvature tensor is then given by the relation

Kαβ = ∇(BnA)eAα e
B
β =

1
2N

(
∂5hαβ − DαNβ − DβNα

)
(13)

with ∂5 = ∂/∂Z and D being the covariant derivative related to the inducedmetric hαβ .
The Einstein 5D equations in the bulk spacetime have the form

(5)GAB = (5)RAB − 1
2gAB

(5)R = −Λ5gAB + κ2
5

(
(5)TAB +

√
h
g
τAB δZ

)

, (14)

where κ2
5 = 8πG5 (G5 being the gravitational constant), Λ5 is the bulk cosmological

constant (assuming anti-de Sitter geometry), (5)TAB is the energy-momentum tensor in the
bulk, τAB is the energy-momentum tensor on the brane, h and g being metric determinants
of hαβ and gAB .
The effective Einstein gravitational equations (EGE) on the brane could then be given by

using the Israel junction generalized to 5D situation. In order to realize the Israel method,
the 5D Einstein equations have to be related to the intrinsic and extrinsic curvature on the
brane surface according to the metric decomposition (10) and the δ-function singularity in
Eq. (14) has to be related to the brany extrinsic-curvature jump on its evolving to the 5th
dimension; finally the evolutionary terms has to be expressed in terms of the 4D quantities
on the brane, i.e., there is matching of these terms on the brane (Aliev and Gümrükçüoǧlu,
2005).
Denoting the brane tension λ and assuming the brany energy-momentum tensor in the

form ταβ = −λhαβ+Tαβ , the resulting Israel junction condition on the Z2 symmetric brane
reads

Kαβ = − 1
2κ

2
5

[
Tαβ − 1

3hαβ(T − λ)
]

(15)

leading to the gravitational field equations on the brane in the form (Aliev and Güm-
rükçüoǧlu, 2005)

Gαβ = −Λhαβ + κ2
4 Tαβ + κ4

5 Sαβ −Wαβ − 3κ2
5 Uαβ . (16)
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The traceless tensor

Wαβ = Aαβ − 1
4 hαβ A (17)

is constructed from the “electric” part of the bulk Riemann tensor

Aαβ = (5)RABCD nA nC eBα e
D
β , A = hαβ Aαβ . (18)

The cosmological constant on the brane

Λ = 1
2

(
Λ5 + 1

6κ
4
5 λ

2 − κ2
5 P

)
, (19)

and

κ2
4 = 1

6 κ
4
5 λ , (20)

with

P = (5)TAB nA nB (21)

being the normal compressive pressure term in 5D spacetime. The “squared energy-
momentum” tensor is given by

Sαβ = − 1
4

[(
T γα Tγβ − 1

3TTαβ
)
− 1

2hαβ
(
Tγ δ T γ δ − 1

3T
2
)]

, (22)

while the traceless brany part of the bulk energy-momentum tensor is

Uαβ = − 1
3

(
(5)Tαβ − 1

4hαβ h
γ δ (5)Tγ δ

)
. (23)

In the effective 4D EGE (16)–(23), Wαβ describes non-local gravitational effect of the
bulk space onto the brane and is sometimes called Weyl fluid (Shiromizu et al., 1999),
while the local bulk effects on the brane are given by Sαβ , Uαβ and P. In addition to the
EGE (16)–(23), the 4+1 decomposition of the 5DEGE (16) results also in theHamiltonian
constraint equation
1
2

(
R − K 2 + KαβK αβ

)
= Λ5 − κ2

5 P , (24)

and the momentum constraint equation

DαK αβ − DβK = κ2
5 Jβ , (25)

where K = Kαβ hαβ , while Jα = (5)TαB nB determines energy-momentum flux onto the
brane (Aliev and Gümrükçüoǧlu, 2005).
It should be stressed that the self-consistent solutions of the effective 4D EGE (16)–(23)

on the brane require the knowledge of the non-local gravitational and energy-momentum
terms coming from the bulk spacetime. Therefore, in general the brany field equations are
not closed and evolution equations into the bulk have to be solved for the projected bulk
curvature and energy-momentum tensors (Aliev and Gümrükçüoǧlu, 2004). However, in
particular cases the brany-equations systemcould bemade closed assuming a special ansatz
for the inducedmetric. In this way, both spherically symmetric and axially symmetric brany
black hole spacetimehasbeen found (Dadhich et al., 2000;Aliev andGümrükçüoǧlu, 2005).
Assuming vacuumbulk and brany spacetimes, the non-local gravitational effects of the bulk
could be simply given by the so called tidal charge entering the standard metric of the black
hole spacetimes.
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3 BRANEWORLDKERRBLACKHOLES

The rotating black holes localized on a 3-brane in the Randall–Sundrumbraneworld model
were derived under the assumption of stationary and axisymmetric Kerr–Schild metric on
the brane and supposing empty bulk space and nomatter fields on the brane (Tαβ = 0, Aliev
andGümrükçüoǧlu, 2005). The effective EGE (16) then reduce to the form

Rαβ = −Eαβ , (26)

where

Eαβ = (5)CABCD nA nC eBα e
D
β (27)

is the “electric” part of the 5D Weyl tensor, used besides the Wαβ tensor to describe the
non-local gravitational effects of the bulk space onto the brane. Further, the relations

Λ5 = −
6
l2

, G4 =
G5
l

(28)

can be deduced from Eqs (19) and (20), assuming zero cosmological constant on the brane
(Λ4 = 0). Here,

l =
6
λκ2

5
(29)

is the curvature radius of the anti-de Sitter spacetimes. (Henceforth we setG4 = 1.)
Using the condition Tαβ = 0 in the constraint equation (24), it is clear that the mo-

mentum constraint equation is satisfied identically, while the Hamiltonian constraint equa-
tion reads

R = 0 . (30)

This condition in the Kerr–Schild ansatz implies that the line element for the brany rotating
black holes can be expressed in the standardBoyer–Lindquist coordinates in the form (Aliev
andGümrükçüoǧlu, 2005)

ds2 =−
(

1−
2Mr − b

Σ

)
dt2 −

2a(2Mr − b)
Σ

sin2 θ dtdφ

+
Σ

∆
dr2 +Σ dθ2 +

(
r2 + a2 +

2Mr − b
Σ

a2 sin2 θ

)
sin2 θ dφ2 , (31)

where

∆ = r2 + a2 − 2Mr + b , (32)

Σ = r2 + a2 cos2 θ . (33)

We can see that this metric looks exactly like the Kerr–Newman solution in general relativ-
ity (Misner et al., 1973), in which the square of the electric charge Q2 is replaced by a
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tidal charge parameter b (or “brany” parameter). Since the metric is asymptotically flat,
by passing to the far-field regime we can interpret the parameter M as the total mass of the
black hole and parameter a as the specific angular momentum (the black hole spin). The
Coulomb-type nature of the tidal charge is verified by calculating the components of the
tensor Eαβ through equation (26) (Aliev andGümrükçüoǧlu, 2005).
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Figure 1. The behaviour of functions ah (gray solid line), aph (dashed line) and ams (dotted line) that
implicitly determine the radius of the outer event black hole horizon, the limitingphoton orbit and the
marginally stable circular orbit in the equatorial plane (θ = π/2) of a rotating black hole with a fixed
value of the tidal charge b. The function aθ/r

3:2 (black solid line) represents the radii where the direct
resonance νθ :νr = 3 :2 occurs.
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The event horizons of the spacetime are determined by the condition∆ = 0. The radius
of the outer event horizon is given by the relation

r+ = M +
√
M2 − a2 − b . (34)

The horizon structure depends on the sign of the tidal charge. We see that, in contrast
to its positive values, the negative tidal charge tends to increase the horizon radius (see,
e.g., Fig. 1).
The event horizon does exist provided that

M2 ≥ a2 + b , (35)

where the equality corresponds to the family of extreme black holes. It is clear that the
positive tidal charge acts to weaken the gravitational field and we have the same horizon
structure as in the usual Kerr–Newman solution. However, new interesting features arise
for the negative tidal charge. For b < 0 and a → M it follows from equation (34) that the
horizon radius

r+ → M +
√
−b > M ; (36)

such a situation is not allowed in the framework of general relativity. From equations (34)
and (35) we can see that for b < 0, the extreme horizon r+ = M corresponds to a
black hole with rotation parameter a greater than its mass M (e.g., for extreme black hole
with b = −M2 we have a =

√
2 M). Thus, the bulk effects on the brane may provide

a mechanism for spinning up the black hole on the brane so that its rotation parameter
exceeds its mass. Such amechanism is impossible in general relativity. Further, if the inner
horizon determined by the formula

r− = M −
√
M2 − a2 − b (37)

turns out to be negative (it is possible for b < 0, again), the physical singularity (r = 0,
θ = π/2) is expected to be of space-like character, contrary to the case of b > 0, when it is
of time-like character (Dadhich et al., 2000).

4 GEODESICMOTION

Motion of a test particle of massm is given by the standard geodesic equation

DUµ

dτ
= 0 (38)

accompanied by the normalization condition UµUµ = −m2 and can be treated in full
analogy with the Kerr case (see Carter, 1968). There are three motion constants given
by the spacetime symmetry – the energy being related to the Killing vector field ∂/∂ t , the
axial angular momentum being related to the Killing vector field ∂/∂φ, and the angular
momentum constant related to the hidden symmetry of the Kerr spacetime (Carter, 1973).
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The geodesic equations could then be fully separated and integrated using the Hamilton–
Jacobimethod.
For themotion restricted to the equatorial plane (θ = π/2), the Carter equations take the

form

dθ
dλ

= 0 , (39)

r2 dr
dλ

= ±
√
R(r) , (40)

r2 dφ
dλ

= −(aE − L) +
aP(r)
∆

, (41)

r2 dt
dλ

= −a(aE − L) +
(r2 + a2)P(r)

∆
, (42)

where

P(r) = E(r2 + a2)− La , (43)

R(r) = P(r)2 −∆
[
m2r2 + (aE − L)2

]
. (44)

The proper time of the particle τ is related to the affine parameter λ by τ = mλ. The
constants of motion are: energy E and axial angular momentum L of the test particle
in infinity (related to the stationarity and the axial symmetry of the geometry); for the
equatorial motion, the third constant of motion Q = 0 (Carter, 1973).
The equatorial circular orbits can most easily be determined by solving simultaneously

the equations

R(r) = 0 ,
dR
dr

= 0 . (45)

The specific energy and the specific angular momentum of the circular motion at a given
radius are then determined by the relations (Aliev and Gümrükçüoǧlu, 2005; Dadhich and
Kale, 1977)

E
m

=
r2 − 2Mr + b ± a

√
Mr − b

r
(
r2 − 3Mr + 2b ± 2a

√
Mr − b

)1/2 , (46)

L
m

= ±
√
Mr − b

(
r2 + a2 ∓ 2a

√
Mr − b

)
∓ ab

r
(
r2 − 3Mr + 2b ± 2a

√
Mr − b

)1/2 . (47)

Here and in the following, the upper sign corresponds to the corotating orbits (L > 0),
while the lower sign implies retrograde, counter-rotating (L < 0) motion of the particles.
From equation (46) we can see that the circular orbits can exist from infinity up to the

radius of the limiting circular photon orbit, determined by the condition

r2 − 3Mr + 2b ± 2a
√
Mr − b = 0 , (48)

where E/m →∞ and L/m → ±∞, but the impact parameter B = L/E remains finite.
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The radius of themarginally bound orbits with E2 = m2 is given by the largest root of the
polynomial equation

Mr(4Mr − r2 − 4b + a2) + b(b− a2) ± 2a(b − 2Mr)
√
Mr − b = 0 . (49)

The loci of the stable circular orbits are given by the condition

∂2R
∂r2 ≤ 0 , (50)

where the case of equality corresponds to the marginally stable circular orbits. Using the
relations (46) and (47), we obtain the equation governing themarginally stable orbits in the
form

Mr(6Mr − r2 − 9b + 3a2) + 4b(b− a2)∓ 8a(Mr − b)3/2 = 0 . (51)

Notice that analogical equations of the form (48), (49) and (51) were obtained for an
equatorial circular geodesic motion in the Kerr–Newman spacetime a long time ago (Aliev
and Galtsov, 1981; Dadhich and Kale, 1977). It is evident (see Fig. 1) that the positive
tidal charge will play the same role in its effect on the circular orbits as the electric charge
in the Kerr–Newman spacetime – the radius of the circular photon orbit, as well as the
radii of the innermost bound and the innermost stable circular orbits move towards the
event horizon as the positive tidal charge increases for both direct and retrograde orbits,
while for the negative tidal charge the distance of the radii of the limiting photon orbit, the
innermost bound and the innermost stable circular orbits from the event horizon enlarge as
theabsolute valueofb increases forbothdirect and retrogrademotionsof theparticles (Aliev
and Gümrükçüoǧlu, 2005). Further, for the class of direct orbits, the negative tidal charge
tends to increase the efficiency of an accretion disc around amaximally rotating braneworld
black hole (the binding energy of a particle at the marginally stable direct orbit is given for
appropriately chosen values of b in Fig. 2 (Aliev andGümrükçüoǧlu, 2005)).
In the analysis of the epicyclic frequency profiles, it is useful to relate the profiles to the

photon circular geodesic and innermost stable circular geodesic radii that are relevant in
discussions of properties of the accretion disc and their oscillations. Therefore, we put the
limiting radii in an appropriate form.
For simplicity, we putM = 1 hereafter andwe use dimensionless radial coordinate

x = r/(GM/c2) . (52)

The outer event horizon xh(a, b) is then implicitly determined by the relation

a = ah ≡
√

2x − x2 − b . (53)

Focusing our attention to the corotating orbits, we find the radius of the photon circular
orbit xph(a, b) to be given by the relation

a = aph ≡
x(3− x)− 2b

2
√
x − b

, (54)



336 Z. Stuchlík and A. Kotrlová

0.2 0.4 %&&&&2
$$$$$$$$$
2

1 1.2 %&&&&2

a

0.465

0.081

0.423

0.200

0.293
1! E$$$$

m

b " 0.9, 0.5, 0, !0.5, !1

0.2 0.4 %&&&&2
$$$$$$$$$
2

1 1.2 %&&&&2

a

0.465

0.081

0.423

0.200

0.293
1! E$$$$

m

b " 0.9, 0.5, 0, !0.5, !1

Figure 2. The binding energy per unit mass (Ebinding = 1 − E/m) of a particle at the marginally
stable direct orbit x = xms as a function of the brany parameter b. The binding energy profile in thin
Keplerian disc is given for appropriately chosen values of b (full lines). The dashed line corresponds
to the binding energy for maximally rotating (extreme) braneworld black hole. Thick line represents
the case of Kerr spacetime with b = 0. We can see that for extreme black hole with b = −1 and
a =
√

2 the binding energy Ebinding ≃ 46.5 %, while for extreme Kerr black hole with b = 0, a = 1
we have Ebinding ≃ 42.3 % and for extreme case of the Reissner–Nordström black hole where b = 1
and a = 0 the binding energy per unitmass of a particle at themarginally stable orbit is only8.1%. So
for the class of direct orbits, the negative tidal charge tends to increase the efficiency of an accretion
disc around amaximally rotating braneworld black hole.

and the radius of the marginally stable corotating orbit xms(a, b) by the equation

a = ams ≡
4(x − b)3/2 ∓ x

√
3x2 − 2x(1 + 2b) + 3b

3x − 4b
; (55)

for extreme black holes the maximum value of the black hole spin is

amax =
√

1− b , (56)

thus, e.g., for b = −1we have amax =
√

2.

5 EPICYCLICOSCILLATIONSOFKEPLERIANDISCS

It is well known that for oscillations of both thin Keplerian (Kato et al., 1998; Kluźniak
and Abramowicz, 2001) and toroidal discs (Rezzolla et al., 2003) around black holes (neut-
ron stars) the orbital Keplerian frequency νK and the related radial and vertical epicyclic
frequencies νr and νθ of geodetical quasi-circular motion are relevant and observable dir-
ectly or through some combinational frequencies (Török et al., 2005; Török and Stuchlík,
2005a,b; Stuchlík et al., 2007b). Of course, for extended tori, the eigenfrequencies of their
oscillations are shifted from the epicyclic frequencies in dependence on the thickness of the



Orbital resonancemodel of QPOs in braneworldKerr BH spacetimes 337

torus (Šrámková, 2005; Blaes et al., 2007). Similarly, due to non-linear resonant phenom-
ena, the oscillatory eigenfrequencies could be shifted from the values corresponding to the
geodetical epicyclic frequencies in dependence on the oscillatory amplitude (Landau and
Lifshitz, 1976). However, it is expected that shift of this kind is observed in neutron star
systems (Abramowicz et al., 2005a,b), while in microquasars, i.e., binary black hole sys-
tems, the observed frequency scatter is negligible and the geodetical epicyclic frequencies
should be relevant. Here, we restrict our attention to the geodetical epicyclic oscillations of
Keplerian discs inmicroquasars.
In the case of the Kerr black holes with the brany tidal charge b, the formulae of the

test particle geodetical circular motion and its epicyclic oscillations, obtained by Aliev and
Galtsov (1981) could be directly applied. We canwrite down the following relations for the
orbital and epicyclic frequencies:

ν2
r = αr ν

2
K , (57)

ν2
θ = αθ ν

2
K , (58)

where the Keplerian frequency reads

νK =
1

2π

(
GM
r3

G

)1/2 √
x − b

x2 + a
√
x − b

=
1

2π

c3

GM

√
x − b

x2 + a
√
x − b

, (59)

and the dimensionless quantities determining the epicyclic frequencies are given by

αr(x, a, b) =
4
(
b − x − a2)

x2 +
8a
√
x − b
x2 +

x(x − 2) + a2 + b
x(x − b)

, (60)

αθ (x, a, b) = 1 +
2a2

x2 −
2a
√
x − b
x2 −

2a
√
x − b

x(x − b)
+

a2

x(x − b)
, (61)

which reduce to the standard relations for quasi-circular geodesics in Kerr metric (Török
and Stuchlík, 2005b) for b = 0.
In the limit of the Reissner–Nordström like static braneworld black hole (a = 0), we

arrive at

αr(x, b) =
4(b − x)

x2 +
x(x − 2) + b
x(x − b)

, (62)

αθ (x, b) = 1 , (63)

so that νK(x, b) = νθ (x, b) due to the spherical symmetry of the spacetime.
In the field of brany Kerr black holes (a ̸= 0), there is (see Fig. 3)

νK(x, a, b) > νθ (x, a, b) > νr(x, a, b) , (64)

however, this statement is not generally correct in the case of branyKerr naked singularities.
In the next section we show that the case when νθ (x, a, b) ≤ νr(x, a, b) is also possible.
The properties of νK, νθ , νr for Kerr black hole spacetimes are reviewed, e.g., in Kato

et al. (1998) and for both Kerr black hole and Kerr naked singularity spacetimes in Török
and Stuchlík (2005b). We can summarize that in Kerr spacetime with zero tidal charge
(b = 0)
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Figure 3. The behaviour of the two epicyclic frequencies νr, νθ (left panel), and Keplerian frequency
νK (right panel) in the field of braneworld Kerr black holes with fixed value of the black hole spin
a = 0.3 and various values of the tidal charge parameterb. The curves are spaced by 0.2 in b and they
are plotted from the outer event black hole horizon xh. The dashed line represents Kerr spacetime
with zero tidal charge.

• the Keplerian frequency is a monotonically decreasing function of radius for the whole
range of black hole rotational parameter a ∈ (−1, 1) in astrophysically relevant radii above
the photon orbit;
• for slowly rotating black holes the vertical epicyclic frequency is amonotonically decreas-
ing function of radius in the same radial range as well; however, for rapidly rotating black
holes this function has amaximum;
• the radial epicyclic frequency has a local maximum for all a ∈ (−1, 1), and is zero at the
innermost stable circular geodesic;
• for Kerr naked singularities the behaviour of the epicyclic frequencies is different; a
detailed analysis (Török and Stuchlík, 2005b) shows that the vertical frequency can have
two local extrema, and the radial one even three local extrema.

In the next section we discuss the behaviour of the fundamental orbital frequencies
for Keplerian motion in the field of both brany Kerr black hole and brany Kerr naked
singularities.
We express the frequency as ν [Hz] 10 M⊙/M in every quantitative plot of frequency

dependence on radial coordinate x , i.e., displayed value is the frequency relevant for a
central object with a mass of 10 M⊙, which could be simply rescaled for another mass by
just dividing the displayed value by the respective mass in units of ten solarmass.

6 PROPERTIESOF THEKEPLERIANANDEPICYCLIC FREQUENCIES

First, it is important to find the range of relevance for the functions νK(x, a, b), νθ (x, a, b),
νr(x, a, b) above the event horizon xh for black holes, and above the ring singularity located
at x = 0 (θ = π/2) for naked singularities.
Stable circular geodesics, relevant for the Keplerian, thin accretion discs exist for x >

xms(a, b), where xms(a, b) denotes the radius of the marginally stable orbit, determined (in
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an implicit form) by the relation (51), which coincideswith the condition

αr(x, a, b) = 0 . (65)

For toroidal, thick accretion discs the unstable circular geodesics can be relevant in the
range xmb ≤ xin < x < xms, being stabilized by pressure gradients in the tori. The radius of
the marginally bound circular geodesic xmb, implicitly determined by the equation (49), is
the lower limit for the inner edge of thick discs (Kozłowski et al., 1978; Krolik and Hawley,
2002).
Clearly, the Keplerian orbital frequency is well defined up to x = xph. However, νr is well

defined, if αr ≥ 0, i.e., at x ≥ xms, and νr = 0 at xms. We can also show that for x ≥ xph,
there is αθ ≥ 0; i.e., the vertical frequency νθ is well defined at x > xph.
From Fig. 3, we can conclude that not only the both epicyclic frequencies but even the

Keplerian frequency can have amaximum located above the outer event black hole horizon;
this kind of behaviour is not allowed in Kerr spacetime. In the next subsection we will
discuss, if themaximumcould be located above themarginally stable or the limiting photon
circular orbit.

6.1 Local extrema of the Keplerian frequency

Denoting by XK the local extrema of Keplerian frequency νK, we can give the extrema by
the condition
∂νK
∂r

= 0 ⇔
∂νK
∂x

= 0 , (66)

where x is dimensionless radial coordinate (52). From (59), we find that the corresponding
derivative3 is

ν′K =
1

2π

√
GM
r3

G

x(4b− 3x)

2
√
x − b

(
x2 + a

√
x − b

)2 =
x(4b − 3x)νK

2(x − b)
(
x2 + a

√
x − b

) , (67)

and relation (66) implies that Keplerian frequency has a local extremum located at

XK = 4
3b . (68)

The second derivative at x = XK

ν′′K =
−162

√
3

√
b
(

3
√

3 a + 16b3/2
)2 (69)

is always negative, thus Keplerian frequency could have one localmaximum at x = XK.
Generally, the maximum is located at or above the outer event black hole horizon if the

condition

XK ≥ 1 (70)

3 After introducing ′ as d/dr .
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is satisfied that implies the relevant range of the tidal charge parameter

0.75 ≤ b ≤ 1 (71)

and fromrelation (56) thepossible values of the black hole spin are allowed from the interval

0 ≤ a ≤ 0.5 , (72)

where the case of a black hole with a = 0.5 and b = 0.75 corresponds to the maximally
rotating (extreme) braneworld Kerr black hole with the maximum of Keplerian frequency
situated exactly at the Boyer–Lindquist coordinate radius of the extreme black hole horizon
xh = 1.
From relations (53) and (54) we obtain

ah(x = XK) = 1
3
√
b(15− 16b) , (73)

aph(x = XK) =
√

3b
(

1− 8
9b
)

, (74)

which implicitly determine that the maximum of Keplerian frequency is situated at the
radius coinciding with the radius of the black hole horizon XK = xh (73) or the circular
photon orbitXK = xph (74). FromEq. (55) we obtain the same relation as (74), thus

ams(x = XK) = aph(x = XK) , (75)

it means that the functions aph and ams cross each other at the radius where the Keplerian
frequency has its maximum x = XK = 4/3b.
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Figure 4. Left panel: the functions ah(x = XK) (solid line), aph(x = XK) (dotted line) determining
that the maximum of Keplerian frequency is situated exactly at the black hole horizon XK = xh,
at the photon orbit XK = xph. Dashed line represents maximum possible value of the black hole
spin corresponding to the concrete value of the brany parameter b, so the area above amax belong to
naked singularities. The gray area illustrates all possible combinations of the black hole spin aand the
tidal charge b for which the Keplerian frequency has its maximum located at xh ≤ XK ≤ xph. The
right panel displays the functions bh, bph and bms implicitly determining the location of the black hole
horizon, the limiting photon orbit and the marginally stable orbit for a = 0 (solid lines) and a = 0.5
(dashed lines). Thick line represents (in an implicit form) the maximum of Keplerian frequency
b = 3x/4.
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Figure 5. The Keplerian and epicyclic frequencies for various values of the black hole spin a and the
tidal charge b: (a) the only case when the Keplerian frequency has its maximum located exactly at
XK = xh = xph; (b)–(d) represent braneworld Reissner–Nordström spacetimewhere νK = νθ ; (a),
(c) correspond to the extreme black holes, (d) to naked singularity.

The functions ah(x = XK), aph(x = XK) are shown in the left panel of Fig. 4. We can
see that for branyKerr black holes all possible values of the tidal charge parameter and black
hole spin imply the condition

aph(x = XK) ≥ amax , (76)

thus themaximumofKeplerian frequency could never be located above thephotonorbit xph.
Only for maximally rotating black hole with b = 0.75 and a = amax = 0.5, the maximum is
situated exactly at the Boyer–Lindquist coordinate radius of the limiting photon orbit that
merges with the radius of the black hole horizon, soXK = xph = xh = 1 (see Fig. 5).4
We can conclude that for brany parameter from interval (71) and black hole spin from

interval (72), the Keplerian frequency has its maximum located between the black hole

4 However, note the behaviour of extreme Kerr black hole at x = 1, where the same coordinate corresponds to an
infinitely long throat of the proper radial distance, with different positions of the horizon and the circular photon,
marginally bound andmarginally stable orbits (Bardeen, 1973).
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horizon and the photon circular orbit

xh ≤ XK ≤ xph . (77)

In astrophysically relevant radii above the photon orbit x > xph the Keplerian frequency is
a monotonically decreasing function of radius for the whole range of the brany tidal charge
parameter b as in the standard Kerr spacetimes.
Notice that the function aph (54) has two local extrema situated at x = 1 and x = XK =

4/3b, which for brany parameter b > 0.75 corresponds to the local maximum. Also the
function ams (55) has two local extrema located at x = 1 and x = 2b, that for brany
parameter b > 0.5 corresponds to the local maximum (this local maximum appears only
for naked singularities, since a > amax). So neither the function aph nor ams are for x > 1
monotonically decreasing functions of radius for the whole range of the brany tidal charge
parameter b as in usual Kerr spacetime. This special behaviour of aph and ams implies that
for some values of the brany parameter b the loci of the photon orbit xph and the marginally
stable orbit xms for extreme braneworld Kerr black holes do not merge with the black hole
horizon located at xh = 1 as in Kerr spacetime and are shifted to higher radii. We have

xph > 1 for b > 0.75 , (78)

xms > 1 for b > 0.5 . (79)

Actually, this special behaviour ofaph andams implies that theKeplerian frequency could not
have its maximum located above the photon orbit. E.g., for extreme Reissner–Nordström
braneworld black hole with a = 0 and b = 1, we have xh = 1, xph = 2, xms = 4 and
XK = 4/3 (see Figs 4 and 5).
The functions aph and ams are for various values of the tidal charge b illustrated in Fig. 1.

6.2 Local extrema of epicyclic frequencies

The local extrema of the radial and vertical epicyclic frequencies Xr, Xθ are given by the
condition
∂νi
∂x

= 0 for Xi , where i ∈ {r, θ} . (80)

Using (57) and (58), the corresponding derivatives can be given in the form

ν′i =
√
αi

(
ν′K +

α′i
2αi

νK

)
, (81)

α′i =
βi

x3(x − b)5/2 , (82)

where ν′K is given by (67), and

βr(x, a, b) = −4a(3x − 4b)(x − b)2 +
√
x − b

×
[
a2
(

6x2 − 15xb+ 8b2
)
−
(
x3b − 6x3 + 18x2b − 21xb2 + 8b3

)]
, (83)

βθ (x, a, b) = a
(
x − a

√
x − b − b

) (
6x2 − 9xb + 4b2

)
. (84)
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Relations (80) and (81) imply the condition determining extrema Xi (a, b) of the epicyclic
frequencies profiles

βi (x, a, b) = −
2ν′K
νK

x3(x − b)5/2 αi (x, a, b) , i ∈ {r, θ} . (85)

We have checked that in the case of counter-rotating orbits (a < 0) the extrema Xθ are
located under the photon circular orbit and the extremaXr are just extensions of theXr for
corotating case, therefore, we focus mainly on the case of corotating orbits (a > 0) in the
next discussion.
In Figs 6 and 7 we show for various values of brany parameter b curves Ak

r (x = Xr, b)
(Ak

θ (x = Xθ , b)), k ∈ {1, 2} implicitly determined by the relations (85); index k denotes
different branches of the solution of (85).
The radial epicyclic frequency has one local maximum for braneworld Kerr black holes

with rotational parameter restricted by

0 ≤ a ≤ amax(b) , (86)

and for all possible values of brany parameter b. The localmaximum is always located above
the marginally stable orbit xms (see Fig. 6).
But for braneworld Kerr naked singularities with

b < bc
.= 0.29143 (87)

the radial epicyclic frequency has two localmaxima and one localminimum for

amax < a < ac1(r) , (88)

where ac1(r) corresponds to the local maximum of A2
r (x = Xr, b), and again one local

maximum for

a ≥ ac1(r) , (89)

as in usual Kerr naked singularity spacetime (Török and Stuchlík, 2005b). However, for
some specific values of a

a1 < a < a2 , (90)

where a1 we obtain from equation

A1
r (x = Xr, b) = ams (91)

and a2 from

A2
r (x = Xr, b) = ams , (92)

the radial epicyclic frequency has one extra localminimum, because for these special values
of a there exists no marginally stable orbit (given by condition (65), i.e., νr = 0), therefore
the radial epicyclic frequency is for a from (90) always greater than zero.
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Figure 6. The functionsA1
r (x = Xr, b), A2

r (x = Xr, b), implicitly determining the locationsXr of
the radial epicyclic frequency local extrema for various values of brany parameter b.
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Figure 7. The functionsA1
θ (x = Xθ , b),A2

θ (x = Xθ , b), implicitly determining the locationsXθ of
the vertical epicyclic frequency local extrema for various values of brany parameterb.

For braneworld Kerr naked singularities with b > bc the situation is more complicated,
as we can see in Fig. 6. Denoting by ac1(r) and ac2(r), the local maxima of A2

r (x = Xr, b),
and ac3(r) the local minimumofA1

r (x = Xr, b), then if

bc < b < 0.5 , (93)

and ac2(r) > ac1(r) (ac2(r) < ac1(r)), the radial epicyclic frequency has for amax < a ≤ a1
two local maxima and one local minimum; for a1 < a < ac1(r) (a1 < a < ac2(r)) two local
maxima and also two local minima; for ac1(r) ≤ a < ac2(r) (ac2(r) ≤ a < ac1(r)) one local
maximum and one local minimum; for ac2(r) ≤ a ≤ ac3(r) (ac1(r) ≤ a ≤ ac3(r)) the radial
epicyclic frequency is a monotonically decreasing function of the radial coordinate without
any extrema; for ac3(r) < a < a2 it has again one local maximum and one local minimum;
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Figure 8. The behaviour of the epicyclic frequencies for b = 0.3 and for some representative values
of rotational parameter a in braneworld Kerr naked singularity spacetimes, including the extreme
braneworldKerr black hole.

and finally for a ≥ a2 it has only one local maximum as in black hole spacetime (a1 and a2
are given by (91) and (92), the condition amax < a1 < ac1(r) is always satisfied). Notice
that for a1 < a < a2, νr could not be equal to zero (see Fig. 8).
If b = 0.5, then a1 = ac2(r) = amax

.= 0.707, and for amax < a < ac1(r) the radial
epicyclic frequency has one local maximum and one local minimum; for ac1(r) ≤ a ≤ ac3(r)
it is a monotonically decreasing function of the radial coordinate without any extrema; for
ac3(r) < a < a2 it has again one local maximum and one local minimum; and for a ≥ a2 it
has only one local maximum.
In the case of braneworld Kerr naked singularities with

b > 0.5 , (94)

the behaviour of the radial epicyclic frequency is different due to the effect described in the
previous section (see relation (79)). For amax < a ≤ a1, νr has one local maximum; for
a1 < a < ac1(r) it has one local maximum and one local minimum; for ac1(r) ≤ a ≤ ac3(r)
it is a monotonically decreasing function of the radial coordinate without any extrema; for
ac3(r) < a < a2 it has again one local maximum and one local minimum; and finally for
a ≥ a2 it has only one local maximum.
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The vertical epicyclic frequency has a local maximum (at x > xms) only for rapidly
rotating black holes with (see Fig. 7)

ams(θ) < a < amax and b < 0.725 , (95)

where ams(θ) we obtain as a solution of equation

ams = Ak
θ , (96)

for k = 1 or 2. There is ams(θ) = amax(b = 0.725)
.= 0.524. (For maximally rotating black

holewith b = 0.725 and amax
.= 0.524, the localmaximum is located exactly at the radius of

the marginally stable orbit,Xθ = xms). Note that in the black hole case the localmaximum
of νθ (x, a, b) is relevant in resonant effects for x > xms.
For b > 0.725 the vertical epicyclic frequency is a monotonically decreasing function of

radius for the whole range of black hole rotational parameter a.
In the braneworld Kerr naked singularity spacetimes, the function νθ has a local min-

imum and a localmaximum for

amax < a < ac(θ) , (97)

and has no astrophysically relevant local extrema for

a ≥ ac(θ) . (98)

Clearly, the behaviour of the epicyclic frequencies substantially differs for braneworld
Kerr naked singularities in comparison with braneworld Kerr black holes. Examples of the
behaviour of the epicyclic frequencies in Kerr naked singularity spacetimes with b = 0.3
are given in Fig. 8.

6.3 Ratio of epicyclic frequencies

The ratio of epicyclic frequencies νθ and νr needs to be well defined for some models of
QPOs (Abramowicz et al., 2004; Kato, 2004). It is well known (see, e.g., Kato et al., 1998)
that for the Kerr black holes (−1 ≤ a ≤ 1) the inequality

νr(x, a) < νθ (x, a) (99)

holds, i.e., the equation νr(x, a) = νθ (x, a) does not have any real solution in the whole
range of black hole rotational parameter a ∈ (−1, 1) and
νθ

νr
> 1 (100)

for any Kerr black hole. Furthermore, this ratio is a monotonic function of radius for any
fixed a ∈ (−1, 1) (Török and Stuchlík, 2005b). These statements are valid also for any
brany Kerr black hole (i.e., for b fixed and a ≤ amax).
However, the situation is different for Kerr naked singularities. For b = 0 and a > 1, the

epicyclic frequencies νθ , νr can satisfy the equality condition

νθ (a, x) = νr(a, x) (101)
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Figure 9. The behaviour of ratio νθ /νr(x) of the epicyclic frequencies for braneworld Kerr black hole
and naked singularity spacetimeswithb = 0.3. Themarginally stable orbit xms is denoted by a dotted
vertical line (if this orbit exists at the given spacetime).

giving a strong resonant phenomenon, which occurs at the critical radius

xsr = a2 (a ≥ 1) . (102)

This means that for any Kerr naked singularity the epicyclic frequency ratio νθ/νr is a
non-monotonic function that reaches value 1 at the point given by (102); for detailed
discussion (see Török and Stuchlík, 2005b).
Furthermore, for brany Kerr naked singularities with b > 0 the epicyclic frequencies can

satisfy even the condition (see Figs 8 and 9)

νθ (x, a, b) ≤ νr(x, a, b) , (103)

that is not allowed in Kerr naked singularities. For naked singularities with b < 0 again the
relation

νθ (x, a, b) > νr(x, a, b) (104)

is valid, as in the Kerr black hole spacetimes.

7 RESONANCECONDITIONS

The orbital resonance models for QPOs proposed by Abramowicz and Kluźniak (2001);
Abramowicz et al. (2004) are particularly based on resonance between epicyclic frequencies
which are excited at a well defined resonance radius xn:m given by the condition

νθ

νr
(a, b, xn:m) =

n
m

, (105)
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where n : m is (most often) 3 : 2 in the case of parametric resonance (the effect itself is
described by the Mathieu equation (see Landau and Lifshitz, 1976)) and arbitrary rational
ratio of two small integral numbers (1, 2, 3, . . . ) in the case of forced resonances. Another,
so called “Keplerian” resonance model, takes into account possible parametric or forced
resonances between oscillations with radial epicyclic frequency νr and Keplerian orbital
frequency νK.
For a particular resonance n :m, the equation

nνr = mνv ; νv ∈ {νθ , νK} (106)

determines the dimensionless resonance radius xn:m as a function of the dimensionless spin
a in the case of direct resonances that can be easily extended to the resonances with com-
binational frequencies (Stuchlík et al., 2007b). From the known mass of the central black
hole (e.g., low-mass in the case of binary systems or hi-mass in the case of supermassive
black holes), the observed double peak frequencies (νupp, νdown), and the Eqs (57)–(59),
(106) imply the black hole spin, consistent with different types of resonances with the
beat frequencies taken into account. This procedure was first applied to the microquasar
GRO 1655−40 by Abramowicz and Kluźniak (2001), more recently to the other three mi-
croquasars (Török et al., 2005) and also to the Galaxy centre black hole Sgr A∗ (Török,
2005a).
The twin peak QPOs were observed in four microquasars, namely GRO 1655−40,

XTE 1550−564, H 1743−322, GRS 1915+105 (Török et al., 2005). In all of the four
cases, the frequency ratio of the twin peaks is very close to 3 :2. The very probable interpret-
ation of observed twin peak kHzQPOs is the 3 :2 parametric resonance, however, generally
it is not unlikely that more than one resonance could be excited in the disc at the same
time (or in different times) under different internal conditions. Indeed, observations of the
kHz QPOs in the microquasar GRS 1915+105, and of the QPOs in extragalactic sources
NGC 4051, MCG-6-30-15 (Lachowicz et al., 2006) andNGC 5408 X−1 (Strohmayer et al.,
2007), and the Galaxy centre Sgr A∗ (Aschenbach et al., 2004) show a variety of QPOs with
frequency ratios differing from the 3 :2 ratio.
The resonances could be parametric or forced and of different versions according to the

epicyclic (Keplerian) frequencies entering the resonance directly, or in some combinational
form. In principle, for any case of the resonance model version, one can determine both
the spin and mass of the black hole just from the eventually observed set of frequencies.
However, the obvious difficulty would be to identify the right combination of resonances
and its relation to the observed frequency set. Within the range of black hole mass allowed
by observations, each set of twin peak frequencies puts limit on the black hole spin. Of
course, the resonance model versions are consistent with observations, if the allowed spin
ranges are overlapping each other. Clearly, two ormore twin peaks then generallymake the
spinmeasurement more precise.
Herewe consider the versions of the resonancemodel explaining the 3 :2 ratio taking into

account both the direct and one type of simple combinational resonances.
First, we investigate radial coordinate determining position, where the ratio

νupp

νdown
=

3
2

(107)
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occurs for the simple case of the parametric resonance between the radial and vertical
epicyclic oscillations. The resonant conditions determining implicitly the resonant radius
xn:m must be related to the radius of the innermost stable circular geodesic xms giving the
inner edge of Keplerian discs. Therefore, for all the relevant resonance radii, there must be
xn:m ≥ xms, where xms is implicitly given by (55).
The result is given in the way relating the dimensionless spin a and the dimensionless

resonance radius x for frequency ratio n :m = 3 :2

a = aθ/r
3:2 (x, b) ≡

1
39x − 44b

{
4(11x − 10b)

√
x − b

−
√

(5x + 4b)
[
39x3 − 2x2(17 + 22b) + 43xb − 4b2

]}
. (108)

The behaviour of function aθ/r
3:2 representing the direct resonance νθ : νr = 3 : 2 is for

various values of brany parameter b illustrated in Fig. 1. We can see that for all considered
values of b the condition x3:2 > xms is always satisfied.
On the other hand, in the framework of the warp disc oscillations, the frequency of which

are given by combinations of the Keplerian and epicyclic frequencies, resonant phenomena
could be relevant too. Usually, the inertial-acoustic and g-mode oscillations and their
resonances are relevant (Kato, 2007). We plan to give a detailed study of multi-resonant
phenomena related to observable triple frequency sets in future. Here,wegive as an example
the study of the simple frequency relation

2νK − νr
νK − νr

=
3
2

. (109)
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Figure 10. The behaviour of ratio (2νK − νr)/(νK − νr) representing the resonance of trapped
oscillations assumed in warped disc (Kato, 2007). The marginally stable orbit xms is denoted by a
dotted vertical line (if this orbit exists at the given spacetime).
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However, there exists no solution for this ratio in both Kerr black hole and Kerr naked
singularity spacetimes for any value of brany parameter b. The lowest relevant frequency
ratio is (2νK − νr) :(νK − νr) = 2 :1 (see Fig. 10).

7.1 Application tomicroquasar GRS 1915+105

The frequency ratio of the upper twin peak QPOs observed inmicroquasar GRS 1915+105
is very close to 3 :2 (Török et al., 2005):

νupp = (168 ± 3) Hz , (110)

νdown = (113 ± 5) Hz . (111)

From the known limits on the mass of the black hole inGRS 1915+105 (McClintock and
Remillard, 2004)

10.0 M⊙ < M < 18.0 M⊙ , (112)

the observed double peak frequencies (110), (111), and the Eqs (57)–(59), (106) imply
the black hole spin consistent with different types of resonances. Assuming the very prob-
able interpretation of observed twin peak kHz QPOs in microquasar as the 3 : 2 standard
parametric resonance

νθ

νr
(a, b, x3:2) =

3
2

(113)

and identifying

νupp ≡ νθ , (114)

we can express the black holemass in the form

M
M⊙

=
1

2π

c3

GM⊙

√
x − b

x2 + a
√
x − b

√
αθ

νθ
, (115)

where a = aθ/r
3:2 (x, b) is given by the relation (108).

According to the spectral analysis of the X-ray continuum by McClintock et al. (2006),
the compact primary of the binary X-ray source GRS 1915+105 is a rapidly-rotating Kerr
black hole with a lower limit on its dimensionless spin of

a > 0.98 . (116)

Fig. 11 shows the predictions of the 3 : 2 parametric resonance model in the mass-
spin plane. It demonstrates possible combinations of mass and black hole spin of
GRS 1915+105 as they are predicted by the 3 : 2 parametric resonance model for vari-
ous values of brany parameter b. We can summarize, that only for the brany parameter b
from the interval

−0.755 ≤ b ≤ 0.03 , (117)
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Figure 11. Possible combinations of mass and black hole spin predicted by the standard paramet-
ric resonance model (νθ : νr = 3 : 2) for the high-frequency QPOs observed from the microquasar
GRS 1915+105. Shaded regions indicate the likely ranges for the mass (inferred from optical meas-
urements of radial curves McClintock et al., 2006)) and the dimensionless spin (inferred from the
X-ray spectral data fittingMcClintock andRemillard, 2004)) of GRS 1915+105.

the standard parametric resonancemodel matches the observational constraints.
Notice that although the spectral fitting analysis has been done by McClintock et al.

(2006) very carefully, the spin estimate is valid only in Kerr spacetime. We can suppose that
for braneworld Kerr black hole with non-zero brany parameter b, the spin estimates may
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be shifted to higher values of a due to the influence of the brany tidal charge on the optical
phenomena near a rotating black hole (Schee and Stuchlík, 2007a,b).

8 STRONGRESONANTPHENOMENA– “MAGIC” SPIN

Generally, the resonances could be excited at different radii of the accretion disc under
different internal conditions; sucha situation is discussed indetail byStuchlík et al. (2007b).
However, we have shown (Stuchlík et al., 2007a) that for special values of dimensionless
black hole spin a strong resonant phenomena could occur when different resonances can be
excited at the same radius, as cooperative phenomena between the resonances may work in
such situations.
There exists a possibility of direct resonances of oscillations with all of the three orbital

frequencies, characterized by a triple frequency ratio set

νK :νθ :νr = s : t :u (118)

with s > t > u being small integers. The frequency set ratio (118) can be realized only for
special values of the black hole spin a. The black holemass is then related to the magnitude
of the frequencies.
Assuming two resonances νK : νθ = s : t and νK : νr = s : u occurring at the same x , we

arrive to the conditions

αθ (a, b, x) =
(
t
s

)2
, (119)

αr(a, b, x) =
(u
s

)2
(120)

that have to be solved simultaneously for x , a and b. The solution is given by the condition

aθ(x, b, t/s) = ar(x, b, u/s) , (121)

where

aθ(x, b, t/s) =
√
x − b

3x − 2b

×
{

2x − b ±
√
b2 − 2bx

[
2 + x

(
(t/s)2 − 1

)]
+ x2

[
4 + 3x

(
(t/s)2 − 1

)]}
, (122)

ar(x, b, u/s) =
1

3x − 4b

{
4(x − b)3/2

± x
√
b
[
3− 4b (u/s)2]+ x

[
7b (u/s)2 − 2 (2b + 1)

]
− 3x2

[
(u/s)2 − 1

]}
. (123)

For Kerr spacetime with b = 0 the explicit solution determining the relevant radius for
any triple frequency set ratio s : t :u takes the form

x(s, t, u) =
6s2

6s2 ± 2
√

2
√

(t − u)(t + u)(3s2 − t2 − 2u2)− (t2 + 5u2)
. (124)
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Clearly, the condition t2 + 2u2 ≤ 3s2 is always satisfied. The corresponding black
hole spin a is then determined, e.g., by Eq. (122) giving aθ (x(s, t, u), t/s). Of course, we
consider only the black hole cases when a ≤ amax. This condition puts a restriction on
allowed values of s, t, u.
A detailed discussion of the black holes admitting strong resonant phenomena is for

small integer (s ≤ 5) given in Stuchlík et al. (2007a). Of special interest seems to be
the case of the “magic” spin, when the Keplerian and epicyclic frequencies are in the ratio
νK :νθ :νr = 3 :2 :1 at the common radius x3:2:1. In fact, this case involves rather extended
structure of resonances with νK :νr = 3 :1, νK :νθ = 3 :2, νθ :νr = 2 :1. Notice that in this
case also the simple combinational frequencies could be in this small integer ratio as

νK
νθ − νr

=
3
1

,
νK

νK − νr
=

3
2

,
νθ

νθ − νr
=

2
1

. (125)

Of course we obtain the strongest possible resonances when the beat frequencies enter the
resonance satisfying the conditions

νθ + νr
νK

=
3
3

= 1 ,
νθ

νK − νr
=

2
2

= 1 ,
νr

νK − νθ
= 1 ,

νθ − νr
νr

= 1 . (126)

In Kerr spacetime where b = 0 we obtain the “magic” spin amagic = 0.983 and the com-
mon radius x3:2:1 = 2.395 (see Fig. 12). Assuming all possible values of brany parameter
b we can conclude that this special case of the “magic” spin could occur only for brany
parameter from the interval

bmagic ∈ ⟨−3.258; 0.287⟩ , (127)

that implies the “magic” spin from the interval

amagic ∈ ⟨0.844; 2.063⟩ . (128)
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Figure12.The special cases of the triple frequency ratio sets of theorbital frequencies νK, νθ , νr (black
solid lines)with the corresponding “magic” spin aand the shared resonance radius forKerr spacetime
(left panel) and for the extreme braneworld black holewith b= 0.287 (right panel). For completeness
we present the relevant simple combinational frequencies νθ − νr, νθ + νr, νK − νθ , νK − νr (grey
dashed lines). Notice that the “magic” spin represents the only case when the combinational and
direct orbital frequencies coincide at the shared resonance radius.
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Figure 13. “Magic” black hole spin a (left panel) and the common radius x3:2:1 (right panel) as the
function of the “magic” brany parameter b, that imply the frequency ratio set νK : νθ : νr = 3 : 2 : 1
arising at the common orbit x3:2:1. Dashed line in the left panel represents amax, corresponding
to the extreme black holes. We can see that for all possible values of the “magic” brany parameter
amagic→ amax. In the right panel, there is also shown the radius of the outer event black hole horizon
xh (gray solid line) and the marginally stable circular orbit xms (dashed line) of a rotating black hole
carrying a given value of the “magic” brany parameter b and “magic” black hole spin a.

Only for this values of a and b we have a ≤ amax, where amax corresponds to the extreme
black hole (see Fig. 13).

8.1 SgrA∗ black hole parameters

The Galaxy centre source Sgr A∗ can serve as a proper candidate system, since three
QPOs were reported (but not fully accepted by the astrophysical community) for the sys-
tem (Aschenbach, 2004; Török, 2005a) with frequency ratio corresponding to the “magic”
spin

(1/692) :(1/1130) :(1/2178)≈ 3 :2 :1 (129)

andwith the upper frequency being observed with a rather high error

νupp = (1.445 ± 0.16) mHz . (130)

Considering a black hole with the spin comparable to the “magic” value a ∼ amagic, with
the frequency ratio νK : νθ : νr = 3 : 2 : 1 at the sharing radius x3:2:1, and identifying νupp =
νK, we obtain for all possible values of “magic” brany parameter bmagic ∈ ⟨−3.258; 0.287⟩
the black holemass of SgrA∗ in the interval

3.82× 106 M⊙ < M < 5.59× 106 M⊙ , (131)

which meets the allowed range of the SgrA∗ mass coming from the analysis of the orbits of
starsmoving within 1000 light hour of SgrA∗ (Ghez et al., 2005)

2.8× 106 M⊙ < M < 4.6× 106 M⊙ (132)

at its higher mass end. In all these cases, the black hole spin a → amax, in agreement
with the assumption that Galactic centre black hole should be fast rotating. The results are
summarized in Table 1.
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Table 1.Determining of the black hole spin andmass in Sgr A∗ with assumed observed characteristic
frequency ratio set νK : νθ : νr = 3 : 2 : 1 at the common orbit x3:2:1 for various values of brany
parameterb; νup = (1.445 ± 0.16) mHz is used to determine the black holemass.

bmagic amagic xms x3:2:1 M
[
106 M⊙

]

0.287150 0.844304 1 2.26663 4.477–5.592

0 0.983043 1.57081 2.39467 4.293–5.362

−1 1.378867 1.79706 2.65656 3.971–4.959

−2 1.705166 1.73104 2.77498 3.849–4.808

−2.969659 1.985138 1.42803 2.81093 3.819–4.769

−3.257659 2.063410 1 2.80953 3.821–4.773
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Figure 14.Mass of Sgr A∗: strong resonant model with the frequency ratio νK : νθ : νr = 3 : 2 : 1 for
various values of brany parameterb. The observational restrictions from the orbitalmotion of stars in
vicinity of Sgr A∗ (Ghez et al., 2005) are illustrated here by the gray rectangle.

From Fig. 14 we can see that the best fit is obtained for the brany parameter b ∼ −2.97
that implies “magic” spin amagic ∼ 1.99 and the radius x3:2:1 = 2.81.
The model should be further tested and more precise frequency measurements are very

important.
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9 CONCLUSIONS

The orbital resonance model and its simple generalization to multiresonance model with
strong resonances is formulated for the brany Kerr black holes, when the bulk-space influ-
ence is described by a single, brany tidal charge parameter.
In the limit of strong gravitational field, the brany parameter b can be, in principle, high

in its magnitude, therefore, we put no restriction on the values of b. We describe the
properties of the radial and vertical epicyclic frequencies related to the oscillatory motion in
the equatorial plane of the Kerr spacetimes. While their behaviour is qualitatively similar
for Kerr and brany Kerr black holes, there are strong differences in the case of naked
singularities – in some range of their parameters, the vertical epicyclic frequency could be
even lower than the radial one. Such a situation is impossible in standard Kerr spacetimes.
Further, in the field of brany Kerr naked singularities, the structure of the radial profiles is
much richer than in the standard case, namely the number of local extrema could be higher
in comparison with the standard Kerr naked singularities. Further, in a special family of the
brany naked singularity spacetimes, the radial epicyclic frequency has no zero point since
there is nomarginally stable circular geodesic in these spacetimes.
Assuming the parametric resonance acting directly between the oscillations with ra-

dial and vertical epicyclic frequency, we give the rule for the resonant radius with a given
frequency ratio. The rule is tested for the uppermost twin frequencies observed in the
GRS 1915+105 microquasar; and limits on the spin and brany parameters are obtained
and compared with the estimates for b = 0, given in Török et al. (2005).5
In the Galaxy center source SgrA∗, three frequencies were reported that could be treated

in the scope of the strong resonance model (Aschenbach, 2004, 2007; Török, 2005a,b).
The model predicts an exact value of the black hole spin and puts limits on its mass. It
is shown that the black hole mass estimate given by the strong resonance model is in the
best agreement with the value ofM ∼ 3.7× 106 M⊙ (Ghez et al., 2005) for negative brany
parameter b ∼ −2.97, with the “magic” spin a ≈ 1.99.
We can conclude that the orbital resonance model can put some limits on the values of

the brany parameter and could be useful in estimating influence of hypothetical external
dimension to the properties of the brany universe.
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Aliev, A.N. andGümrükçüoǧlu, A. E. (2005), ChargedRotatingBlackHoles on a 3-Brane, Phys. Rev.
D, 71(10), p. 104027, arXiv: hep-th/0502223v2.

Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. (1998), The Hierarchy Problem and New Dimen-
sions at aMillimeter, Phys. Lett. B, 429, pp. 263–272, arXiv: hep-ph/9803315.

Arnowitt, R., Deser, S. andMisner, C. W. (1962), The Dynamics of General Relativity, volume 7, pp.
227–265,Wiley, arXiv: gr-qc/0405109.

Aschenbach, B. (2004), Measuring mass and angularmomentum of black holes with high-frequency
quasi-periodic oscillations, Astronomy and Astrophysics, 425, pp. 1075–1082, arXiv: astro-ph/
0406545.

Aschenbach, B. (2007), Measurement of Mass and Spin of Black Holes with QPOs, Chinese Astro-
nom. Astrophys., accepted for publication, arXiv: 0710.3454.

Aschenbach, B., Grosso, N., Porquet, D. and Predehl, P. (2004), X-ray flares reveal mass and angular
momentum of the Galactic Center black hole, Astronomy and Astrophysics, 417, pp. 71–78, arXiv:
astro-ph/0401589.

Bardeen, J.M. (1973), Timelike andNull Geodesics in theKerrMetric, in C.D.Witt andB. S.D.Witt,
editors, Black Holes, p. 215, Gordon andBreach, NewYork–London–Paris.

Blaes, O. M., Šrámková, E., Abramowicz, M. A., Kluźniak, W. and Torkelsson, U. (2007), Epicyclic
Oscillations of FluidBodies. Paper III. NewtonianNon-Slender Torus, Astrophys. J., 665, pp. 642–
653, arXiv: 0706.4483, URL http://adsabs.harvard.edu/abs/2007ApJ...665..642B.

Carter, B. (1968), Global Structure of the Kerr Family of Gravitational Fields, Phys. Rev., 174(5), pp.
1559–1571.

Carter, B. (1973), Black hole equilibrium states, in C. D.Witt and B. S. D.Witt, editors, Black Holes,
pp. 57–214, Gordon andBreach, NewYork–London–Paris.

Chamblin, A., Hawking, S.W. andReall, H. S. (2000), Brane-WorldBlackHoles, Phys. Rev. D, 61(6),
p. 065007, arXiv: hep-th/9909205.

Chamblin, A., Reall, H. S., Shinkai, H. and Shiromizu, T. (2001), Charged Brane-World Black Holes,
Phys. Rev. D, 63(6), p. 064015, arXiv: hep-th/0008177.



Orbital resonancemodel of QPOs in braneworldKerr BH spacetimes 359

Dadhich, N. and Kale, P. P. (1977), Equatorial circular geodesics in the Kerr–Newman geometry, J.
Math. Phys., 18, pp. 1727–1728.

Dadhich, N., Maartens, R., Papadopoulos, P. and Rezania, V. (2000), Black holes on the brane, Phys.
Rev. B, 487, arXiv: hep-th/0003061v3.

Damour, T., Hanni, R. S., Ruffini, R. and Wilson, J. R. (1978), Regions of magnetic support of a
plasma around a black hole, Phys. Rev. D, 17(6), pp. 1518–1523.

Dimopoulos, S. andLandsberg, G. (2001), BlackHoles at the LargeHadronCollider, Phys. Rev. Lett.,
87(16), p. 161602.

Dovčiak, M., Karas, V., Martocchia, A., Matt, G. and Yaqoob, T. (2004), An XSPEC model to ex-
plore spectral features from black-hole sources, in Hledík and Stuchlík (2004), pp. 33–73, arXiv:
astro-ph/0407330.

Emparan, R., Horowitz, G. T. and Myers, R. C. (2000), Black Holes Radiate Mainly on the Brane,
Phys. Rev. Lett., 85(3), pp. 499–502, arXiv: hep-th/0003118.

Emparan, R., Masip, M. and Rattazzi, R. (2002), Cosmic Rays as Probes of Large Extra Dimensions
and TeVGravity, Phys. Rev. D, 65, p. 064023, arXiv: hep-ph/0109287.

Fabian, A. C. and Miniutti, G. (2005), Kerr Spacetime: Rotating Black Holes in General Relativity,
Cambridge University Press, Cambridge, eprint astro-ph/0507409 is a part of this book, arXiv:
astro-ph/0507409.

Frolov, V. and Stojkovic, D. (2003), Quantum Radiation from a 5-Dimensional Rotating Black Hole,
Phys. Rev. D, 67, p. 084004, arXiv: gr-qc/0211055.

Frolov, V., Šnajdr, M. and Stojkovic, D. (2003), Interaction of a brane with a moving bulk black hole,
Phys. Rev. D, 68, p. 044002, arXiv: gr-qc/0304083.

Germani, C. and Maartens, R. (2001), Stars in the braneworld, Phys. Rev. D, 64, p. 124010, arXiv:
hep-th/0107011.

Ghez, A.M., Salim,S., Hornstein, S.D., Tanner,A., Lu, J. R.,Morris, M., Becklin, E. E. andDuchêne,
G. (2005), Stellar Orbits around the Galactic Center Black Hole, Astrophys. J., 620, pp. 744–757,
arXiv: astro-ph/0306130.

Gregory, R. and Laflamme, R. (1993), Black Strings and p-Branes are Unstable, Phys. Rev. Lett.,
70(19), pp. 2837–2840, arXiv: hep-th/9301052.

Hledík, S. and Stuchlík, Z., editors (2004), Proceedings of RAGtime 4/5: Workshops on black holes
and neutron stars, Opava, 14–16/13–15 October 2002/2003, SilesianUniversity in Opava,Opava,
ISBN 80-7248-242-4.

Hledík, S. andStuchlík, Z., editors (2005), Proceedings of RAGtime6/7: Workshops on black holes and
neutron stars, Opava, 16–18/18–20 September 2004/2005, Silesian University in Opava, Opava,
ISBN 80-7248-334-X.

Horowitz, G. T. andMaeda, K. (2001), Fate of the Black String Instability, Phys. Rev. Lett., 87(13), p.
131301, arXiv: hep-th/0105111.

Karas, V., Vokrouhlický, D. and Polnarev, A. G. (1992), In the vicinity of a rotating black hole – A fast
numerical code for computing observational effects, MonthlyNotices Roy. Astronom. Soc., 259, pp.
569–575.

Kato, S. (2004), Resonant Excitation of Disk Oscillations by Warps: A Model of kHz QPOs, Publ.
Astronom. Soc. Japan, 56(5), pp. 905–922.

Kato, S. (2007), FrequencyCorrelations ofQPOsBasedon aDiskOscillationModel inWarpedDisks,
Publ. Astronom. Soc. Japan,59, pp. 451–455, arXiv: astro-ph/0701085.

Kato, S., Fukue, J. and Mineshige, S. (1998), Black-hole accretion disks, in S. Kato, J. Fukue and
S.Mineshige, editors, Black-hole accretion disks, KyotoUniversity Press, Kyoto, Japan.



360 Z. Stuchlík and A. Kotrlová

Kluźniak, W. and Abramowicz, M. A. (2001), The physics of kHz QPOs – strong gravity’s coupled
anharmonic oscillators, submitted in Phys. Rev. Lett., arXiv: astro-ph/0105057, URL http:
//adsabs.harvard.edu/abs/2001astro.ph..5057K.

Kozłowski, M., Jaroszyński, M. and Abramowicz, M. A. (1978), The analytic theory of fluid disks
orbiting the Kerr black hole, Astronomy and Astrophysics, 63(1–2), pp. 209–220, URL http:
//adsabs.harvard.edu/abs/1978A\%26A....63..209K.

Krolik, J. H. and Hawley, J. F. (2002), Where Is the Inner Edge of an Accretion Disk around a Black
Hole?, Astrophys. J., 573(2), pp. 754–763, arXiv: astro-ph/0203289.

Lachowicz, P., Czerny, B. and Abramowicz, M. A. (2006), Wavelet analysis of MCG-6-30-15 and
NGC 4051: a possible discovery of QPOs in 2 : 1 and 3 : 2 resonance, Monthly Notices Roy.
Astronom. Soc., submitted, arXiv: astro-ph/0607594.

Landau, L. D. and Lifshitz, E. M. (1976), Mechanics, volume I of Course of Theoretical Physics,
Elsevier Butterworth-Heinemann,Oxford, 3rd edition, ISBN 0-7506-2896-0.

Laor, A. (1991), Line profiles from a disk around a rotating black hole, Astrophys. J., 376, pp. 90–94.
Maartens, R. (2000), Cosmological dynamics on the brane, Phys. Rev. D, 62, p. 084023, arXiv:
hep-th/0004166.

Maartens, R. (2004), Brane-world gravity, LivingRev. Rel., 7, arXiv: gr-qc/0312059v2.
McClintock, J. E., Narayan, R. and Shafee, R. (2007), Estimating the Spins of Stellar-Mass Black

Holes, in M. Livio and A. Koekemoer, editors, Black Holes, volume 707, Cambridge University
Press, Cambridge, in press, to appear in 2008, arXiv: 0707.4492v1.

McClintock, J. E. andRemillard, R. A. (2004), Black Hole Binaries, inW. H. G. Lewin andM. van der
Klis, editors, Compact Stellar X-Ray Sources, Cambridge University Press, Cambridge, arXiv:
astro-ph/0306213.

McClintock, J. E., Shafee, R., Narayan, R., Remillard, R. A., Davis, S. W. and Li, L. (2006), The Spin
of the Near-Extreme Kerr Black Hole GRS 1915+105, Astrophys. J., 652(2), pp. 518–539, arXiv:
astro-ph/0606076.

Middleton, M., Done, C., Gierliński,M. and Davis, S. W. (2006), Black hole spin in GRS 1915+105,
Monthly Notices Roy. Astronom. Soc., 373(3), pp. 1004–1012, arXiv: astro-ph/0601540v2.

Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation, W. H. Freeman and Co, New
York, San Francisco.

Modgil, M. S., Panda, S. and Sengupta, G. (2002), RotatingBraneWorld Black Holes, Modern Phys.
Lett. A, 17, pp. 1479–1487, arXiv: hep-th/0104122.

Nojiri, S., Obregon, O., Odintsov, S. D. and Ogushi, S. (2000), Dilatonic Brane-World Black Holes,
Gravity Localization and Newton’s Constant, Phys. Rev. D, 62(6), p. 064017, arXiv: hep-th/
0003148.

Randall, L. and Sundrum, R. (1999), An Alternative to Compactification, Phys. Rev. D, 83(2), pp.
4690–4693, arXiv: hep-th/9906064.

Remillard, R. A. (2005), X-ray spectral states and high-frequency QPOs in black hole binaries,
Astronom. Nachr., 326(9), pp. 804–807, arXiv: astro-ph/0510699.

Remillard, R. A. and McClintock, J. E. (2006), X-Ray Properties of Black-Hole Binaries, Annual
Review of Astronomy and Astrophysics, 44(1), pp. 49–92, arXiv: astro-ph/0606352.

Rezzolla, L., Yoshida, S., Maccarone, T. J. and Zanotti, O. (2003), A new simple model for high-
frequency quasi-periodic oscillations in black hole candidates, Monthly Notices Roy. Astronom.
Soc., 344(3), pp. L37–L41.

Sasaki, M., Shiromizu, T. and Maeda, K. (2000), Gravity, stability, and energy conservation on the
Randall–Sundrumbrane world, Phys. Rev. D, 62, p. 024008, arXiv: hep-th/9912233.



Orbital resonancemodel of QPOs in braneworldKerr BH spacetimes 361

Schee, J. andStuchlík, Z. (2007a),Optical effects in branyKerr spacetimes, pp. 221–256, this volume.
Schee, J. and Stuchlík, Z. (2007b), Spectral line profile of radiating ring orbiting a brany Kerr black

hole, pp. 209–220, this volume.
Shafee, R., McClintock, J. E., Narayan, R., Davis, S. W., Li, L.-X. and Remillard, R. A. (2006),

Estimating the Spin of Stellar-Mass Black Holes via Spectral Fitting of the X-ray Continuum,
Astrophys. J., 636, pp. L113–L116, arXiv: astro-ph/0508302.

Shiromizu, T.,Maeda, K. andSasaki,M. (1999), The Einstein Equations on the 3-BraneWorld, Phys.
Rev. D, 62, p. 024012, arXiv: gr-qc/9910076.

Šrámková, E. (2005), Epicyclic oscillation modes of a Newtonian, non-slender torus, Astronom.
Nachr., 326(9), pp. 835–837.

Strohmayer, T. E., Mushotzky, R. F., Winter, L., Soria, R., Uttley, P. and Cropper, M. (2007), Quasi-
Periodic Variability in NGC 5408 X-1, Astrophys. J., 660, pp. 580–586, arXiv: astro-ph/
0701390.

Stuchlík, Z., Kotrlová, A. and Török, G. (2007a), Black holes admitting strong resonant phenomena,
submitted.

Stuchlík, Z., Kotrlová, A. andTörök, G. (2007b), Multi-resonancemodels of QPOs, pp. 363–416, this
volume.

Stuchlík, Z., Slaný, P. andTörök, G. (2007c), LNRF-velocity hump-induced oscillations of a Keplerian
disc orbiting near-extreme Kerr black hole: A possible explanation of high-frequency QPOs in
GRS 1915+105, Astronomy and Astrophysics, 470(2), pp. 401–404, arXiv: 0704.1252v2.

Török, G. (2005a), A possible 3 : 2 orbital epicyclic resonance in QPO frequencies of Sgr A∗, Astro-
nomy andAstrophysics, 440(1), pp. 1–4, arXiv: astro-ph/0412500.

Török, G. (2005b), QPOs in microquasars and Sgr A∗: measuring the black hole spin, Astronom.
Nachr., 326(9), pp. 856–860, arXiv: astro-ph/0510669.

Török, G., Abramowicz,M. A., Kluźniak,W. and Stuchlík, Z. (2005), The orbital resonancemodel for
twin peak kHz quasi periodic oscillations in microquasars, Astronomy and Astrophysics, 436(1),
pp. 1–8, arXiv: astro-ph/0401464.

Török, G. and Stuchlík, Z. (2005a), Epicyclic frequencies of Keplerian motion in Kerr spacetimes, in
Hledík and Stuchlík (2005), pp. 315–338.

Török, G. and Stuchlík, Z. (2005b), Radial and vertical epicyclic frequencies of Keplerian motion in
the field of Kerr naked singularities. Comparison with the black hole case and possible instability
of naked singularity accretion discs, Astronomy and Astrophysics, 437(3), pp. 775–788, arXiv:
astro-ph/0502127.

van der Klis, M. (2000), MillisecondOscillations in X-ray Binaries, Annual Review of Astronomy and
Astrophysics, 38, pp. 717–760, arXiv: astro-ph/0001167.

van der Klis, M. (2006), Rapid X-ray Variability, in W. H. G. Lewin and M. van der Klis, editors,
Compact Stellar X-Ray Sources, pp. 39–112, CambridgeUniversity Press, Cambridge.

Zakharov, A. F. (2003), The iron Kα line as a tool for analysis of black hole characteristics, Publ.
Astronom. Observator. Belgrade, 76, pp. 147–162, arXiv: astro-ph/0411611.

Zakharov, A. F. andRepin, S. V. (2006), Different types of FeKα lines from radiating annuli near black
holes, NewAstronomy, 11, pp. 405–410, arXiv: astro-ph/0510548.

Zel’dovich, Y. B. andNovikov, I. D. (1971), Relativistic Astrophysics, volume 1, University of Chicago
Press, Chicago.





Proceedings ofRAGtime 8/9, 15–19/19–21September, 2006/2007,Hradec nadMoravicí, Opava, Czech Republic 363
S.Hledík and Z. Stuchlík, editors, SilesianUniversity inOpava, 2007, pp. 363–416

Multi-resonancemodels of QPOs

Zdeněk Stuchlík, Andrea Kotrlováa

and Gabriel Török
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic
aandrea.kotrlova@fpf.slu.cz

ABSTRACT
Using known frequencies of the accretion disc twin peak quasiperiodic oscillations
(QPOs) and the known mass of the central black hole, the black hole dimension-
less spin a can be determined, assuming a concrete version of the orbital resonance
model. However, because of large range of observationally limited values of the black
holemass, its spin can be estimatedwith a lowprecision only. Higher precision of the
black hole spin measurement is possible in the framework of multi-resonancemodel
of QPOs inspired by complex high-frequency QPO patterns observed in some black
hole and neutron star systems. In the simple orbital resonancemodels we determine
the spin andmass dependence of the twin peak frequencies for non-linear resonances
of oscillations with the epicyclic and Keplerian frequencies or their combinations in
the case of a general rational frequency ratio n : m, n > m. In the multi-resonant
model, the twin peak resonances are combined properly to give the observed fre-
quency set. The multi-resonant model is proposed in three distinct versions. In the
first one, related probably to the neutron star binary systems, more instances of one
resonance occur at more specific radii. In the second case, more resonances are
sharing one specific radius, allowing for “cooperative” resonant phenomena in the
field of black holes with a specific value of spin. In the third (“ugly”) case, more
resonances occur at more specific radii; we restrict our attention to the case of two
such resonant radii. For special values of the spin, only triple-set of frequencies is
observed because of coincidence of some frequencies, allowing determination of the
spin from the triple frequency ratio set. The spin is determined precisely, but not
uniquely as the same frequency set could be relevant for more than one concrete spin
and combination of resonant oscillations.

Keywords: Compact objects – X-ray variability – theory – observations

1 INTRODUCTION

Non-linear resonance between some modes of oscillations in the accretion discs around
black holes can play a crucial role in exciting detectable modulations of the X-ray flux. This
idea is supported by observations in four microquasars showing twin peak quasiperiodic
oscillations (QPOs), the ratio of the frequency peaks is 3 : 2. Using known frequencies of
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the twin peaks and the known mass of the central black hole, the black-hole dimensionless
spin a can be determined, assuming a concrete resonance model (Török et al., 2005). This
was already done for the presently known sources and fewmiscellaneous resonancemodels,
however, because of large range of observationally limited values of the black hole mass, its
spin can be estimated with a low precision only. Nevertheless, at present more complex
QPO structures are observed in both black hole and neutron star systems. The microquasar
GRS 1915+105 reveals high-frequency QPOs appearing at four frequencies with the lower
and upper pairs in the ratio close to 3 : 2 and even a fifth frequency was reported, although
not confirmed. In SgrA∗, three frequencies were reported with the ratio close to 3 : 2 : 1.
In the galactic nuclei MCG-6-30-15 and NGC 4051, two pairs of QPOs were reported with
the ratios close to 3 : 2 and 2 : 1. In the binaries containing neutron stars, the twin peak
oscillations have frequencies and their ratios highly scattered, but concentrated around
ratios 3 : 2, 4 : 3, 5 : 4. A well arranged review of the observational data in black hole
and neutron star systems can be found inMcClintock and Remillard (2004); Remillard and
McClintock (2006); van der Klis (2006).
Here, we present basic ideas of the orbital multi-resonant model that is able to explain

some of the complex high-frequency QPO patterns observed in the black-hole and neutron-
star systems. We shall focus on three versions of the multi-resonant model enabling relat-
ively precise estimates of the black-hole and neutron-star spacetime parameters.

2 THEORBITALRESONANCEMODELAND ITSMULTI-RESONANT
VERSIONS

The standard orbital resonance model (Abramowicz and Kluźniak, 2001; Kluźniak and Ab-
ramowicz, 2001) assumes non-linear resonance of oscillations of an accretion disc orbiting
a central object, considered to be a rotating black hole or a neutron star. The relevant
accretion disc can be a thin disc with Keplerian angular velocity profile, or thick toroidal
disc with angular velocity profile given by distribution of the specific angular momentum
of the fluid. The frequency of the disc oscillations is related to the Keplerian frequency
(orbital frequency of tori), or to the radial and vertical epicyclic frequencies of the circular
test particle motion in the field of Kerr black holes (or the Hartle–Thorne spacetime in the
case of neutron stars). The epicyclic frequencies can be relevant for both the thin, Keplerian
discswith quasicircular geodetical motion and for thick, toroidal discs.
In the simplest case of the orbital resonance models involving Keplerian and epicyclic

oscillations with a single resonance connected to one specific radius we are able to determ-
ine the spin and mass dependence of the twin peak frequencies for both the parametric
(internal) and forced non-linear resonances of oscillations with the epicyclic and Keplerian
frequencies or their combinations in the case of a general rational frequency ratio n : m.
Both parametric and forced resonance models make clear and precise predictions about
the values of observed frequencies in connection with spin and mass of the observed ob-
ject. Then we can relate the spin and mass of the black hole and having the black hole
mass estimate from other observations, the spin limits could be established (Kluźniak and
Abramowicz, 2001; Török et al., 2005).
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Details of excitation mechanisms of eventual resonances are still not fully explained,
nevertheless one can imagine that not only one resonance could be excited in the accretion
disc. Then there arises a possibility of higher precision of the black hole dimensionless spin
measurements under assumption that the non-linear resonances are excited at different
radii of the accretion disc with different frequency ratios or by an assumption of resonances
sharing the same radius, as indicated by observations of the microquasar GRS 1915+105,
the galactic nuclei Sgr A∗, and extragalactic objects NGC 4051 andMCG-6-30-15. We can
introduce a variety ofmulti-resonancemodels enabling us to explain the complex frequency
patterns observed in some of the sources.
The multi-resonance models could be classified in the following way.

(A) Orbital resonancemodels involvingKeplerian and epicyclic oscillations

(A1) More instances of one resonance occurring at more specific radii

This kind of the multi-resonance model is probably relevant in the neutron star binary
systems, where data clustering of the twin peak QPOs is observed for the ratios 3 : 2,
4 : 3, 5 : 4 in six atoll sources (Török et al., 2007d; Török, 2007; Török et al., 2007b).
When more resonant points corresponding to the data clustering around the rational
frequency ratios is observed in a specific atoll source, e.g., the 4U 1636−53 source, the
frequency ratio falls with the frequency magnitude growing, excluding thus the pos-
sibility of direct resonances of oscillations with the Keplerian or epicyclic frequencies
which exhibit an inverse kind of behaviour (Stuchlík et al., 2007f; Török et al., 2007a).
There is a variety of possible resonance models that could explain quite well the data
fitting in such cases, however, it is important that all of these models involve combin-
ational frequencies – for example, the total precession model involving resonance of
oscillations with the Keplerian frequency and the total precession frequency given by
the difference of the vertical and radial epicyclic frequencies (Stuchlík et al., 2007f),
which generalizes the well know relativistic precessionmodel (Stella and Vietri, 1999,
1998). Both the models enable a relatively precise determination of the neutron star
parameters (Stuchlík et al., 2007f), especially when corrections due to the neutron star
magnetic field are taken into account (Török et al., 2007a).

(A2) More resonances sharing one specific radius

This special case allows existence of strong resonant phenomena, since the Keplerian
and both epicyclic frequencies are in the rational ratios in a shared radius and cooper-
ative phenomena between different kinds of resonance could appear. Of course, such
a situation is allowed for black holeswith a specific spin only. The very important triple
frequency setwith ratios3 :2 :1 is thengivenby the case of the “magic” spina = 0.983,
when the resonances share the radius r/M = 2.395 (Stuchlík et al., 2007b). In this
magic case, the combinational frequencies give the same frequency ratios. Therefore,
the combinational and the simple frequency oscillations could be in the 1 :1 ratio, cor-
responding to the strongest possible resonant phenomena. In such a case, the scatter
of the resonant frequencies could be the highest one, indicating a possible implication
to the frequency set (probably) observed in Sgr A∗ (Aschenbach, 2007). The mass
range is then in agreement with limits given by other observations.

(A3) More resonances occurring at more specific radii (the “ugly” case)
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In general, we can expect the oscillations to be excited at two (or more) different radii
of the accretion disc that enter the forced or parametric resonance in the framework
of different versions of the resonance model. In such situations we are making the
black hole spin estimate within two properly chosen versions of the resonance model,
obtaining thus in principle more precise determinations of the spin than in the case,
when only one twin peak is observed. In special cases, when a common upper (lower,
mixed) frequency is observed in the two frequency pairs (i.e., only three different fre-
quencies are observed), the triple frequency set is precisely given for specifically fixed
values of the black hole spin independently of the black hole mass. Then, the spin
is in principle determined precisely (within the precision of the frequency measure-
ments), but not uniquely, as in general the same frequency set could occur for different
values of the spin within different versions of the resonance model. It is clear that in
such situations the black hole spin estimates coming from the spectra fitting and the
line profile model could be relevant in determining the proper versions of the reson-
ant model. When the black hole spin is found, its mass can be determined from the
magnitude of the observed frequencies. For each type of both the direct and simple
combinational resonances between oscillations with the epicyclic and Keplerian fre-
quencies, the set of triple frequency ratios and the related dimensionless black hole
spin are given (Stuchlík and Török, 2005). The resonances are considered up to n = 5
as the excitation of higher order resonances is highly improbable.

(B) Extended orbital resonancemodel with hump-induced oscillations

In the microquasar GRS 1915+105, a near-extreme Kerr black hole with the spin
a ∼ 1 is expected, and all the five (six) frequencies of observed QPOs can be ex-
plained in the framework of the extended resonance model with the hump-induced
oscillations (Stuchlík et al., 2006, 2007e,d). In the extended resonance model, we as-
sume forced resonance of the epicyclic oscillations with the oscillations induced by the
“humpy” orbital velocity profile (related to the locally non-rotating frames) that occurs
in Keplerian discs orbiting Kerr black holes with a > 0.9953 (see also Stuchlík et al.,
2005). The humpy-induced oscillations could appear also in thick accretion discs, but
the critical black hole spin is even higher than in the case of Keplerian disks. In the
“humpy” extended resonance model, all the oscillations in resonance can be related to
the exclusively defined “humpy radius”with extremal orbital velocity gradientwithin the
humpy profile. The spin and mass of the black hole could then be determined with high
precision. However, this model can be relevant only for near-extreme Kerr black holes
with spin a > 0.9953. We shall not discuss this model here as its overview is presented
in Stuchlík et al. (2007d).

3 DETERMINATIONOFTHEBLACKHOLE SPIN FROMTHERESONANCE
MODEL

It is well known that the formulae for the vertical epicyclic frequency νθ and the radial
epicyclic frequency νr take in the gravitational field of a rotating Kerr black hole (with the
mass M and dimensionless spin a) the form (see, e.g., Aliev and Galtsov, 1981; Kato et al.,
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1998; Stella and Vietri, 1999, 1998)

ν2
θ = αθ ν

2
K , ν2

r = αr ν
2
K , (1)

where the Keplerian frequency νK and related dimensionless epicyclic frequencies are given
by the formulae

νK =
1

2π

(
GM
r 3

G

)1/2

(x3/2 + a)−1 =
1

2π

(
c3

GM

)
(x3/2 + a)−1 ,

αθ = 1− 4ax−3/2 + 3a2x−2 ,

αr = 1− 6x−1 + 8ax−3/2 − 3a2x−2 .

Here x = r/(GM/c2) is the dimensionless radius, expressed in terms of the gravitational
radius of the black hole. For a particular resonance n :m, the equation

nνr = mνv , νv ∈ {νθ , νK} (2)

determines the dimensionless resonance radius xn:m as a function of the dimensionless
spin a in the case of direct resonances that can be easily extended to the resonances with
combinational frequencies, as discussed in detail later. The resonances could be realized
as internal, parametric resonances which are determined by the Mathieu equation corres-
ponding to conservative systems, or forced non-linear resonances with beat frequencies
allowed (Landau and Lifshitz, 1976).
From the known mass of the central black hole (e.g., low-mass in the case of binary

systems or hi-mass in the case of supermassive black holes), the observed double peak
frequencies (νupp, νdown) and the Eqs (1)–(2) imply the black hole spin, consistent with
different types of resonances with the beat frequencies taken into account. This procedure
was first applied to the microquasar GRO 1655−40 by Abramowicz and Kluźniak (2001),
more recently to the other three microquasars (Török et al., 2005) and also to the Galaxy
centre black hole SgrA∗ (Török, 2005).

4 MULTIPLERESONANCESANDRESONANCECONDITIONS

The very probable interpretation of twin peak frequencies observed in microquasars is
the 3 :2 parametric resonance, however, generally it is not unlikely that more than one
resonance could be excited in the disc at the same time (or in different times) under dif-
ferent internal conditions. Indeed, observations of the kHz QPOs in the microquasar
GRS 1915+105, and of the QPOs in extragalactic sources NGC 4051, MCG-6-30-
15 (Lachowicz et al., 2006) and NGC 5408 X-1 (Strohmayer et al., 2007), and the Galaxy
centre Sgr A∗ (Aschenbach et al., 2004) show a variety of QPOs with frequency ratios
differing from the 3 :2 ratio.
The resonances could be parametric or forced and of different versions according to the

epicyclic (Keplerian) frequencies entering the resonance directly, or in some combinational
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form. In principle, for any case of the resonance model version, one can determine both
the spin and mass of the black hole just from the eventually observed set of frequencies.
However, the obvious difficulty would be to identify the right combination of resonances
and its relation to the observed frequency set. Within the range of black hole mass allowed
by observations, each set of twin peak frequencies puts limit on the black hole spin. Of
course, the resonance model versions are consistent with observations, if the allowed spin
ranges are overlapping each other. Clearly, two ormore twin peaks then generallymake the
spinmeasurement more precise.
Here we consider the special case of two different resonances determined by a doubled

ratio of natural numbers n :m and n′ :m′. Such resonances are located at the corresponding
radii xn:m , xn′:m′ and characterized by observable set of frequencies resulting from the
relevant resonance modes (forced or parametric). Thus, the generic relation of n : m and
n′ : m′ puts restrictions on the spin of the central black hole. It is reasonable (because of
arguments mentioned above) to assume that in the black hole systems one of this excited
resonances is a 3 : 2 parametric (internal) resonance. However, it is more convenient to
consider general frequency ratioswith small integers, with order of the resonances n+m ≤
9 (n′ + m′ ≤ 9), since only then are the resonant phenomena realistic (see Landau and
Lifshitz, 1976 for details). Notice that in some sources (e.g., NGC 5408 X-1), the ratio
4 : 3 occurs for the strongest QPOs (Strohmayer et al., 2007) supporting the necessity to
consider the general ratios at both radii. Of course, in special cases, the resonant radii could
coincide, i.e., xn:m = xn′:m′ .

4.1 Resonance conditions

We shall investigate radial coordinates determining positions, where the rational ratios
occur for all possible versions of the resonance between the radial and vertical epicyclic and
theKeplerian oscillations (νK > νθ > νr for a > 0), taking into account both the direct and
simple combinational resonances. For all possible resonances of the epicyclic andKeplerian
oscillations, the resonance condition is given in terms of the frequency ratio

p =
(m
n

)2
.

All the resonant conditions determining implicitly the resonant radius xn:m must be related
to the radius of the innermost stable circular geodesic xms giving the inner edge ofKeplerian
discs. Therefore, for all the relevant resonance radii, there must be xn:m ≥ xms, where xms
is implicitly given by

a = ams ≡
√
x

3

(
4−
√

3x − 2
)

.

The results are summarized in the following way relating the dimensionless spin a and the
dimensionless resonance radius determined by the resonancemodel version and the ratio p.
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4.1.1 Direct resonances

D1.
νθ

νr
=

n
m

, a = aθ/r (x, p)

≡ 1
3
√
x (p + 1)−1

{
2(p + 2)−

√
(1− p) [3x(p + 1)− 2(2p + 1)]

}
, (3)

D2.
νK
νr

=
n
m

, a = aK/r (x, p) ≡
√
x

3

[
4−

√
3x(1− p)− 2

]
,

D3.
νK
νθ

=
n
m

, a = aK/θ(x, p) ≡
√
x

3

[
2 ±

√
4− 3x(1− p)

]
.

The results are illustrated in Fig. 1.
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Figure 1. Direct resonances: for each version of the direct resonances the functions a = a(x, p) are
drawn for n :m = 5 : 4 (black solid line), 4 : 3 (black dashed line), 3 : 2 (black dotted line), 5 : 3 (red
solid line), 2 : 1 (red dashed line), 5 : 2 (red dotted line), 3 : 1 (blue solid line), 4 : 1 (blue dashed line),
5 : 1 (blue dotted line). Black thick line represents ams which implicitly determines the radius of the
marginally stable orbit xms giving a natural restriction on the validity of the resonancemodel versions
involving radial epicyclic oscillations.
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4.1.2 Simple combinational resonances

4.1.2.1 Combinations of νθ , νr

C1.1
νθ + νr
νθ

=
n
m

, a = a(θ+r)/θ(x, p) ≡ aθ/r (x, pI) ,

pI =
(
n − m
m

)2
=
(
1−√p

)2

p
,

C1.2
νθ

νθ − νr
=

n
m

, a = aθ/(θ−r)(x, p) ≡ aθ/r (x, pII) ,

pII =
(
n − m
n

)2
=
(
1−
√
p
)2

,

C1.3
νθ + νr
νr

=
n
m

, a = a(θ+r)/r (x, p) ≡ aθ/r (x, pIII) ,

pIII =
(

m
n − m

)2
=

p
(√p − 1

)2 ,

C1.4
νθ − νr
νr

=
n
m

, a = a(θ−r)/r (x, p) ≡ aθ/r (x, pIV) ,

pIV =
(

m
n + m

)2
=

p
(√p + 1

)2 ,

C1.5
νr

νθ − νr
=

n
m

, a = ar/(θ−r)(x, p) ≡ aθ/r (x, pV) ,

pV =
(

n
n + m

)2
=

1
(√p + 1

)2 ,

C1.6
νθ + νr
νθ − νr

=
n
m

, a = a(θ+r)/(θ−r)(x, p) ≡ aθ/r (x, pVI) ,

pVI =
(
n − m
n + m

)2
=
(√p − 1
√p + 1

)2
.

4.1.2.2 Combinations of νK, νr

C2.1
νK + νr
νK

=
n
m

, a = a(K+r)/K(x, p) ≡ aK/r (x, pI) ,

C2.2
νK

νK − νr
=

n
m

, a = aK/(K−r)(x, p) ≡ aK/r (x, pII) ,

C2.3
νK + νr

νr
=

n
m

, a = a(K+r)/r(x, p) ≡ aK/r(x, pIII) ,

C2.4
νK − νr
νr

=
n
m

, a = a(K−r)/r(x, p) ≡ aK/r(x, pIV) ,

C2.5
νr

νK − νr
=

n
m

, a = ar/(K−r)(x, p) ≡ aK/r(x, pV) ,

C2.6
νK + νr
νK − νr

=
n
m

, a = a(K+r)/(K−r)(x, p) ≡ aK/r (x, pVI) .
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4.1.2.3 Combinations of νK, νθ

C3.1
νK + νθ

νK
=

n
m

, a = a(K+θ)/K(x, p) ≡ aK/θ(x, pI) ,

C3.2
νK

νK − νθ
=

n
m

, a = aK/(K−θ)(x, p) ≡ aK/θ(x, pII) ,

C3.3
νK + νθ

νθ
=

n
m

, a = a(K+θ)/θ(x, p) ≡ aK/θ(x, pIII) ,

C3.4
νK − νθ
νθ

=
n
m

, a = a(K−θ)/θ(x, p) ≡ aK/θ(x, pIV) ,

C3.5
νθ

νK − νθ
=

n
m

, a = aθ/(K−θ)(x, p) ≡ aK/θ(x, pV) ,

C3.6
νK + νθ

νK − νθ
=

n
m

, a = a(K+θ)/(K−θ)(x, p) ≡ aK/θ(x, pVI)

Simple combinational resonances of the types C1, C2, C3 occur at the same radii as the
direct resonances D1, D2, D3. Therefore, it is enough to relate the ratios of the simple
combinational and direct resonances. The results are summarized in Tables 1 and 2.

Table 1.Combinations of νv, νr , v ∈ {θ, K}.

n : m νv/νr Condition a(x, p)

νv + νr
νv

m
n − m

m < n < 2m av/r (x, pI)

νv
νv − νr

n
n − m

n > m av/r (x, pII)

νv + νr
νr

n − m
m

n > 2m av/r (x, pIII)

νv − νr
νr

n + m
m

n > m av/r (x, pIV)

νr
νv − νr

n + m
n

n > m av/r (x, pV)

νv + νr
νv − νr

n + m
n − m

n > m av/r (x, pVI)

Table 2.Combinations of νK, νθ .

n : m νK/νθ Condition a(x, p)

νK + νθ

νK

m
n − m

m < n < 2m aK/θ (x, pI)

νK
νK − νθ

n
n − m

n > m aK/θ (x, pII)

νK + νθ

νθ

n − m
m

n > 2m aK/θ (x, pIII)

νK − νθ
νθ

n + m
m

n > m aK/θ (x, pIV)

νθ

νK − νθ
n + m
n

n > m aK/θ (x, pV)

νK + νθ

νK − νθ
n + m
n − m

n > m aK/θ (x, pVI)

4.1.3 Combinations of νK, νθ , νr

We shall consider resonances of oscillationswith one simple frequency taken from the three
orbital frequencies and a simple combination of the other two frequencies.

CT1.
νK

νθ − νr
=

n
m
⇒

νθ

νr
= 1 +

m
n
νK
νr

,

aK/(θ−r)(x, p) is solution of the equation
(αθ − αr )2 − 2p(αθ + αr ) + p2 = 0
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giving the relation

a = aK/(θ−r)(x, p) ≡
√
x +

1
2 · 35/6

×

⎡

⎣

√
A2/3 + B
A1/3 −

√√√√A1/3

(
4
√

3 p x5/2
√
A + A1/3B

− 1

)

−
B
A1/3

⎤

⎦ , (4)

A = 6p2x5 +
√

36p4x10 − B3 ,

B = 31/3px3 [4 + (p − 4)x] .

CT2.
νθ

νK − νr
=

n
m
⇒

νθ

νr
=

n
m

(
νK
νr
− 1

)
,

aθ/(K−r)(x, p) is solution of the equation
p2α2

θ − 2pαθ (1 + αr ) + (1− αr )2 = 0 .

CT3.
νr

νK − νθ
=

n
m
⇒

νθ

νr
=
νK
νr
−
m
n

,

ar/(K−θ)(x, p) is solution of the equation
(1− αθ )2 − 2pαr (1 + αθ ) + p2α2

r = 0 .

CT.4
νθ + νr

νK
=

n
m
⇒

νθ

νr
=

n
m
νK
νr
− 1 ,

a(θ+r)/K(x, p) is solution of the equation
p2 (αr − αθ )2 − 2p (αr + αθ ) + 1 = 0 .

The conditionm < n < 2m has to be satisfied.

CT5.
νK + νr
νθ

=
n
m
⇒

νθ

νr
=
m
n

(
νK
νr

+ 1
)

,

a(K+r)/θ(x, p) is solution of the equation
(αθ − p)2 − 2pαr (αθ + p) + p2α2

r = 0 .

CT6.
νK + νθ

νr
=

n
m
⇒

νθ

νr
=

n
m
−
νK
νr

,

a(K+θ)/r(x, p) is solution of the equation
p2 (αθ − 1)2 − 2pαr (αθ + 1) + α2

r = 0 .

The condition n > 2m has to be satisfied.

Except the case CT1, we give the resonance condition in an implicit form, because the
final relation is too complex to be written explicitly. That is the reason why we present
the resonant conditions in the graphical form only (see Fig. 2). Notice that the implicit
condition is polynomial of 4th order in the spin a. Only one of the possible solutions is
physically relevant.
Resonances of beat frequencies (four frequencies combined from νK, νθ , νr ) constitute

family of 13th cases, e.g., the typeCF1 is given by the condition (νK −νr ) :(νθ −νr ) = n :m.
All of these cases will be presented in Stuchlík et al. (2007c).
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Figure 2.Simple combinational resonances: for each versions of the simple combinations of the three
orbital frequencies νK, νθ , νr the functions a = a(x, p) are drawn for n :m = 5 : 4 (black solid line),
4 : 3 (black dashed line), 3 : 2 (black dotted line), 5 : 3 (red solid line), 2 : 1 (red dashed line), 5 : 2 (red
dotted line), 3 : 1 (blue solid line), 4 : 1 (blue dashed line), 5 : 1 (blue dotted line). Black thick line
represents ams which implicitly determines the radius of themarginally stable orbit xms.
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When two twin peak QPOs are observed with frequency ratios n : m and n′ : m′, re-
spectively, we have to find two versions of resonance that could explain both the ratios and
magnitudes of the observed frequencies and, for a given rangeof allowedmass in the source,
they must predict the same black hole spin a, or more precisely, an overlapping intervals of
the spin. Therefore, it is clear that, generally, two observed twin peak QPOs couldmake the
spin estimates more precise. Notice that two different resonances are necessary when two
twin peaks are observed with the same ratios but different magnitudes.

5 CHARACTERISTICSETSOFFREQUENCIESWITHADUPLEXFREQUENCY

In some specific situations, for some specific values of the black hole dimensionless spin,
two twin peak QPOs observed at the radii xn:m and xn′:m′ have the bottom, top, or mixed
(the bottom at the inner radius and the top in the outer radius, or vice versa) frequencies
identical. Such situations can be characterized by sets of three frequencieswith ratio s : t :u,
given by the n :m and n′ :m′ ratios, the relevant versions of the resonance, and the type of
the duplex (common) frequency.
When only direct resonances of the epicyclic oscillations are allowed, the first case with

“bottom identity” can be realized by the situation with two resonances having common
radial epicyclic frequency, while the second case with “top identity” can be realized by
the situation with two resonances having common vertical epicyclic frequency. These two
possibilities are inprinciple allowedby thenon-monotonicity of the epicyclic frequencies (1)
discussed in detail in Török and Stuchlík (2005a,b). When the Keplerian oscillations and
the combinational frequencies are allowed, all the mixed, bottom, and top identities are
possible.
It is rather familiar piece of knowledge that the Keplerian frequency νK(x, a) is a mono-

tonically decreasing function of the radial coordinate for any value of the black hole spin.
On the other hand, the radial epicyclic frequency has the global maximum for any Kerr
black hole. However, also the vertical epicyclic frequency is not monotonic if the spin is
sufficiently high (see, e.g., Kato et al., 1998; Perez et al., 1997). For the Kerr black-hole
spacetimes, the locations Rr (a), Rθ (a) of maxima of the epicyclic frequencies νr , νθ are
implicitly given by the conditions (Török and Stuchlík, 2005a)

βj (x, a) =
1
2

√
x

x3/2 + a
αj (x, a) , where j ∈ {r, θ} ,

βr (x, a) ≡
1
x2 −

2a
x5/2 +

a2

x3 ,

βθ (x, a) ≡
a
x5/2 −

a2

x3 .

For any black hole spin, the extrema of the radial epicyclic frequency Rr (a) must be
located above the marginally stable orbit. On the other hand, the latitudinal extremaRθ (a)
are located above the photon (marginally bound or marginally stable) circular orbit only if
the limits on the black hole spin a > 0.748 (0.852, 0.952) are satisfied (Török and Stuchlík,
2005b). In the Keplerian discs, with the inner boundary xin ∼ xms, the limiting value
a = 0.952 is relevant.
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Figure 3. The typical cases of the frequency tripleswith top (a), (b), bottom (c), (d), and both types of
mixed identities (e), (f). There are also shown two interesting exceptional cases: two frequencieswith
the samemagnitude and the ratio 3 :1 (g) and 5 :2 (h) that are in resonance at two different radii.
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From the point of view of the observational consequences, it is important to know, for
which frequency ratios n :m the resonant frequencies νθ (a, n :m), considered as a function
of the black hole spin a for a given frequency ratio n :m, has a non-monotonic character. A
detailed analysis (Török and Stuchlík, 2005a) shows that νθ (a, n :m) has a local maximum
forn :m > 11 :5, i.e., inphysically relevant situations (n,m small enough for the resonance),
it occurs for the ratios νθ : νr = 5 : 2, 3 : 1, 4 : 1, 5 : 1. This means that while the “bottom
identity” could happen for any black hole spin a, the “top identity” can arise only for a ∼ 1
if the epicyclic oscillations are considered only.
The typical cases of the frequency triple sets with bottom, top and both types of mixed

identities containing duplex frequencies are illustrated in Fig. 3.

5.1 Triple frequencies and black hole spin

Let us consider a simple situation with the “top identity” of the upper frequencies in two
resonances between the radial and vertical epicyclic oscillations at two radii xp, xp′ with
p1/2 = m : n, p′1/2 = m′ : n′. The condition νθ (a, xp) = νθ (a, xp′) is then transformed to
the relation

α
1/2
θ (a, xp)

(
x3/2
p + a

)−1 = α
1/2
θ (a, xp′)

(
x3/2
p′ + a

)−1

which uniquely determines the black hole spin a. When two different resonances are
combined, we proceed in the same manner. For example, the case of “bottom identity” in
the resonance between the radial and vertical epicyclic oscillations at xp and the resonance
between the Keplerian oscillations with νK and total precession oscillations with νT =
νθ − νr at xp′ implies the condition νr (a, xp) = (νθ − νr ) (a, xp′) that leads to the relation

α
1/2
r (a, xp)

(
x3/2
p + a

)−1 =
[
(αθ − αr ) (a, xp′)

] (
x3/2
p′ + a

)−1

which uniquely determines the spin a, since in Eq. (3) (and (4)), the radii xp and xp′
are related to the spin a by the resonance conditions for aθ/r (x, p) and aK/(θ−r)(x, p′),
respectively.
Therefore, for given types of the doubled resonances, the ratios n :m and n′ :m′ determine

the ratio in the triple frequency set s : t :u. The black hole spin a is given by the types of the
two resonances and the ratios p, p′, quite independently of the black holemass M .
Since the radial and vertical epicyclic frequencies and the Keplerian frequency have the

same dependence on the black hole mass M , the above given arguments hold in the same
way for any kind of the three frequency set, for any of the bottom, top, or mixed frequency
identity with any two resonances containing any combination of the frequencies νK, νθ ,
νr . Therefore, the triple frequency sets with the “duplex” frequencies can be used to
determine the black hole spin with very high precision, independently on the uncertainties
in determining the black hole mass M : of course, the parameter M can be addressed by
the magnitude of the measured frequencies. Notice, however, that the relation between the
black hole spin and the triple frequency ratios is not unique in general situations. For a
given frequency ratio several values of a are allowed and some other methods of the spin
measurement must be involved.
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Figure 4. Determination of black hole spin for several cases of resonances. The functions νv =
νn:mv (a, xn:m (a)), v ∈ {θ, K}, for: n :m = 5 :4 (black solid line), 4 :3 (black dashed line), 3 :2 (black
dotted line), 5 : 3 (red solid line), 2 : 1 (red dashed line), 5 : 2 (red dotted line), 3 : 1 (blue solid line),
4 : 1 (blue dashed line), 5 : 1 (blue dotted line). Black thick line in T33, T44, and B33 represents
νv = νv(a, xms)which denotes the frequency on themarginally stable orbit.

The triple frequency set ratios are directly given by the versions of resonance that occurs
in the two twin peak QPOs under consideration, while the relevant spin a can be easily
determined by searching for common points of the relevant frequency functions for a fixed
mass M . The schemes for treating the situations with duplex frequencies are given in
Figs 3 and 4. We consider here only the direct resonances, and some of the triplex simple
combinational resonances. The other simple combinational resonances are directly given
in Tables 3 and 4. Detailed results for all the combinational resonances will be presented
in Stuchlík et al. (2007c).
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Table 3. Simple combinational frequency ratios given by direct frequency ratios n :m, νv ∈ {νθ , νK}
(νv/νr > 1).

νv
νr

νv + νr
νv

νv
νv − νr

νv + νr
νr

νv − νr
νr

νr
νv − νr

νv + νr
νv − νr

5 :4 9 :5 5 :1 9 :4 – 4 :1 9 :1
4 :3 7 :4 4 :1 7 :3 – 3 :1 7 :1
3 :2 5 :3 3 :1 5 :2 – 2 :1 5 :1
5 :3 8 :5 5 :2 8 :3 – 3 :2 4 :1
2 :1 3 :2 2 :1 3 :1 – – 3 :1
5 :2 7 :5 5 :3 7 :2 3 :2 – 7 :3
3 :1 4 :3 3 :2 4 :1 2 :1 – 2 :1
4 :1 5 :4 4 :3 5 :1 3 :1 – 5 :3
5 :1 6 :5 5 :4 6 :1 4 :1 – 3 :2

Table 4. Simple combinational frequency ratios given by direct frequency ratios n :m (νK/νθ ≥ 1).

νK
νθ

νK + νθ

νK

νK
νK − νθ

νK + νθ

νθ

νK − νθ
νθ

νθ

νK − νθ
νK + νθ

νK − νθ

5 :4 9 :5 5 :1 9 :4 – 4 :1 9 :1
4 :3 7 :4 4 :1 7 :3 – 3 :1 7 :1
3 :2 5 :3 3 :1 5 :2 – 2 :1 5 :1
5 :3 8 :5 5 :2 8 :3 – 3 :2 4 :1
2 :1 3 :2 2 :1 3 :1 1 :1 1 :1 3 :1
5 :2 7 :5 5 :3 7 :2 3 :2 – 7 :3
3 :1 4 :3 3 :2 4 :1 2 :1 – 2 :1
4 :1 5 :4 4 :3 5 :1 3 :1 – 5 :3
5 :1 6 :5 5 :4 6 :1 4 :1 – 3 :2

The method is illustrated in Fig. 4 for several cases of resonances. The results of detailed
analysis are given in Tables 5–7. We give schemes of the direct resonances (D1–D3) and
the triple combinational resonances (CT1–CT6) that cannot be deduced from the Tables of
direct resonances.
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For the simple combinational resonances containing only two of the three relevant fre-
quencies, the results can be easily determined from the Tables of the direct resonances, be-
cause at a given radius xp, where a direct resonance occurs, the combinational resonances
of the two relevant frequencies occur, and the relevant ratio of the combinational resonances
is given by the relations expressed explicitly for the direct resonance νθ :νr = n :m
νθ + νr
νr

=
n + m
m

, (5)

νθ

νθ − νr
=

n
n − m

, (6)

νθ − νr
νr

=
n − m
m

, (7)

νθ + νr
νθ − νr

=
n + m
n − m

. (8)

In the other two cases of direct resonances, the combinational resonance ratios are given in
analogy to the relations (5)–(8).
In all of the simple combinational resonances occurring at the same radius as the corres-

ponding direct resonance, the related black hole spin a remains unchanged, only the triple
of the frequency ratios is different and determined by the relations for the combinational
frequencies.
In presenting the final results in the Tables 5–7, we have taken into account all the ratios

with n,m = 1, 2, 3, 4, 5. The highest resonance order considered here is n + m = 9,
corresponding to the highest order resonances with n :m = 5 : 4 that are observed in some
black hole systems (see Remillard and McClintock, 2006; Strohmayer et al., 2007) and in
neutron star systems (see Belloni et al., 2005, 2007; Barret et al., 2005; Török, 2007).

Table 5. Top identity.

+ +
νθ

νr

νK
νr

νK
νθ

νK
νθ − νr

νθ

νK − νr
νθ

νr
T11 T12 T13 T14 T15

νK
νr

T22 T23 T24 T25

νK
νθ

T33 T34 T35

νK
νθ − νr

T44 T45

νθ

νK − νr
T55

(continued on next page)
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Table 5. (continued)

νup νmiddle νdown T11 sets a
νθ ν3:2

r ν4:1
r 12 : 8 : 3 0.999795

νθ ν3:2
r ν5:1

r 15 : 10 : 3 0.999159
νθ ν5:3

r ν4:1
r 20 : 12 : 5 0.997586

νθ ν5:3
r ν5:1

r 5 : 3 : 1 0.996344
νθ ν2:1

r ν5:2
r 10 : 5 : 4 0.998375

νθ ν2:1
r ν3:1

r 6 : 3 : 2 0.993348
νθ ν2:1

r ν4:1
r 4 : 2 : 1 0.988797

νθ ν2:1
r ν5:1

r 10 : 5 : 2 0.986815
νθ ν5:2

r ν3:1
r 15 : 6 : 5 0.983254

νθ ν5:2
r ν4:1

r 20 : 8 : 5 0.978128
νθ ν5:2

r ν5:1
r 5 : 2 : 1 0.975855

νθ ν3:1
r ν4:1

r 12 : 4 : 3 0.972240
νθ ν3:1

r ν5:1
r 15 : 5 : 3 0.969840

νθ ν4:1
r ν5:1

r 20 : 5 : 4 0.964070

νup νmiddle νdown T12 sets a
ν3:2
θ = ν5:3

K ν3:2
r ν5:3

r 15 : 10 : 9 0.986488
ν3:1
θ = ν2:1

K ν2:1
r ν3:1

r 6 : 3 : 2 0.997911
ν3:1
θ = ν5:2

K ν5:2
r ν3:1

r 15 : 6 : 5 0.766192
ν4:1
θ = ν5:3

K ν5:3
r ν4:1

r 20 : 12 : 5 0.999855
ν4:1
θ = ν2:1

K ν2:1
r ν4:1

r 4 : 2 : 1 0.993823
ν4:1
θ = ν5:2

K ν5:2
r ν4:1

r 20 : 8 : 5 0.883596
ν4:1
θ = ν3:1

K ν3:1
r ν4:1

r 12 : 4 : 3 0.585950
ν5:1
θ = ν3:2

K ν3:2
r ν5:1

r 15 : 10 : 3 0.999943
ν5:1
θ = ν5:3

K ν5:3
r ν5:1

r 5 : 3 : 1 0.999245
ν5:1
θ = ν2:1

K ν2:1
r ν5:1

r 10 : 5 : 2 0.992017
ν5:1
θ = ν5:2

K ν5:2
r ν5:1

r 5 : 2 : 1 0.901701
ν5:1
θ = ν3:1

K ν3:1
r ν5:1

r 15 : 5 : 3 0.684098
ν5:1
θ = ν4:1

K ν4:1
r ν5:1

r 20 : 5 : 4 0.277977
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Table 5. (continued)

νup νmiddle νdown T13 sets a
ν2:1
θ = ν5:4

K ν5:4
θ ν2:1

r 10 : 8 : 5 0.959149
ν5:2
θ = ν5:4

K ν5:4
θ ν5:2

r 5 : 4 : 2 0.920283
0.999569

ν3:1
θ = ν5:4

K ν5:4
θ ν3:1

r 15 : 12 : 5
{

0.900496
0.995816

ν4:1
θ = ν5:4

K ν5:4
θ ν4:1

r 20 : 16 : 5
{

0.881660
0.994044

ν5:1
θ = ν5:4

K ν5:4
θ ν5:1

r 5 : 4 : 1
{

0.873208
νup νmiddle νdown T14 sets a

ν5:3
θ = ν3:1

K ν5:3
r (νθ − νr )3:1 15 : 9 : 5 0.768181

ν2:1
θ = ν5:2

K ν2:1
r (νθ − νr )5:2 10 : 5 : 4 0.718139

ν2:1
θ = ν3:1

K ν2:1
r (νθ − νr )3:1 6 : 3 : 2 0.926845

ν5:2
θ = ν2:1

K (νθ − νr )2:1 ν5:2
r 10 : 5 : 4 0.545519

ν5:2
θ = ν5:2

K – ν5:2
r = (νθ − νr )5:2 5 : 2 0.838922

ν5:2
θ = ν3:1

K ν5:2
r (νθ − νr )3:1 15 : 6 : 5 0.953351

ν3:1
θ = ν5:3

K (νθ − νr )5:3 ν3:1
r 15 : 9 : 5 0.324388

ν3:1
θ = ν2:1

K (νθ − νr )2:1 ν3:1
r 6 : 3 : 2 0.657961

ν3:1
θ = ν5:2

K (νθ − νr )5:2 ν3:1
r 15 : 6 : 5 0.866415

ν3:1
θ = ν3:1

K – ν3:1
r = (νθ − νr )3:1 3 : 1 0.957989

ν4:1
θ = ν3:2

K (νθ − νr )3:2 ν4:1
r 12 : 8 : 3 0.303179

ν4:1
θ = ν5:3

K (νθ − νr )5:3 ν4:1
r 20 : 12 : 5 0.498556

ν4:1
θ = ν2:1

K (νθ − νr )2:1 ν4:1
r 4 : 2 : 1 0.723465

ν4:1
θ = ν5:2

K (νθ − νr )5:2 ν4:1
r 20 : 8 : 5 0.882500

ν4:1
θ = ν3:1

K (νθ − νr )3:1 ν4:1
r 12 : 4 : 3 0.959714

ν5:1
θ = ν4:3

K (νθ − νr )4:3 ν5:1
r 20 : 15 : 4 0.157838

ν5:1
θ = ν3:2

K (νθ − νr )3:2 ν5:1
r 15 : 10 : 3 0.392986

ν5:1
θ = ν5:3

K (νθ − νr )5:3 ν5:1
r 5 : 3 : 1 0.552361

ν5:1
θ = ν2:1

K (νθ − νr )2:1 ν5:1
r 10 : 5 : 2 0.744570

ν5:1
θ = ν5:2

K (νθ − νr )5:2 ν5:1
r 5 : 2 : 1 0.887578

ν5:1
θ = ν3:1

K (νθ − νr )3:1 ν5:1
r 15 : 5 : 3 0.959924

ν5:1
θ = ν4:1

K (νθ − νr )4:1 ν5:1
r 20 : 5 : 4 0.999502
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Table 5. (continued)

νup νmiddle νdown T15 sets a
νθ ν5:4

r (νK − νr )4:1 20 : 16 : 5 0.864496
νθ ν4:3

r (νK − νr )3:1 12 : 9 : 4 0.906232
νθ ν3:2

r (νK − νr )2:1 6 : 4 : 3 0.948037
νθ ν3:2

r (νK − νr )5:2 15 : 10 : 6 0.666292
νθ (νK − νr )3:2 ν5:3

r 15 : 10 : 9 0.966994
νθ – ν5:3

r = (νK − νr )5:3 5 : 3 0.912558
νθ ν5:3

r (νK − νr )2:1 10 : 6 : 5 0.716619
νθ (νK − νr )5:4 ν2:1

r 10 : 8 : 5 0.917696
νθ (νK − νr )4:3 ν2:1

r 4 : 3 : 2 0.882162
νθ (νK − νr )3:2 ν2:1

r 6 : 4 : 3 0.780930
νθ (νK − νr )5:3 ν2:1

r 10 : 6 : 5 0.623205
νθ (νK − νr )5:4 ν5:2

r 5 : 4 : 2 0.771066
νθ (νK − νr )4:3 ν5:2

r 20 : 15 : 8 0.687766
νθ (νK − νr )3:2 ν5:2

r 15 : 10 : 6 0.436347
0.999725

νθ (νK − νr )5:4 ν3:1
r 15 : 12 : 5

{

0.620936
νθ (νK − νr )4:3 ν3:1

r 12 : 9 : 4 0.475318
0.996250

νθ (νK − νr )5:4 ν4:1
r 20 : 16 : 5

{

0.312660
νθ (νK − νr )4:3 ν4:1

r 4 : 3 : 1 0.997314
νθ (νK − νr )3:2 ν4:1

r 12 : 8 : 3 0.998678
νθ (νK − νr )5:3 ν4:1

r 20 : 12 : 5 0.999422
νθ (νK − νr )5:4 ν5:1

r 5 : 4 : 1 0.994655
νθ (νK − νr )4:3 ν5:1

r 20 : 15 : 4 0.995929
νθ (νK − νr )3:2 ν5:1

r 15 : 10 : 3 0.997628
νθ (νK − νr )5:3 ν5:1

r 5 : 3 : 1 0.998615
νθ (νK − νr )2:1 ν5:1

r 10 : 5 : 2 0.999545
νθ (νK − νr )5:2 ν5:1

r 5 : 2 : 1 0.999960

νup νmiddle νdown T22 sets a
– – – – –
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Table 5. (continued)

νup νmiddle νdown T23 sets a
νK ν5:4

θ ν2:1
r 10 : 8 : 5 0.978822

νK ν5:4
θ ν5:2

r 5 : 4 : 2 0.882162
νK ν4:3

θ ν5:2
r 20 : 15 : 8 0.953845

νK ν5:4
θ ν3:1

r 15 : 12 : 5 0.835951
νK ν4:3

θ ν3:1
r 12 : 9 : 4 0.907924

νK ν3:2
θ ν3:1

r 3 : 2 : 1 0.983043
νK ν5:4

θ ν4:1
r 20 : 16 : 5 0.793780

νK ν4:3
θ ν4:1

r 4 : 3 : 1 0.865670
νK ν3:2

θ ν4:1
r 12 : 8 : 3 0.942454

νK ν5:3
θ ν4:1

r 20 : 12 : 5 0.979390
νK ν5:4

θ ν5:1
r 5 : 4 : 1 0.775420

νK ν4:3
θ ν5:1

r 20 : 15 : 4 0.847170
νK ν3:2

θ ν5:1
r 15 : 10 : 3 0.924540

νK ν5:3
θ ν5:1

r 5 : 3 : 1 0.962250
νK ν2:1

θ ν5:1
r 10 : 5 : 2 0.995139

νup νmiddle νdown T24 sets a
νK ν4:3

r (νθ − νr )5:1 20 : 15 : 4 0.849640
νK ν3:2

r (νθ − νr )4:1 12 : 8 : 3 0.883497
νK ν5:3

r (νθ − νr )3:1 15 : 9 : 5 0.656160
νK ν2:1

r (νθ − νr )5:2 10 : 5 : 4 0.704526
νK ν2:1

r (νθ − νr )3:1 6 : 3 : 2 0.912558
νK (νθ − νr )2:1 ν5:2

r 10 : 5 : 4 0.619190
νK – ν5:2

r = (νθ − νr )5:2 5 : 2 0.882162
νK ν5:2

r (νθ − νr )3:1 15 : 6 : 5 0.972292
νK (νθ − νr )5:3 ν3:1

r 15 : 9 : 5 0.438554
νK (νθ − νr )2:1 ν3:1

r 6 : 3 : 2 0.771066
νK (νθ − νr )5:2 ν3:1

r 15 : 6 : 5 0.926708
νK – ν3:1

r = (νθ − νr )3:1 3 : 1 0.983043
νK (νθ − νr )3:2 ν4:1

r 12 : 8 : 3 0.481612
νK (νθ − νr )5:3 ν4:1

r 20 : 12 : 5 0.691677
νK (νθ − νr )2:1 ν4:1

r 4 : 2 : 1 0.865670
νK (νθ − νr )5:2 ν4:1

r 20 : 8 : 5 0.953294
νK (νθ − νr )3:1 ν4:1

r 12 : 4 : 3 0.986299
νK (νθ − νr )4:3 ν5:1

r 20 : 15 : 4 0.317752
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Table 5. (continued)

νK (νθ − νr )3:2 ν5:1
r 15 : 10 : 3 0.631698

νK (νθ − νr )5:3 ν5:1
r 5 : 3 : 1 0.775420

νK (νθ − νr )2:1 ν5:1
r 10 : 5 : 2 0.898553

νK (νθ − νr )5:2 ν5:1
r 5 : 2 : 1 0.962250

νK (νθ − νr )3:1 ν5:1
r 15 : 5 : 3 0.986541

νup νmiddle νdown T25 sets a
ν3:2

K = ν5:2
θ ν3:2

r (νK − νr )5:2 15 : 10 : 6 0.956544
ν5:3

K = ν2:1
θ ν5:3

r (νK − νr )2:1 10 : 6 : 5 0.884722
ν2:1

K = ν5:4
θ (νK − νr )5:4 ν2:1

r 10 : 8 : 5 0.951420
ν2:1

K = ν4:3
θ (νK − νr )4:3 ν2:1

r 4 : 3 : 2 0.913464
ν2:1

K = ν3:2
θ (νK − νr )3:2 ν2:1

r 6 : 4 : 3 0.805342
ν2:1

K = ν5:3
θ (νK − νr )5:3 ν2:1

r 10 : 6 : 5 0.638490
ν5:2

K = ν5:4
θ (νK − νr )5:4 ν5:2

r 5 : 4 : 2 0.674200
ν5:2

K = ν4:3
θ (νK − νr )4:3 ν5:2

r 20 : 15 : 8 0.590613
ν5:2

K = ν3:2
θ (νK − νr )3:2 ν5:2

r 15 : 10 : 6 0.357791
ν3:1

K = ν5:4
θ (νK − νr )5:4 ν3:1

r 15 : 12 : 5 0.458802
ν3:1

K = ν4:3
θ (νK − νr )4:3 ν3:1

r 12 : 9 : 4 0.337980
ν4:1

K = ν5:4
θ (νK − νr )5:4 ν4:1

r 20 : 16 : 5 0.169411

νup νmiddle νdown T33 sets a
– – – – –

νup νmiddle νdown T34 sets a
νK ν5:4

θ (νθ − νr )4:3 20 : 16 : 15 0.746323
νK ν5:4

θ (νθ − νr )3:2 15 : 12 : 10 0.757958
νK ν5:4

θ (νθ − νr )5:3 5 : 4 : 3 0.775420
νK ν5:4

θ (νθ − νr )2:1 10 : 8 : 5 0.817199
νK ν5:4

θ (νθ − νr )5:2 5 : 4 : 2 0.882162
νK ν5:4

θ (νθ − νr )3:1 15 : 12 : 5 0.942336
νK ν4:3

θ (νθ − νr )3:2 12 : 9 : 8 0.821125
νK ν4:3

θ (νθ − νr )5:3 20 : 15 : 12 0.833218
νK ν4:3

θ (νθ − νr )2:1 4 : 3 : 2 0.865670
νK ν4:3

θ (νθ − νr )5:2 20 : 15 : 8 0.918302
νK ν4:3

θ (νθ − νr )3:1 12 : 9 : 4 0.967289
νK ν3:2

θ (νθ − νr )5:3 15 : 10 : 9 0.897294
νK ν3:2

θ (νθ − νr )2:1 6 : 4 : 3 0.915030
νK ν3:2

θ (νθ − νr )5:2 15 : 10 : 6 0.949454
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Table 5. (continued)

νK ν3:2
θ (νθ − νr )3:1 3 : 2 : 1 0.983043

νK ν5:3
θ (νθ − νr )2:1 10 : 6 : 5 0.940089

νK ν5:3
θ (νθ − νr )5:2 5 : 3 : 2 0.962250

νK ν5:3
θ (νθ − νr )3:1 15 : 9 : 5 0.986070

νK ν2:1
θ (νθ − νr )5:2 10 : 5 : 4 0.974517

νK ν2:1
θ (νθ − νr )3:1 6 : 3 : 2 0.986666

νK ν5:2
θ (νθ − νr )3:1 15 : 6 : 5 0.988762

νK ν3:1
θ (νθ − νr )4:1 12 : 4 : 3 0.996798

νK ν4:1
θ (νθ − νr )5:1 20 : 5 : 4 0.998637

νup νmiddle νdown T35 sets a
– – – – –

νup νmiddle νdown T44 sets a
– – – – –

νup νmiddle νdown T45 sets a
ν4:3

K = ν5:4
θ (νK − νr )5:4 (νθ − νr )4:3 20 : 16 : 15 0.115806

ν3:2
K = ν5:4

θ (νK − νr )5:4 (νθ − νr )3:2 15 : 12 : 10 0.306117
ν3:2

K = ν4:3
θ (νK − νr )4:3 (νθ − νr )3:2 12 : 9 : 8 0.219609

ν5:3
K = ν5:4

θ (νK − νr )5:4 (νθ − νr )5:3 5 : 4 : 3 0.449961
ν5:3

K = ν4:3
θ (νK − νr )4:3 (νθ − νr )5:3 20 : 15 : 12 0.383769

ν5:3
K = ν3:2

θ (νK − νr )3:2 (νθ − νr )5:3 15 : 10 : 9 0.218273
ν2:1

K = ν5:4
θ (νK − νr )5:4 (νθ − νr )2:1 10 : 8 : 5 0.646387

ν2:1
K = ν4:3

θ (νK − νr )4:3 (νθ − νr )2:1 4 : 3 : 2 0.605596
ν2:1

K = ν3:2
θ (νK − νr )3:2 (νθ − νr )2:1 6 : 4 : 3 0.505260

ν2:1
K = ν5:3

θ (νK − νr )5:3 (νθ − νr )2:1 10 : 6 : 5 0.375605
ν5:2

K = ν5:4
θ (νK − νr )5:4 (νθ − νr )5:2 5 : 4 : 2 0.819423

ν5:2
K = ν4:3

θ (νK − νr )4:3 (νθ − νr )5:2 20 : 15 : 8 0.798295
ν5:2

K = ν3:2
θ (νK − νr )3:2 (νθ − νr )5:2 15 : 10 : 6 0.746336

ν5:2
K = ν5:3

θ (νK − νr )5:3 (νθ − νr )5:2 5 : 3 : 2 0.679474
ν5:2

K = ν2:1
θ (νK − νr )2:1 (νθ − νr )5:2 10 : 5 : 4 0.489267

ν3:1
K = ν5:4

θ (νK − νr )5:4 (νθ − νr )3:1 15 : 12 : 5 0.923851
ν3:1

K = ν4:3
θ (νK − νr )4:3 (νθ − νr )3:1 12 : 9 : 4 0.912811

ν3:1
K = ν3:2

θ (νK − νr )3:2 (νθ − νr )3:1 3 : 2 : 1 0.885010
ν3:1

K = ν5:3
θ (νK − νr )5:3 (νθ − νr )3:1 15 : 9 : 5 0.848463

ν3:1
K = ν2:1

θ (νK − νr )2:1 (νθ − νr )3:1 6 : 3 : 2 0.742897
ν3:1

K = ν5:2
θ (νK − νr )5:2 (νθ − νr )3:1 15 : 6 : 5 0.473232
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Table 5. (continued)

ν4:1
K = ν2:1

θ (νK − νr )2:1 (νθ − νr )4:1 4 : 2 : 1 0.996164
ν4:1

K = ν5:2
θ (νK − νr )5:2 (νθ − νr )4:1 20 : 8 : 5 0.901229

ν4:1
K = ν3:1

θ (νK − νr )3:1 (νθ − νr )4:1 12 : 4 : 3 0.728900
ν5:1

K = ν4:1
θ (νK − νr )4:1 (νθ − νr )5:1 20 : 5 : 4 0.711175

νup νmiddle νdown T55 sets a
– – – – –

Table 6. Bottom identity.

− −
νθ

νr

νK
νr

νK
νθ

νK
νθ − νr

νθ

νK − νr
νθ

νr
B11 B12 B13 B14 B15

νK
νr

B22 B23 B24 B25

νK
νθ

B33 B34 B35

νK
νθ − νr

B44 B45

νθ

νK − νr
B55

νup νmiddle νdown B11 sets a
ν5:2
θ ν3:2

θ νr 5 : 3 : 2 0.986747
ν5:2
θ ν5:3

θ νr 15 : 10 : 6 0.140827
ν3:1
θ ν4:3

θ νr 9 : 4 : 3 0.999171
ν3:1
θ ν3:2

θ νr 6 : 3 : 2 0.418229
ν4:1
θ ν5:4

θ νr 16 : 5 : 4 0.996953
ν4:1
θ ν4:3

θ νr 12 : 4 : 3 0.891596
ν5:1
θ ν5:4

θ νr 20 : 5 : 4 0.975970
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Table 6. (continued)

νup νmiddle νdown B12 sets a
ν4:3

K ν5:4
θ νr 16 : 15 : 12 0.973553

ν5:1
K ν4:3

θ νr 15 : 4 : 3 0.724899
ν5:3

K ν3:2
θ νr 10 : 9 : 6 0.838559

ν4:1
K ν3:2

θ νr 8 : 3 : 2 0.940033
ν2:1

K ν5:3
θ νr 6 : 5 : 3 0.912558

ν3:1
K ν5:3

θ νr 9 : 5 : 3 0.915450
ν5:2

K ν2:1
θ νr 5 : 4 : 2 0.882162

ν3:1
K ν2:1

θ νr 3 : 2 : 1 0.983043
ν3:1

K ν5:2
θ νr 6 : 5 : 2 0.771066

ν4:1
K ν5:2

θ νr 8 : 5 : 2 0.967440
ν5:1

K ν5:2
θ νr 10 : 5 : 2 0.995139

ν3:1
θ ν3:2

K νr 6 : 3 : 2 0.998451
ν4:1

K ν3:1
θ νr 4 : 3 : 1 0.865670

ν5:1
K ν3:1

θ νr 5 : 3 : 1 0.962250
ν5:1

K ν4:1
θ νr 5 : 4 : 1 0.775420

ν4:1
θ ν5:4

K νr 16 : 5 : 4 0.999967
ν4:1
θ ν4:3

K νr 12 : 4 : 3 0.997358
ν5:1
θ ν5:4

K νr 20 : 5 : 4 0.997787
0.976490

ν5:1
θ ν4:3

K νr 15 : 4 : 3
{

0.767142

νup νmiddle νdown B13 sets a
– – – – –

νup νmiddle νdown B14 sets a
ν3:1

K ν5:4
θ ν5:4

r = (νθ − νr )3:1 12 : 5 : 4 0.660514
ν5:2

K ν4:3
θ ν4:3

r = (νθ − νr )5:2 15 : 8 : 6 0.262715
ν3:1

K ν4:3
θ ν4:3

r = (νθ − νr )3:1 9 : 4 : 3 0.897551
ν5:2

K ν3:2
θ ν3:2

r = (νθ − νr )5:2 5 : 3 : 2 0.780190
ν3:1

K ν3:2
θ ν3:2

r = (νθ − νr )3:1 6 : 3 : 2 0.972843
ν5:2

K ν5:3
θ ν5:3

r = (νθ − νr )5:2 15 : 10 : 6 0.863198
ν3:1

K ν5:3
θ ν5:3

r = (νθ − νr )3:1 9 : 5 : 3 0.982104
ν5:2

K ν2:1
θ ν2:1

r = (νθ − νr )5:2 5 : 4 : 2 0.882162
ν3:1

K ν2:1
θ ν2:1

r = (νθ − νr )3:1 3 : 2 : 1 0.983043
ν5:2

K = ν5:2
θ – ν5:2

r = (νθ − νr )5:2 5 : 2 0.838922
ν3:1

K ν5:2
θ ν5:2

r = (νθ − νr )3:1 6 : 5 : 2 0.974930
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Table 6. (continued)

ν3:1
θ ν5:2

K ν3:1
r = (νθ − νr )5:2 6 : 5 : 2 0.753467

ν3:1
K = ν3:1

θ – ν3:1
r = (νθ − νr )3:1 3 : 1 0.957989

ν4:1
θ ν5:2

K ν4:1
r = (νθ − νr )5:2 8 : 5 : 2 0.396889

ν4:1
θ ν3:1

K ν4:1
r = (νθ − νr )3:1 4 : 3 : 1 0.896685

ν5:1
θ ν3:1

K ν5:1
r = (νθ − νr )3:1 5 : 3 : 1 0.777444

ν5:1
θ ν4:1

K ν5:1
r = (νθ − νr )4:1 5 : 4 : 1 0.998146

νup νmiddle νdown B15 sets a
ν5:2
θ ν5:4

θ ν5:4
r = (νK − νr )5:2 10 : 5 : 4 0.733477

ν2:1
θ ν4:3

θ ν4:3
r = (νK − νr )2:1 6 : 4 : 3 0.982619

ν5:3
θ ν3:2

θ ν3:2
r = (νK − νr )5:3 10 : 9 : 6 0.989634

ν2:1
θ ν3:2

θ ν3:2
r = (νK − νr )2:1 4 : 3 : 2 0.590679

ν5:3
θ – ν5:3

r = (νK − νr )5:3 5 : 3 0.912558
ν2:1
θ ν5:3

θ ν5:3
r = (νK − νr )2:1 6 : 5 : 3 0.259800

ν2:1
θ ν5:3

θ ν2:1
r = (νK − νr )5:3 6 : 5 : 3 0.880442

ν5:2
θ ν2:1

θ ν5:2
r = (νK − νr )2:1 5 : 4 : 2 0.271182

0.616894
ν3:1
θ ν2:1

θ ν3:1
r = (νK − νr )2:1 3 : 2 : 1

{

0.999667
ν4:1
θ ν5:2

θ ν4:1
r = (νK − νr )5:2 8 : 5 : 2 0.999244

0.993442
ν5:1
θ ν5:2

θ ν5:1
r = (νK − νr )5:2 10 : 5 : 2

{

0.427764
ν5:1
θ ν3:1

θ ν5:1
r = (νK − νr )3:1 5 : 3 : 1 0.999506

νup νmiddle νdown B22 sets a
ν5:2

K ν2:1
K νr 5 : 4 : 2 0.749094

ν3:1
K ν5:3

K νr 9 : 5 : 3 0.598576
ν3:1

K ν2:1
K νr 3 : 2 : 1 0.913806

ν3:1
K ν5:2

K νr 6 : 5 : 2 0.999156
ν4:1

K ν3:2
K νr 8 : 3 : 2 0.696084

ν4:1
K ν5:3

K νr 12 : 5 : 3 0.901673
ν4:1

K ν2:1
K νr 4 : 2 : 1 0.996445

ν5:1
K ν4:3

K νr 15 : 4 : 3 0.468451
ν5:1

K ν3:2
K νr 10 : 3 : 2 0.885647

ν5:1
K ν5:3

K νr 15 : 5 : 3 0.975778

νup νmiddle νdown B23 sets a
– – – – –
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Table 6. (continued)

νup νmiddle νdown B24 sets a
ν3:1

K ν5:4
K ν5:4

r = (νθ − νr )3:1 12 : 5 : 4 0.495016
ν5:2

K ν4:3
K ν4:3

r = (νθ − νr )5:2 15 : 8 : 6 0.174769
ν3:1

K ν4:3
K ν4:3

r = (νθ − νr )3:1 9 : 4 : 3 0.775077
ν5:2

K ν3:2
K ν3:2

r = (νθ − νr )5:2 5 : 3 : 2 0.660135
ν3:1

K ν3:2
K ν3:2

r = (νθ − νr )3:1 6 : 3 : 2 0.926760
ν5:2

K ν5:3
K ν5:3

r = (νθ − νr )5:2 15 : 10 : 6 0.794181
ν3:1

K ν5:3
K ν5:3

r = (νθ − νr )3:1 9 : 5 : 3 0.963424
ν5:2

K ν2:1
K ν2:1

r = (νθ − νr )5:2 5 : 4 : 2 0.869857
ν3:1

K ν2:1
K ν2:1

r = (νθ − νr )3:1 3 : 2 : 1 0.980124
ν5:2

K – ν5:2
r = (νθ − νr )5:2 5 : 2 0.882162

ν3:1
K ν5:2

K ν5:2
r = (νθ − νr )3:1 6 : 5 : 2 0.983466

ν3:1
K ν5:2

K ν3:1
r = (νθ − νr )5:2 6 : 5 : 2 0.854958

ν3:1
K – ν3:1

r = (νθ − νr )3:1 3 : 1 0.983043
ν4:1

K ν5:2
K ν4:1

r = (νθ − νr )5:2 8 : 5 : 2 0.609007
ν4:1

K ν3:1
K ν4:1

r = (νθ − νr )3:1 4 : 3 : 1 0.976789
ν5:1

K ν3:1
K ν5:1

r = (νθ − νr )3:1 5 : 3 : 1 0.954420

νup νmiddle νdown B25 sets a
ν2:1
θ ν3:2

K ν3:2
r = (νK − νr )2:1 4 : 3 : 2 0.885695

ν2:1
θ ν5:3

K ν5:3
r = (νK − νr )2:1 6 : 5 : 3 0.342013

ν2:1
K ν5:3

θ ν2:1
r = (νK − νr )5:3 6 : 5 : 3 0.912558

ν5:2
K ν3:2

θ ν5:2
r = (νK − νr )3:2 5 : 3 : 2 0.997182

ν5:2
K ν5:3

θ ν5:2
r = (νK − νr )5:3 15 : 10 : 6 0.880606

ν5:2
K ν2:1

θ ν5:2
r = (νK − νr )2:1 5 : 4 : 2 0.221062

ν3:1
K ν3:2

θ ν3:1
r = (νK − νr )3:2 6 : 3 : 2 0.997713

ν3:1
K ν5:3

θ ν3:1
r = (νK − νr )5:3 9 : 5 : 3 0.913062

ν3:1
K ν2:1

θ ν3:1
r = (νK − νr )2:1 3 : 2 : 1 0.475159

ν4:1
K ν5:3

θ ν4:1
r = (νK − νr )5:3 12 : 5 : 3 0.970995

ν4:1
K ν2:1

θ ν4:1
r = (νK − νr )2:1 4 : 2 : 1 0.759538

ν5:1
K ν5:3

θ ν5:1
r = (νK − νr )5:3 15 : 5 : 3 0.998539

ν5:1
K ν2:1

θ ν5:1
r = (νK − νr )2:1 5 : 2 : 1 0.885657

ν5:1
K ν5:2

θ ν5:1
r = (νK − νr )5:2 10 : 5 : 2 0.269751

νup νmiddle νdown B33 sets a
– – – – –
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Table 6. (continued)

νup νmiddle νdown B34 sets a
ν4:3

K ν5:4
K ν5:4

θ = (νθ − νr )4:3 16 : 15 : 12 0.768456
ν3:2

K ν5:4
K ν5:4

θ = (νθ − νr )3:2 6 : 5 : 4 0.814015
ν5:3

K ν5:4
K ν5:4

θ = (νθ − νr )5:3 20 : 15 : 12 0.853957
ν2:1

K ν5:4
K ν5:4

θ = (νθ − νr )2:1 8 : 5 : 4 0.914614
ν5:2

K ν5:4
K ν5:4

θ = (νθ − νr )5:2 10 : 5 : 4 0.965747
ν3:1

K ν5:4
K ν5:4

θ = (νθ − νr )3:1 12 : 5 : 4 0.986880
ν3:2

K ν4:3
K ν4:3

θ = (νθ − νr )3:2 9 : 8 : 6 0.855369
ν5:3

K ν4:3
K ν4:3

θ = (νθ − νr )5:3 5 : 4 : 3 0.889086
ν2:1

K ν4:3
K ν4:3

θ = (νθ − νr )2:1 6 : 4 : 3 0.937852
ν5:2

K ν4:3
K ν4:3

θ = (νθ − νr )5:2 15 : 8 : 6 0.975527
ν3:1

K ν4:3
K ν4:3

θ = (νθ − νr )3:1 9 : 4 : 3 0.990714
ν5:3

K ν3:2
K ν3:2

θ = (νθ − νr )5:3 10 : 9 : 6 0.921475
ν2:1

K ν3:2
K ν3:2

θ = (νθ − νr )2:1 4 : 3 : 2 0.959385
ν2:1

K ν5:3
K ν5:3

θ = (νθ − νr )2:1 6 : 5 : 3 0.967538

νup νmiddle νdown B35 sets a
ν4:1

K ν5:4
θ ν4:1

θ = (νK − νr )5:4 16 : 5 : 4 0.998070

νup νmiddle νdown B44 sets a
– – – – –

νup νmiddle νdown B45 sets a
ν4:3

K ν5:4
θ (νθ − νr )4:3 = (νK − νr )5:4 16 : 15 : 12 0.285641

ν3:2
K ν5:4

θ (νθ − νr )3:2 = (νK − νr )5:4 6 : 5 : 4 0.586875
ν3:2

K ν4:3
θ (νθ − νr )3:2 = (νK − νr )4:3 9 : 8 : 6 0.444214

ν5:3
K ν5:4

θ (νθ − νr )5:3 = (νK − νr )5:4 20 : 15 : 12 0.738633
ν5:3

K ν4:3
θ (νθ − νr )5:3 = (νK − νr )4:3 5 : 4 : 3 0.655638

ν5:3
K ν3:2

θ (νθ − νr )5:3 = (νK − νr )3:2 10 : 9 : 6 0.412837
ν2:1

K ν5:4
θ (νθ − νr )2:1 = (νK − νr )5:4 8 : 5 : 4 0.882635

ν2:1
K ν4:3

θ (νθ − νr )2:1 = (νK − νr )4:3 6 : 4 : 3 0.848374
ν2:1

K ν3:2
θ (νθ − νr )2:1 = (νK − νr )3:2 4 : 3 : 2 0.753126

ν2:1
K ν5:3

θ (νθ − νr )2:1 = (νK − νr )5:3 6 : 5 : 3 0.605036
ν5:2

K ν5:4
θ (νθ − νr )5:2 = (νK − νr )5:4 10 : 5 : 4 0.961586

ν5:2
K ν4:3

θ (νθ − νr )5:2 = (νK − νr )4:3 15 : 8 : 6 0.952213
ν5:2

K ν3:2
θ (νθ − νr )5:2 = (νK − νr )3:2 5 : 3 : 2 0.925224

ν5:2
K ν5:3

θ (νθ − νr )5:2 = (νK − νr )5:3 15 : 10 : 6 0.881629
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Table 6. (continued)

ν5:2
K ν2:1

θ (νθ − νr )5:2 = (νK − νr )2:1 5 : 4 : 2 0.712080
ν3:1

K ν5:4
θ (νθ − νr )3:1 = (νK − νr )5:4 12 : 5 : 4 0.986719

ν3:1
K ν4:3

θ (νθ − νr )3:1 = (νK − νr )4:3 9 : 4 : 3 0.986484
ν3:1

K ν3:2
θ (νθ − νr )3:1 = (νK − νr )3:2 6 : 3 : 2 0.984319

ν3:1
K ν5:3

θ (νθ − νr )3:1 = (νK − νr )5:3 9 : 5 : 3 0.975422
ν3:1

K ν2:1
θ (νθ − νr )3:1 = (νK − νr )2:1 3 : 2 : 1 0.922985

ν3:1
K ν5:2

θ (νθ − νr )3:1 = (νK − νr )5:2 6 : 5 : 2 0.686529
ν4:1

K ν4:3
θ (νθ − νr )4:1 = (νK − νr )4:3 12 : 4 : 3 0.997450

ν4:1
K ν3:1

θ (νθ − νr )4:1 = (νK − νr )3:1 4 : 3 : 1 0.927315
ν5:1

K ν4:1
θ (νθ − νr )5:1 = (νK − νr )4:1 5 : 4 : 1 0.927542

νup νmiddle νdown B55 sets a
– – – – –

Table 7.Middle identity.

+ −
νθ

νr

νK
νr

νK
νθ

νK
νθ − νr

νθ

νK − νr
νθ

νr
M11 M12 M13 M14 M15

νK
νr

M21 M22 M23 M24 M25

νK
νθ

M31 M32 M33 M34 M35

νK
νθ − νr

M41 M42 M43 M44 M45

νθ

νK − νr
M51 M52 M53 M54 M55

νup νmiddle νdown M11 sets a
ν3:2
θ ν3:2

r = ν4:3
θ ν4:3

r 6 : 4 : 3 0.786859
ν3:2
θ ν3:2

r = ν5:1
θ ν5:1

r 15 : 10 : 2 0.999988
ν5:3
θ ν5:3

r = ν5:1
θ ν5:1

r 25 : 15 : 3 0.999860
ν2:1
θ ν2:1

r = ν5:1
θ ν5:1

r 10 : 5 : 1 0.999842
ν5:2
θ ν5:2

r = ν4:3
θ ν4:3

r 10 : 4 : 3 0.999575
ν4:1
θ ν4:1

r = ν5:4
θ ν5:4

r 20 : 5 : 4 0.977966
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Table 7. (continued)

νup νmiddle νdown M12 sets a
ν4:3

K ν4:3
r = ν5:4

θ ν5:4
r 20 : 15 : 12 0.0560561

ν5:1
K ν5:1

r = ν5:4
θ ν5:4

r 25 : 5 : 4 0.622555
ν5:3

K ν5:3
r = ν4:3

θ ν4:3
r 20 : 12 : 9 0.878624

ν3:1
K ν3:1

r = ν4:3
θ ν4:3

r 12 : 4 : 3 0.353929
ν4:1

K ν4:1
r = ν4:3

θ ν4:3
r 16 : 4 : 3 0.907931

ν5:1
K ν5:1

r = ν4:3
θ ν4:3

r 20 : 4 : 3 0.986324
ν2:1

K ν2:1
r = ν5:1

θ ν5:1
r 10 : 5 : 1 0.999928

ν5:2
K ν5:2

r = ν5:1
θ ν5:1

r 25 : 10 : 2 0.999817
ν3:1

K ν3:1
r = ν5:1

θ ν5:1
r 15 : 5 : 1 0.999816

ν4:1
K ν4:1

r = ν5:1
θ ν5:1

r 20 : 5 : 1 0.999917
ν5:1

K ν5:1
r = ν5:1

θ ν5:1
r 25 : 5 : 1 0.999995

νup νmiddle νdown M13 sets a
ν5:4

K νθ ν5:3
r 25 : 20 : 12 0.956364

ν4:3
K νθ ν5:3

r 20 : 15 : 9 0.996837
ν5:4

K νθ ν2:1
r 5 : 4 : 2 0.882162

ν4:3
K νθ ν2:1

r 8 : 6 : 3 0.935213
ν3:2

K νθ ν2:1
r 3 : 2 : 1 0.983043

ν5:4
K νθ ν5:2

r 25 : 20 : 8 0.828130
ν4:3

K νθ ν5:2
r 20 : 15 : 6 0.889176

ν3:2
K νθ ν5:2

r 15 : 10 : 4 0.949454
0.997059

ν5:3
K νθ ν5:2

r 25 : 15 : 6
{

0.975619
0.995139

ν2:1
K νθ ν5:2

r 10 : 5 : 2
{

0.977812
ν5:4

K νθ ν3:1
r 15 : 12 : 4 0.800994

ν4:3
K νθ ν3:1

r 4 : 3 : 1 0.865670
0.931945

ν3:2
K νθ ν3:1

r 9 : 6 : 2
{

0.996488
0.988678

ν5:3
K νθ ν3:1

r 5 : 3 : 1
{

0.962250
ν2:1

K νθ ν3:1
r 6 : 3 : 1 0.986666

ν5:2
K νθ ν3:1

r 15 : 6 : 2 0.997177
0.775420

ν5:4
K νθ ν4:1

r 5 : 4 : 1
{

0.999388
0.843271

ν4:3
K νθ ν4:1

r 16 : 12 : 3
{

0.997648
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Table 7. (continued)

0.915030
ν3:2

K νθ ν4:1
r 6 : 4 : 1

{

0.990960
0.980095

ν5:3
K νθ ν4:1

r 20 : 12 : 3
{

0.949229
ν2:1

K νθ ν4:1
r 8 : 4 : 1 0.978338

ν5:2
K νθ ν4:1

r 10 : 4 : 1 0.992258
ν3:1

K νθ ν4:1
r 12 : 4 : 1 0.996798

ν4:1
K νθ ν4:1

r 16 : 4 : 1 0.999436
0.764031

ν5:4
K νθ ν5:1

r 25 : 20 : 4
{

0.998558
0.833218

ν4:3
K νθ ν5:1

r 20 : 15 : 3
{

0.996294
0.907362

ν3:2
K νθ ν5:1

r 15 : 10 : 2
{

0.988353
0.976048

ν5:3
K νθ ν5:1

r 25 : 15 : 3
{

0.943291
ν2:1

K νθ ν5:1
r 10 : 5 : 1 0.974517

ν5:2
K νθ ν5:1

r 25 : 10 : 2 0.989990
ν3:1

K νθ ν5:1
r 15 : 5 : 1 0.995297

ν4:1
K νθ ν5:1

r 20 : 5 : 1 0.998637
ν5:1

K νθ ν5:1
r 25 : 5 : 1 0.999541

νup νmiddle νdown M14 sets a
ν5:2

K ν5:4
θ = (νθ − νr )5:2 ν5:4

r 25 : 10 : 8 0.215317
ν3:1

K ν5:4
θ = (νθ − νr )3:1 ν5:4

r 15 : 5 : 4 0.862108
ν5:2

K ν4:3
θ = (νθ − νr )5:2 ν4:3

r 10 : 4 : 3 0.781001
ν3:1

K ν4:3
θ = (νθ − νr )3:1 ν4:3

r 12 : 4 : 3 0.967080
ν2:1

K ν3:2
θ = (νθ − νr )2:1 ν3:2

r 6 : 3 : 2 0.679246
ν5:2

K ν3:2
θ = (νθ − νr )5:2 ν3:2

r 15 : 6 : 4 0.943001
ν3:1

K ν3:2
θ = (νθ − νr )3:1 ν3:2

r 9 : 3 : 2 0.986477
ν4:1

K ν3:2
θ = (νθ − νr )4:1 ν3:2

r 12 : 3 : 2 0.996851
ν5:3

K ν5:3
θ = (νθ − νr )5:3 ν5:3

r 25 : 15 : 9 0.415384
ν2:1

K ν5:3
θ = (νθ − νr )2:1 ν5:3

r 10 : 5 : 3 0.862386
ν5:2

K ν5:3
θ = (νθ − νr )5:2 ν5:3

r 25 : 10 : 6 0.968455
ν3:1

K ν5:3
θ = (νθ − νr )3:1 ν5:3

r 15 : 5 : 3 0.989352
ν3:2

K ν2:1
θ = (νθ − νr )3:2 ν2:1

r 3 : 2 : 1 0.544870
ν5:3

K ν2:1
θ = (νθ − νr )5:3 ν2:1

r 10 : 6 : 3 0.795779
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Table 7. (continued)

ν2:1
K ν2:1

θ = (νθ − νr )2:1 ν2:1
r 4 : 2 : 1 0.939903

ν5:4
K ν5:2

θ = (νθ − νr )5:4 ν5:2
r 25 : 20 : 8 0.128587

ν4:3
K ν5:2

θ = (νθ − νr )4:3 ν5:2
r 20 : 15 : 6 0.489035

ν3:2
K ν5:2

θ = (νθ − νr )3:2 ν5:2
r 15 : 10 : 4 0.781086

ν5:3
K ν5:2

θ = (νθ − νr )5:3 ν5:2
r 25 : 15 : 6 0.888972

ν2:1
K ν5:2

θ = (νθ − νr )2:1 ν5:2
r 10 : 5 : 2 0.964306

ν5:4
K ν3:1

θ = (νθ − νr )5:4 ν3:1
r 15 : 12 : 4 0.454063

ν4:3
K ν3:1

θ = (νθ − νr )4:3 ν3:1
r 4 : 3 : 1 0.655792

ν3:2
K ν3:1

θ = (νθ − νr )3:2 ν3:1
r 9 : 6 : 2 0.838000

ν5:3
K ν3:1

θ = (νθ − νr )5:3 ν3:1
r 5 : 3 : 1 0.912550

ν5:4
K ν4:1

θ = (νθ − νr )5:4 ν4:1
r 5 : 4 : 1 0.626952

ν4:3
K ν4:1

θ = (νθ − νr )4:3 ν4:1
r 16 : 12 : 3 0.749908

ν3:2
K ν4:1

θ = (νθ − νr )3:2 ν4:1
r 6 : 4 : 1 0.871285

ν5:3
K ν4:1

θ = (νθ − νr )5:3 ν4:1
r 20 : 12 : 3 0.925476

ν5:4
K ν5:1

θ = (νθ − νr )5:4 ν5:1
r 25 : 20 : 4 0.679029

ν4:3
K ν5:1

θ = (νθ − νr )4:3 ν5:1
r 20 : 15 : 3 0.778985

ν3:2
K ν5:1

θ = (νθ − νr )3:2 ν5:1
r 15 : 10 : 2 0.881466

ν5:3
K ν5:1

θ = (νθ − νr )5:3 ν5:1
r 25 : 15 : 3 0.929040

ν4:1
K ν5:1

θ = (νθ − νr )4:1 ν5:1
r 20 : 5 : 1 0.999458

ν5:1
K ν5:1

θ = (νθ − νr )5:1 ν5:1
r 25 : 5 : 1 0.999727

νup νmiddle νdown M15 sets a
ν2:1
θ ν4:3

θ = (νK − νr )2:1 ν4:3
r 8 : 4 : 3 0.529797

ν4:3
θ ν3:2

θ = (νK − νr )4:3 ν3:2
r 4 : 3 : 2 0.988237

ν3:2
θ ν3:2

θ = (νK − νr )3:2 ν3:2
r 9 : 6 : 4 0.838418

ν5:3
θ ν3:2

θ = (νK − νr )5:3 ν3:2
r 5 : 3 : 2 0.475727

ν5:4
θ ν5:3

θ = (νK − νr )5:4 ν5:3
r 25 : 20 : 12 0.915554

ν4:3
θ ν5:3

θ = (νK − νr )4:3 ν5:3
r 20 : 15 : 9 0.820673

ν3:2
θ ν5:3

θ = (νK − νr )3:2 ν5:3
r 15 : 10 : 6 0.409873

ν5:4
θ ν2:1

θ = (νK − νr )5:4 ν2:1
r 5 : 4 : 2 0.632931

ν4:3
θ ν2:1

θ = (νK − νr )4:3 ν2:1
r 8 : 6 : 3 0.282928

ν5:4
θ ν4:1

θ = (νK − νr )5:4 ν4:1
r 5 : 4 : 1 0.999439

ν4:3
θ ν4:1

θ = (νK − νr )4:3 ν4:1
r 16 : 12 : 3 0.999879

ν5:4
θ ν5:1

θ = (νK − νr )5:4 ν5:1
r 25 : 20 : 4 0.998638

ν4:3
θ ν5:1

θ = (νK − νr )4:3 ν5:1
r 20 : 15 : 3 0.999280

ν3:2
θ ν5:1

θ = (νK − νr )3:2 ν5:1
r 15 : 10 : 2 0.999827
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Table 7. (continued)

νup νmiddle νdown M21 sets a
ν5:4
θ ν5:4

r = ν5:4
K ν5:4

r 25 : 20 : 16 0.845849
ν4:1
θ ν4:1

r = ν5:4
K ν5:4

r 20 : 5 : 4 0.998803
0.990401

ν5:1
θ ν5:1

r = ν5:4
K ν5:4

r 25 : 5 : 4
{

0.613804
ν4:3
θ ν4:3

r = ν4:3
K ν4:3

r 16 : 12 : 9 0.937003
ν3:2
θ ν3:2

r = ν4:3
K ν4:3

r 6 : 4 : 3 0.279224
ν3:1
θ ν3:1

r = ν4:3
K ν4:3

r 12 : 4 : 3 0.248602
ν5:3
θ ν5:3

r = ν3:2
K ν3:2

r 5 : 3 : 2 0.955769
ν2:1
θ ν2:1

r = ν3:2
K ν3:2

r 6 : 3 : 2 0.926504

νup νmiddle νdown M22 sets a
ν3:2

K ν3:2
r = ν4:3

K ν4:3
r 6 : 4 : 3 0.549318

ν2:1
K ν2:1

r = ν3:2
K ν3:2

r 6 : 3 : 2 0.981859
ν5:2

K ν5:2
r = ν3:2

K ν3:2
r 15 : 6 : 4 0.921650

ν3:1
K ν3:1

r = ν4:3
K ν4:3

r 12 : 4 : 3 0.165341
ν3:1

K ν3:1
r = ν3:2

K ν3:2
r 9 : 3 : 2 0.948045

ν4:1
K ν4:1

r = ν4:3
K ν4:3

r 16 : 4 : 3 0.666295
ν4:1

K ν4:1
r = ν3:2

K ν3:2
r 12 : 3 : 2 0.993213

ν5:1
K ν5:1

r = ν5:4
K ν5:4

r 25 : 5 : 4 0.402260
ν5:1

K ν5:1
r = ν4:3

K ν4:3
r 20 : 4 : 3 0.847118

νup νmiddle νdown M23 sets a
ν5:4

K ν5:4
θ = ν2:1

K ν2:1
r 5 : 4 : 2 0.894644

ν4:3
K ν4:3

θ = ν2:1
K ν2:1

r 8 : 6 : 3 0.952671
ν5:4

K ν5:4
θ = ν5:2

K ν5:2
r 25 : 20 : 8 0.797122

ν4:3
K ν4:3

θ = ν5:2
K ν5:2

r 20 : 15 : 6 0.852883
ν3:2

K ν3:2
θ = ν5:2

K ν5:2
r 15 : 10 : 4 0.905219

ν5:4
K ν5:4

θ = ν3:1
K ν3:1

r 15 : 12 : 4 0.751206
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Table 7. (continued)

νup νmiddle νdown M24 sets a
ν5:2

K ν5:4
K = (νθ − νr )5:2 ν5:4

r 25 : 10 : 8 0.142859
ν3:1

K ν5:4
K = (νθ − νr )3:1 ν5:4

r 15 : 5 : 4 0.732013
ν5:2

K ν4:3
K = (νθ − νr )5:2 ν4:3

r 10 : 4 : 3 0.645676
ν3:1

K ν4:3
K = (νθ − νr )3:1 ν4:3

r 12 : 4 : 3 0.907926
ν2:1

K ν3:2
K = (νθ − νr )2:1 ν3:2

r 6 : 3 : 2 0.561945
ν5:2

K ν3:2
K = (νθ − νr )5:2 ν3:2

r 15 : 6 : 4 0.893308
ν3:1

K ν3:2
K = (νθ − νr )3:1 ν3:2

r 9 : 3 : 2 0.980201
ν5:3

K ν5:3
K = (νθ − νr )5:3 ν5:3

r 25 : 15 : 9 0.345642
ν2:1

K ν5:3
K = (νθ − νr )2:1 ν5:3

r 10 : 5 : 3 0.797820
ν5:2

K ν5:3
K = (νθ − νr )5:2 ν5:3

r 25 : 10 : 6 0.948618
ν3:1

K ν5:3
K = (νθ − νr )3:1 ν5:3

r 15 : 5 : 3 0.986477
ν4:1

K ν5:3
K = (νθ − νr )4:1 ν5:3

r 20 : 5 : 3 0.997252
ν3:2

K ν2:1
K = (νθ − νr )3:2 ν2:1

r 3 : 2 : 1 0.535413
ν5:3

K ν2:1
K = (νθ − νr )5:3 ν2:1

r 10 : 6 : 3 0.780597
ν2:1

K ν2:1
K = (νθ − νr )2:1 ν2:1

r 4 : 2 : 1 0.928219
ν5:2

K ν2:1
K = (νθ − νr )5:2 ν2:1

r 5 : 2 : 1 0.981230
ν5:4

K ν5:2
K = (νθ − νr )5:4 ν5:2

r 25 : 20 : 8 0.171905
ν4:3

K ν5:2
K = (νθ − νr )4:3 ν5:2

r 20 : 15 : 6 0.590405
ν3:2

K ν5:2
K = (νθ − νr )3:2 ν5:2

r 15 : 10 : 4 0.862325
ν5:4

K ν3:1
K = (νθ − νr )5:4 ν3:1

r 15 : 12 : 4 0.671550

νup νmiddle νdown M25 sets a
ν5:3
θ ν3:2

K = (νK − νr )5:3 ν3:2
r 5 : 3 : 2 0.755103

ν4:3
θ ν5:3

K = (νK − νr )4:3 ν5:3
r 20 : 15 : 9 0.990792

ν3:2
θ ν5:3

K = (νK − νr )3:2 ν5:3
r 15 : 10 : 6 0.541631

ν5:4
θ ν2:1

K = (νK − νr )5:4 ν2:1
r 5 : 4 : 2 0.649836

ν4:3
θ ν2:1

K = (νK − νr )4:3 ν2:1
r 8 : 6 : 3 0.286597

νup νmiddle νdown M31 sets a
– – – – –

νup νmiddle νdown M32 sets a
– – – – –

νup νmiddle νdown M33 sets a
– – – – –
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Table 7. (continued)

νup νmiddle νdown M34 sets a
ν3:2

K ν5:4
K = (νθ − νr )3:2 ν5:4

θ 15 : 10 : 8 0.877094
ν5:3

K ν5:4
K = (νθ − νr )5:3 ν5:4

θ 25 : 15 : 12 0.906562
ν2:1

K ν5:4
K = (νθ − νr )2:1 ν5:4

θ 10 : 5 : 4 0.948609
ν5:2

K ν5:4
K = (νθ − νr )5:2 ν5:4

θ 25 : 10 : 8 0.980682

νup νmiddle νdown M35 sets a
– – – – –

νup νmiddle νdown M41 sets a
ν5:3
θ ν4:1

K = ν5:3
r (νθ − νr )4:1 20 : 12 : 3 0.613540

ν2:1
θ ν4:1

K = ν2:1
r (νθ − νr )4:1 8 : 4 : 1 0.804129

ν5:2
θ ν4:1

K = ν5:2
r (νθ − νr )4:1 10 : 4 : 1 0.534484

ν4:3
θ ν5:1

K = ν4:3
r (νθ − νr )5:1 20 : 15 : 3 0.116240

ν3:1
θ ν5:1

K = ν3:1
r (νθ − νr )5:1 15 : 5 : 1 0.993761

ν4:1
θ ν5:1

K = ν4:1
r (νθ − νr )5:1 20 : 5 : 1 0.627571

νup νmiddle νdown M42 sets a
ν5:3

K ν4:1
K = ν5:3

r (νθ − νr )4:1 20 : 12 : 3 0.404877
ν2:1

K ν4:1
K = ν2:1

r (νθ − νr )4:1 8 : 4 : 1 0.761539
ν5:2

K ν4:1
K = ν5:2

r (νθ − νr )4:1 10 : 4 : 1 0.770916
ν4:3

K ν5:1
K = ν4:3

r (νθ − νr )5:1 20 : 15 : 3 0.031074
ν3:2

K ν5:1
K = ν3:2

r (νθ − νr )5:1 15 : 10 : 2 0.919990
ν5:1

K ν5:1
K = ν5:1

r (νθ − νr )5:1 25 : 5 : 1 0.843250

νup νmiddle νdown M43 sets a
ν5:4

K ν2:1
K = ν5:4

θ (νθ − νr )2:1 5 : 4 : 2 0.756494
ν5:4

K ν5:2
K = ν5:4

θ (νθ − νr )5:2 25 : 20 : 8 0.832743
ν4:3

K ν5:2
K = ν4:3

θ (νθ − νr )5:2 20 : 15 : 6 0.866061
ν3:2

K ν5:2
K = ν3:2

θ (νθ − νr )5:2 15 : 10 : 4 0.894083
ν5:4

K ν3:1
K = ν5:4

θ (νθ − νr )3:1 15 : 12 : 4 0.903699
ν4:3

K ν3:1
K = ν4:3

θ (νθ − νr )3:1 4 : 3 : 1 0.930913
ν3:2

K ν3:1
K = ν3:2

θ (νθ − νr )3:1 9 : 6 : 2 0.952228
ν5:3

K ν3:1
K = ν5:3

θ (νθ − νr )3:1 5 : 3 : 1 0.958675
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Table 7. (continued)

νup νmiddle νdown M44 sets a
ν4:3

K ν2:1
K = (νθ − νr )4:3 (νθ − νr )2:1 8 : 6 : 3 0.662659

ν5:2
K ν4:1

K = (νθ − νr )5:2 (νθ − νr )4:1 10 : 4 : 1 0.899182
ν3:1

K ν4:1
K = (νθ − νr )3:1 (νθ − νr )4:1 12 : 4 : 1 0.985873

ν5:2
K ν5:1

K = (νθ − νr )5:2 (νθ − νr )5:1 25 : 10 : 2 0.294779
ν3:1

K ν5:1
K = (νθ − νr )3:1 (νθ − νr )5:1 15 : 5 : 1 0.928691

νup νmiddle νdown M45 sets a
ν5:4
θ ν2:1

K = (νK − νr )5:4 (νθ − νr )2:1 5 : 4 : 2 0.364986
ν4:3
θ ν2:1

K = (νK − νr )4:3 (νθ − νr )2:1 8 : 6 : 3 0.137701
ν5:4
θ ν5:2

K = (νK − νr )5:4 (νθ − νr )5:2 25 : 20 : 8 0.684415
ν4:3
θ ν5:2

K = (νK − νr )4:3 (νθ − νr )5:2 20 : 15 : 6 0.578981
ν3:2
θ ν5:2

K = (νK − νr )3:2 (νθ − νr )5:2 15 : 10 : 4 0.241782
ν5:4
θ ν3:1

K = (νK − νr )5:4 (νθ − νr )3:1 15 : 12 : 4 0.851471
ν4:3
θ ν3:1

K = (νK − νr )4:3 (νθ − νr )3:1 4 : 3 : 1 0.795501
ν3:2
θ ν3:1

K = (νK − νr )3:2 (νθ − νr )3:1 9 : 6 : 2 0.621812
ν5:3
θ ν3:1

K = (νK − νr )5:3 (νθ − νr )3:1 5 : 3 : 1 0.308179
ν3:2
θ ν4:1

K = (νK − νr )3:2 (νθ − νr )4:1 6 : 4 : 1 0.956880
ν5:3
θ ν4:1

K = (νK − νr )5:3 (νθ − νr )4:1 20 : 12 : 3 0.858169
ν2:1
θ ν4:1

K = (νK − νr )2:1 (νθ − νr )4:1 8 : 4 : 1 0.373293
ν2:1
θ ν5:1

K = (νK − νr )2:1 (νθ − νr )5:1 10 : 5 : 1 0.909266
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Table 7. (continued)

νup νmiddle νdown M51 sets a
ν5:3
θ ν5:2

θ = ν5:3
r (νK − νr )5:2 25 : 15 : 6 0.955966

ν2:1
θ ν5:2

θ = ν2:1
r (νK − νr )5:2 10 : 5 : 2 0.936010

ν3:2
θ ν3:1

θ = ν3:2
r (νK − νr )3:1 9 : 6 : 2 0.885275

ν5:3
θ ν3:1

θ = ν5:3
r (νK − νr )3:1 5 : 3 : 1 0.760403

ν2:1
θ ν3:1

θ = ν2:1
r (νK − νr )3:1 6 : 3 : 1 0.692253

ν5:2
θ ν3:1

θ = ν5:2
r (νK − νr )3:1 15 : 6 : 2 0.802951

ν4:3
θ ν4:1

θ = ν4:3
r (νK − νr )4:1 16 : 12 : 3 0.778856

ν3:2
θ ν4:1

θ = ν3:2
r (νK − νr )4:1 6 : 4 : 1 0.184900

ν3:1
θ ν4:1

θ = ν3:1
r (νK − νr )4:1 12 : 4 : 1 0.153782

0.992768
ν4:1
θ ν4:1

θ = ν4:1
r (νK − νr )4:1 16 : 4 : 1

{

0.738425
ν5:4
θ ν5:1

θ = ν5:4
r (νK − νr )5:1 25 : 20 : 4 0.704324

ν4:1
θ ν5:1

θ = ν4:1
r (νK − νr )5:1 20 : 5 : 1 0.999623

0.995744
ν5:1
θ ν5:1

θ = ν5:1
r (νK − νr )5:1 25 : 5 : 1

{

0.481907
νup νmiddle νdown M52 sets a
ν2:1

K ν5:2
θ = ν2:1

r (νK − νr )5:2 10 : 5 : 2 0.972707
ν5:2

K ν5:2
θ = ν5:2

r (νK − νr )5:2 25 : 10 : 4 0.932020
ν3:1

K ν5:2
θ = ν3:1

r (νK − νr )5:2 15 : 5 : 2 0.949921
ν4:1

K ν5:2
θ = ν4:1

r (νK − νr )5:2 20 : 5 : 2 0.989062
ν5:3

K ν3:1
θ = ν5:3

r (νK − νr )3:1 5 : 3 : 1 0.917082
ν2:1

K ν3:1
θ = ν2:1

r (νK − νr )3:1 6 : 3 : 1 0.709136
ν5:2

K ν3:1
θ = ν5:2

r (νK − νr )3:1 15 : 6 : 2 0.717384
ν3:1

K ν3:1
θ = ν3:1

r (νK − νr )3:1 9 : 3 : 1 0.793520
ν4:1

K ν3:1
θ = ν4:1

r (νK − νr )3:1 12 : 3 : 1 0.907095
ν5:1

K ν3:1
θ = ν5:1

r (νK − νr )3:1 15 : 3 : 1 0.964119
ν3:2

K ν4:1
θ = ν3:2

r (νK − νr )4:1 6 : 4 : 1 0.273678
ν3:1

K ν4:1
θ = ν3:1

r (νK − νr )4:1 12 : 4 : 1 0.117032
ν4:1

K ν4:1
θ = ν4:1

r (νK − νr )4:1 16 : 4 : 1 0.553757
ν5:1

K ν4:1
θ = ν5:1

r (νK − νr )4:1 20 : 4 : 1 0.757588
ν5:1

K ν5:1
θ = ν5:1

r (νK − νr )5:1 25 : 5 : 1 0.340368
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Table 7. (continued)

νup νmiddle νdown M53 sets a
ν5:4

K νθ (νK − νr )5:4 25 : 20 : 16 0.852956
ν4:3

K νθ (νK − νr )5:4 20 : 15 : 12 0.953845
ν5:4

K νθ (νK − νr )4:3 5 : 4 : 3 0.882162
ν4:3

K νθ (νK − νr )4:3 16 : 12 : 9 0.985324
ν5:4

K νθ (νK − νr )3:2 15 : 12 : 8 0.942336

νup νmiddle νdown M54 sets a
ν5:4

K ν5:4
θ = (νθ − νr )5:4 (νK − νr )5:4 25 : 20 : 16 0.532710

ν4:3
K ν5:4

θ = (νθ − νr )4:3 (νK − νr )5:4 20 : 15 : 12 0.641973
ν3:2

K ν5:4
θ = (νθ − νr )3:2 (νK − νr )5:4 15 : 10 : 8 0.777089

ν5:3
K ν5:4

θ = (νθ − νr )5:3 (νK − νr )5:4 25 : 15 : 12 0.854595
ν2:1

K ν5:4
θ = (νθ − νr )2:1 (νK − νr )5:4 10 : 5 : 4 0.933685

ν5:2
K ν5:4

θ = (νθ − νr )5:2 (νK − νr )5:4 25 : 10 : 8 0.977777
ν5:4

K ν4:3
θ = (νθ − νr )5:4 (νK − νr )4:3 5 : 4 : 3 0.463299

ν4:3
K ν4:3

θ = (νθ − νr )4:3 (νK − νr )4:3 16 : 12 : 9 0.590528
ν3:2

K ν4:3
θ = (νθ − νr )3:2 (νK − νr )4:3 6 : 4 : 3 0.746592

ν5:3
K ν4:3

θ = (νθ − νr )5:3 (νK − νr )4:3 20 : 12 : 9 0.835260
ν2:1

K ν4:3
θ = (νθ − νr )2:1 (νK − νr )4:3 8 : 4 : 3 0.924992

ν5:2
K ν4:3

θ = (νθ − νr )5:2 (νK − νr )4:3 10 : 4 : 3 0.974537
ν3:1

K ν4:3
θ = (νθ − νr )3:1 (νK − νr )4:3 12 : 4 : 3 0.991126

ν5:4
K ν3:2

θ = (νθ − νr )5:4 (νK − νr )3:2 15 : 12 : 8 0.292271
ν4:3

K ν3:2
θ = (νθ − νr )4:3 (νK − νr )3:2 4 : 3 : 2 0.465645

ν3:2
K ν3:2

θ = (νθ − νr )3:2 (νK − νr )3:2 9 : 6 : 4 0.673939
ν5:3

K ν3:2
θ = (νθ − νr )5:3 (νK − νr )3:2 5 : 3 : 2 0.789734

ν2:1
K ν3:2

θ = (νθ − νr )2:1 (νK − νr )3:2 6 : 3 : 2 0.905012
ν5:2

K ν3:2
θ = (νθ − νr )5:2 (νK − νr )3:2 15 : 6 : 4 0.968241

ν3:1
K ν3:2

θ = (νθ − νr )3:1 (νK − νr )3:2 9 : 3 : 2 0.987798
ν5:4

K ν5:3
θ = (νθ − νr )5:4 (νK − νr )5:3 25 : 20 : 12 0.069653

ν4:3
K ν5:3

θ = (νθ − νr )4:3 (νK − νr )5:3 20 : 15 : 9 0.306291
ν3:2

K ν5:3
θ = (νθ − νr )3:2 (νK − νr )5:3 15 : 10 : 6 0.583540

ν5:3
K ν5:3

θ = (νθ − νr )5:3 (νK − νr )5:3 25 : 15 : 9 0.733910
ν2:1

K ν5:3
θ = (νθ − νr )2:1 (νK − νr )5:3 10 : 5 : 3 0.880994

ν5:2
K ν5:3

θ = (νθ − νr )5:2 (νK − νr )5:3 25 : 10 : 6 0.961517
ν3:1

K ν5:3
θ = (νθ − νr )3:1 (νK − νr )5:3 15 : 5 : 3 0.986726

ν3:2
K ν2:1

θ = (νθ − νr )3:2 (νK − νr )2:1 3 : 2 : 1 0.336030
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Table 7. (continued)

ν5:3
K ν2:1

θ = (νθ − νr )5:3 (νK − νr )2:1 10 : 6 : 3 0.584608
ν2:1

K ν2:1
θ = (νθ − νr )2:1 (νK − νr )2:1 4 : 2 : 1 0.817798

ν5:2
K ν2:1

θ = (νθ − νr )5:2 (νK − νr )2:1 5 : 2 : 1 0.943948
ν3:1

K ν2:1
θ = (νθ − νr )3:1 (νK − νr )2:1 6 : 2 : 1 0.986208

ν5:1
K ν2:1

θ = (νθ − νr )5:1 (νK − νr )2:1 10 : 2 : 1 0.998643
ν5:3

K ν5:2
θ = (νθ − νr )5:3 (νK − νr )5:2 25 : 15 : 6 0.234708

ν2:1
K ν5:2

θ = (νθ − νr )2:1 (νK − νr )5:2 10 : 5 : 2 0.673737
ν5:2

K ν5:2
θ = (νθ − νr )5:2 (νK − νr )5:2 25 : 10 : 4 0.900086

ν3:1
K ν5:2

θ = (νθ − νr )3:1 (νK − νr )5:2 15 : 5 : 2 0.979611
ν2:1

K ν3:1
θ = (νθ − νr )2:1 (νK − νr )3:1 6 : 3 : 1 0.451536

ν5:2
K ν3:1

θ = (νθ − νr )5:2 (νK − νr )3:1 15 : 6 : 2 0.827671
ν3:1

K ν3:1
θ = (νθ − νr )3:1 (νK − νr )3:1 9 : 3 : 1 0.959038

ν5:2
K ν4:1

θ = (νθ − νr )5:2 (νK − νr )4:1 10 : 4 : 1 0.571544
ν3:1

K ν4:1
θ = (νθ − νr )3:1 (νK − νr )4:1 12 : 4 : 1 0.862765

ν5:2
K ν5:1

θ = (νθ − νr )5:2 (νK − νr )5:1 25 : 10 : 2 0.121260
ν3:1

K ν5:1
θ = (νθ − νr )3:1 (νK − νr )5:1 15 : 5 : 1 0.679004

νup νmiddle νdown M55 sets a
0.509812

ν5:4
θ ν5:3

θ = (νK − νr )5:4 (νK − νr )5:3 25 : 20 : 12
{

0.971209
ν5:2
θ ν5:1

θ = (νK − νr )5:2 (νK − νr )5:1 25 : 10 : 2 0.612861
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5.2 Strong resonant phenomena

The presented results show that usually the triple frequency sets fixing the black hole spin
a occur at two different radii. However, there are some interesting cases when the triple
frequencies occur at the same radius. Then one could expect intuitively higher probability
for the resonant phenomena to arise, especially in the cases of ratios of very low integers
3 : 2 : 1, 4 : 3 : 2, 6 : 3 : 2, . . . as a causally related cooperation of the resonances at the
given radius should come into the game. A crucial role is expected for direct resonances of
oscillations with all three orbital frequencies characterized by a triple frequency ratio set (s,
t , u being small natural numbers)

νK :νθ :νr = s : t :u ,

when strong resonant phenomena are possible (Stuchlík et al., 2007b). Assuming two
resonances with ratios νK : νθ = s : t and νK : νr = s : u sharing the same radius x , we can
determine the radius giving s : t : u ratio from equation (Stuchlík et al., 2007b)

x (s/u, t/u) ≡ 6(s/u)2
{

± 2
√

2
√

(t/u − 1)(t/u + 1)
[
3(s/u)2 − (t/u)2 − 2

]

− [(t/u)2 + 5] + 6(s/u)2
}−1

,

and the related black hole spin is given by

a(x(s/u, t/u), u/s) ≡
√
x

3

{
4 ±

√
−2 + 3x

[
1− (u/s)2

] }
. (9)

A detailed discussion of the black holes admitting strong resonant phenomena is for small
integer (s ≤ 5) given in Stuchlík et al. (2007b). Here, all the results are contained in
Tables 5–7. Since x(s, t, u) can be considered as a two-parameter (s/u, t/u) family of
solutions for the shared resonant radii, we are able to give the results of finding the strong
resonance radii and the corresponding spin in Fig. 5.
Of special interest seems tobe the caseof the “magic” spina = 0.983, when theKeplerian

and epicyclic frequencies are in the ratio νK : νθ : νr = 3 : 2 : 1 at the common radius
x3:2:1 = 2.3947 (see left panel in Fig.6). In fact, this case involves rather extended structure
of resonances with νK :νr = 3 :1, νK :νθ = 3 :2, νθ :νr = 2 :1. Notice that in this case also
the simple combinational frequencies could be in this small integer ratio as

νK
νθ − νr

=
3
1

,
νK

νK − νr
=

3
2

,
νθ

νθ − νr
=

2
1

.

Of course we obtain the strongest possible resonances when the beat frequencies enter the
resonance satisfying the conditions

νθ + νr
νK

=
3
3

= 1 ,
νθ

νK − νr
=

2
2

= 1 ,
νr

νK − νθ
= 1 ,

νθ − νr
νr

= 1 .
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Figure 5.The function x(s/u, t/u)determining the triple frequency ratio set s : t :u at the same radius.
The points represents the ratio: s : t :u = 3 :2 :1 (A), 4 :3 :1 (B), 5 :3 :1 (C), 5 :4 :1 (D), 5 :4 :2 (E).
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Figure 6. Left: The case of a “magic” spin, when the strongest resonances could occur at the same
radius. For completenesswe present the relevant simple combinational frequencies νθ − νr , νθ + νr ,
νK − νθ , νK − νr (grey dashed lines). Notice that the “magic” spin am = 0.983 represents the only
case when the combinational and direct orbital frequencies coincide at the shared resonance radius.
Right: Another example of the characteristic set 3 : 2 : 1 that appear at different radii; this case gives
the best estimate of mass of Sgr A∗.

It should be stressed that beside the case of strong resonances between oscillations with
νK, νθ , νr sharing the same radius, the characteristic set 3 : 2 : 1 could appear also due to
resonances at different radii (see right panel in Fig. 6), namely in B22, B15, B24, B25, B45,
T45, M14,M24 andM54 cases.
Another interesting exceptional case occurs, e.g., for the spin a = 0.958, when two

frequencies with the samemagnitude (and ratio) are in resonance of different origin at two
different radii, see Fig. 3g.
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6 DISCUSSION

The multi-resonant model of QPOs assumes that internal parametric and/or forced res-
onant non-linear phenomena can occur between oscillations with the vertical and radial
epicyclic frequency and/or with the orbital (Keplerian) frequency and their simple combin-
ations in both thin and thick accretion discs rotating around black holes or neutron stars.
It is possible that the resonances are excited for different internal and external reasons, at
different radii within the accretion discs, and two pairs (or more complex combinations) of
the resonant frequencies could occur in general situations. For simplicity, we consider here
two pairs of the frequencies, or their special reductions. In this case one can determine both
the spin andmass of the black hole with precision higher than for individual twin peaks, but
it would be rather difficult to identify the relevant combination of the resonances.
For special values of the black hole spin, the bottom (top) epicyclic frequencies could

be equal at different radii, since there exist local extrema of the radial profiles of both the
epicyclic frequencies in the Kerr black hole spacetimes. If Keplerian frequency or beat
frequencies could also enter the resonance phenomena, top, bottom, or mixed coinciding
frequencies in various versions of resonance are possible. We have shown that in such
situations, the ratio of the triples of the resonance frequencies is directly related to the black
hole spin, independently of the black holemass. Such a possibility of directmeasurement of
theblack hole spin is very important because of relatively highuncertainties in observational
estimates of the black hole mass, necessary for determination of the black hole spin in
general resonant phenomena (Török et al., 2005) or in black hole spin determinations based
on the measurements of profiled spectral lines (Laor, 1991; Karas et al., 1992; Dovčiak
et al., 2004; Fabian and Miniutti, 2005; Zakharov, 2003; Zakharov and Repin, 2006). A
similarmethod could in principle be used in neutron star X-ray binaries, if eigenfrequencies
of the resonant points related to the observed QPOs are determined.

6.1 Black holes

The relation between the tripled frequency ratios and the black hole spin is presented in
Tables 5–7 reflecting all thepossible cases of thebottom, topandmixed frequency identities.
Of course, there could be real difficulty in choosing the proper combination of the resonance
model versions in analysing data from concrete sources. Clearly, then all the relevant data
have to be combined and other methods for the black hole spin measurement have to be
applied, e.g., those based on the spectrum continuum (McClintock et al., 2006; Middleton
et al., 2006; Shafee et al., 2006) and profiled spectral lines (Laor, 1991; Karas et al., 1992;
Dovčiak et al., 2004; Fabian and Miniutti, 2005; Zakharov, 2003; Zakharov and Repin,
2006).
Even the method of triple frequency sets must be treated very carefully because of un-

certainties of frequency measurement in QPOs (Remillard andMcClintock, 2006). In fact,
in some versions of the multi-resonance model, even a relatively high precision of the fre-
quency measurements could imply a rather high scatter in the black hole spin. The triple
frequency setmethod could be expected towork quite efficiently in the case of ratios of small
integers, as 3 :2 :1, 4 :3 :2, etc. The other possible frequency sets have to be taken seriously,
but the analysis must be very careful for high integers in the triple frequency sets. It is more
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andmore difficult to distinguish different triple frequency sets with order of the resonances
growing, when uncertainties of the frequency measurements are relatively high. We ex-
pect that analysis of each concrete source will need an appropriate combination of different
methods. Clearly, a detailed analysis of assumed resonance phenomena, both parametric
and forced, and their excitation by both external and internal causes must be taken into
consideration. Especially, the expected resonance strength and allowed range of resonant
frequenciesmust be treated very carefully.
In fact, when the equations of motion for non-linear oscillations are solved by successive

approximations, higher harmonics and combinational frequencies occur in oscillating sys-
tems corresponding to higher approximations; as the degree of approximation increases,
the strength of the resonances and the resonant frequency width decrease rapidly as shown
by Landau and Lifshitz (1976). Therefore, only small integers are allowed in frequency
ratios in realistic resonant phenomena and observations in black hole and neutron star
systems indicate that the integers n,m ≤ 5 in agreement with the theory of non-linear
oscillations.
Notice that from the point of view of the frequency analysis presented here, the same

observational frequency ratios could be obtained if a combinational frequency enters the
resonance and then is directly observed, or if direct (e.g., epicyclic) frequencies enter the
resonance, but we observe an appropriate combinational (beat) frequency. However, de-
tailed analysis concerning the resonance strength and resonance frequency width gives
different detailed results in these two cases (Landau and Lifshitz, 1976).
In the special case of the triple frequency ratios arising in a single radius (or in its close

vicinity), the resonant phenomena could occur most frequently and efficiently, as different
types of oscillations that enter the resonance at a fixed radius could cooperate, while when
arising in different radii they are assumed causally independent. It should be stressed
that of special interest are the triple frequency ratio sets of νK : νθ : νr = s : t : u with
s, t , u being small integers corresponding to strong resonance phenomena due to a large
variety of possible cooperative resonances (see Stuchlík et al., 2007b). The most promising
example of such a special situation arises for the “magic” black hole spin a = 0.983,
when at the radius x3:2:1 = 2.395, the frequency ratio is νK : νθ : νr = 3 : 2 : 1. Clearly,
in vicinity of black holes with a = 0.983, the resonant phenomena should be strongest,
as the order of the resonances is of the lowest possible values, and, moreover, all the
resonances, including those with beat frequencies, could cooperate efficiently even for
frequencies scattered from the exact resonant eigenfrequencies. In fact, we could consider
the situation as corresponding to the bottom, top and mixed resonant frequency triples
discussed above, but appearing at a common radius.
It is quite instructive to determine, how the frequency measurement precision could

influence the black hole spin estimates in this very special case.1 We give the range of the
black hole spin for which the 3 : 2 : 1 resonant phenomena could be relevant assuming the
precision of frequencymeasurements in the usually reported period of 0.5–2 %. The scatter
of the black hole spin related to the frequency measurement errors is shown in Fig. 7. We

1 Notice that a similar estimate must be realized in analysing data from all sources that could be considered as
realistic candidates of a system for which the triple frequency method is applicable.
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Table 8.T23, am = 0.983043: the scatter of the black hole spin related to the frequencymeasurement
errors.

∆νup [%] am −∆ am +∆ ≈ ∆a [%]

±0.5 0.980599 0.985449 ±0.2
±1.0 0.978117 0.987817 ±0.5
±1.5 0.975596 0.990146 ±0.7
±2.0 0.973038 0.992436 ±1.0

illustrate the situation for the possible versions of resonance, namely T23, T24, T34, B12,
B14, B24,M13. We can see that except the case ofB12, all the cases give a strong restriction
on the dimensionless spin even for the 3 percent error in frequency measurements. On the
other hand, for the case of B12, only the 0.5 % measurement error gives a reasonable
restriction on a, while even for 1 % error, values of a > 1 are allowed. Clearly, if the relevant
frequency curves cross in a large (small) relative angle, the spin is determined with high
(low) precision. The same rule is relevant in analysing any resonance triple frequency set.
In the case of T23, the detailed results are illustrated by Table 8. We can see that the one

percent error in frequency measurement implies an error of 0.005 in spin determination,
while three percent frequency error implies 0.015 error in spin determination – in the latter
case the period of allowed values of the spin reads 0.9678 < am < 0.9969, when the upper
limit enters the region of applicability of the extended resonance model (Stuchlík et al.,
2006, 2005, 2004). Non-linear resonance of the humpy oscillations and the oscillations
with the orbital frequencies could explain the complex frequency sets as those observed in
the microquasar GRS 1915+105 (Stuchlík et al., 2007e).

6.2 SgrA∗ black hole parameters

The QPOs with frequency ratio ∼ 3 : 2 : 1 were reported for Sgr A∗ (Aschenbach, 2004;
Aschenbach et al., 2004; Török, 2005) and are therefore a properly simple sample to test the
multi-resonant models presented here. Although the observations were not confirmed yet,
and there are doubts on validity of the data as they are not fully accepted by the astrophysical
community, we feel it could be important and interesting to test possible implications of
the observations assuming their relevance (Aschenbach, 2007). We have shown that the
observed data imply spin a and mass M of SgrA∗ black hole not contradicting the mass
estimated given by the star orbital motion (Ghez et al., 2005)

2.8× 106 M⊙ < M < 4.6× 106 M⊙ (10)

considering also the error given by uncertainty in distance measurement to Sgr A∗, if the
strong resonant model with νK : νθ : νr = 3 : 2 : 1 is applied (Stuchlík et al., 2007b). Here,
we have tested all the relevant versions of the multi-resonant orbital model. The results are
summarized in Table 9, including the case of strong resonant phenomena.
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Figure 7. Spin error for the case of the “magic” spin allowing νK : νθ : νr = 3 : 2 : 1, am =
0.983043: the scatter of the black hole spin related to the 2% error in frequency measurements.
The interval of allowed values of the spin is for T23: a ∈ ⟨0.973038, 0.992436⟩; for M13: a ∈
⟨0.970599, 0.995125⟩; for T34: a ∈ ⟨0.981643, 0.984157⟩; for B14: a ∈ ⟨0.981436, 0.984253⟩; for
T24 and B24: a ∈ ⟨0.981372, 0.98428⟩. For the case of B12, only the 0.5% measurement error gives
a reasonable restriction on black hole spin: a ∈ ⟨0.969714, 0.993428⟩ (for 2% measurement error:
a ∈ ⟨0.91012, 1.01155⟩).
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Table 9. The black hole spin and mass of Sgr A∗ calculated for all the relevant versions of the multi-
resonantorbitalmodelwithassumedobservedcharacteristic frequency ratio setνup :νmiddle :νdown =
3 :2 :1; νup = (1.445 ± 0.16) mHz is used to determine the black holemass.

νup νmiddle νdown a M
[
106 M⊙

]

νK ν3:2
θ ν3:1

r 0.983043 4.293–5.362

ν3:1
K = ν3:2

θ (νK − νr )3:2 (νθ − νr )3:1 0.885010 2.054–2.566

ν3:1
θ ν2:1

θ ν3:1
r = (νK − νr )2:1 0.616894 1.903–2.376

ν3:1
θ ν2:1

θ ν3:1
r = (νK − νr )2:1 0.999667 2.606–3.255

ν3:1
K ν2:1

K νr 0.913806 3.463–4.325

ν3:1
K ν2:1

K ν2:1
r = (νθ − νr )3:1 0.980124 3.983–4.975

ν3:1
K ν2:1

θ ν3:1
r = (νK − νr )2:1 0.475159 1.733–2.165

ν3:1
K ν2:1

θ (νθ − νr )3:1 = (νK − νr )2:1 0.922985 2.422–3.025

ν3:2
K ν2:1

θ = (νθ − νr )3:2 ν2:1
r 0.544870 2.095–2.617

ν3:2
K ν2:1

K = (νθ − νr )3:2 ν2:1
r 0.535413 2.065–2.580

ν3:2
K ν2:1

θ = (νθ − νr )3:2 (νK − νr )2:1 0.336030 1.594–1.991
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Figure 8. Mass of Sgr A∗: five versions of multi-resonance model that are compatible with mass
estimates given by the star orbitalmotion (Ghez et al., 2005), illustrated here by the gray rectangle.
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We can see (Fig. 8) that from all of the theoretically allowed versions, only five versions
is compatible with observational restrictions from the orbital motion of stars in vicinity
of SgrA∗. In all the allowed cases, the black hole spin a > 0.9, in agreement with the
assumption that Galactic centre black hole should be fast rotating. The best fit is obtained
for the spin a = 0.913806, and mass M ∈ (3.463–4.325)× 106 M⊙, with resonances νK :
νr = 3 :1, νK :νr = 2 :1, having a common bottom frequency. For a = 0.914, the estimated
mass M ∼ 3.9 × 106 M⊙ is close to the orbital motion estimation M ∼ 3.7 × 106 M⊙,
while in the other four acceptable cases, the difference is much greater, e.g., the strong
resonances for the “magic” spin imply M ∼ 4.8 × 106 M⊙. The model should be further
tested and more precise frequency measurements are very important. We have to compare
these results to those of the other methods of black hole spin measurement. For SgrA∗, the
relativistic precession of the nearby star orbits is very promising (Kraniotis, 2005, 2007).

6.3 Neutron stars

In principle, our method could be applied to the neutron star systems. Recent analysis of
QPOs observed in X-ray sources with neutron stars (Török et al., 2007c; Stuchlík et al.,
2007f; Belloni et al., 2007; Török, 2007) indicates that two (several) resonances could ap-
pear in the neutron star systems. However, the situation is more complex than in the twin
peak QPOs observed in black hole systems, where the observed resonant frequencies are
quitewell fixed in the resonance points.2 In the neutron star systems, the twin peak frequen-
cies are widely scattered around the resonance point with the frequency ratio usually being
close to 3 : 2. The scatter of the twin peak frequencies is correlated and approximated by
linear fits (Abramowicz et al., 2005) νt = Aνb+B, and an anticorrelation of the parameters
A, B was predicted by the resonance theory and indicated from observational data related
to twelve atoll neutron star X-ray binary systems (Abramowicz et al., 2005). However, in
the studies of QPOs phenomena in neutron star sources, the spacetime structure is usually
not addressed, or the Schwarzschild spacetime is assumed in the models. We believe that
for a deeper understanding of the QPOs phenomenon, especially with relation to the orbital
multi-resonancemodel, the neutron stars have to be represented by theHartle–Thornemet-
ric relating both the rotation and quadrupolemoment of the star (Hartle and Thorne, 1968).
Recent analysis of the neutron star source 4U 1636−53 indicates resonance at two res-

onance points, namely with frequency ratios 3 : 2, and 5 : 4 (Török et al., 2007c; Stuchlík
et al., 2007f; Belloni et al., 2007; Török, 2007); moreover, two resonance points with the
same ratios seem to be indicated by analysis of the source 4U 1608−52 (Török, 2007). This
means that the QPO frequency linear fits and the anticorrelation data (Abramowicz et al.,
2005) related to the 3 : 2 frequency ratio are not quite consistent, being, in the case of at
least two sources, contaminated with the data connected to the 5 : 4 resonance. Moreover,
there is an indication (Török, 2007) that in other two of the twelve sources (4U 1820−30
and 4U 1735−44), the resonance point is given by the ratio 4 :3, rather than 3 :2.

2 We believe that the fundamental difference reflects the presence of the surface structures and internal magnetic
field of neutron stars.
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In the case of the source 4U 1636−53, both the resonance points can be related to the
same version of the simple combinational resonance. The best possibilities correspond
to the total precession resonance model with νK : (νθ − νr ) (Török et al., 2007c; Stuchlík
et al., 2007f), or to the relativistic precession model with νK : (νK − νr ) (Stella and Vietri,
1999, 1998). The models give qualitatively good agreement with the observed data, but
the quantitatively good fitting is possible with inclusion of the neutron star magnetic field
influence onto the epicyclic frequencies (Török et al., 2007a).
Recent data, at least for the source 4U 1636−53, indicate very convincingly that the

resonancepoints are both very close to the innermost stable circular geodesics of theHartle–
Thorne spacetime, representing the inner edge of the accretion disc. Therefore, it is quite
natural to expect that the resonant oscillations could be forced by some inhomogeneities
on the surface of the neutron star. In fact, it is shown (Stuchlík et al., 2007a) that in close
vicinity of the neutron star surface, the influence of “mountains” related to the deformations
of the neutron star can be very strong, and the excitation of the forced oscillations can be
efficient enough.
The resonance points, corresponding to the resonance eigenfrequencies, can be determ-

ined as the intersection points of the resonance frequency curve with the lines giving the
frequency (integer) ratios. However, there exists an independent and naturalmethodwhich
probably could work in determining observationally the resonance points as the eigenfre-
quencies of the oscillations in resonance. This method is based on the energy reverse effect
discovered by Török (2007); Török et al. (2007d); Török and Stuchlík (2005a), which shows
that in the neutron star atoll sources the energy of the quasiperiodic oscillations in the upper
and lower frequencies is equal just when the frequency ratio is equal to the exact ratio of
small integers, i.e., to the ratio of the resonance eigenfrequencies, while the energy differs
when the frequency ratio is different. The energy reverse effect is in agreement with the
resonance theory (Horák, 2004), therefore, it is probably reasonable to assume that the
frequency of oscillations at the energy reverse point determines eigenfrequencies of the
resonance. Of course, one should expect that for a properly chosen resonance curve, both
methods will give close results.
In such a way, we are able to study the resonance model in the neutron star systems in

a complete way, similarly to the case of the black hole systems. It should be stressed that
the results relating the frequency sets and the black hole dimensionless spin are derived
for the Kerr spacetimes. Therefore, in the neutron star systems they could be applied in
situations when their spacetime is represented by the Kerr geometry with precision high
enough, i.e., when the Hartle–Thornemetric parameters are sufficiently close to the special
values corresponding to the Kerr geometry.

7 CONCLUSIONS

The triple frequency set method determines the black hole (neutron star) spin with very
high precision, but it could work only incidentally, for special values of the spin. However,
it is worth to make a detailed scan of all the observational data for the black hole systems
in order to look for some candidate systems, since any success in precise determination
of the spin could help very much in determining other physical parameters of the system
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and to understand a wide scale of astrophysical phenomena.3 For example, as a possible
candidate for such a system could be considered even the black hole system in the Galactic
centre SgrA∗, where frequencies with the ratio 3 : 2 : 1 were reported (Aschenbach et al.,
2004; Török, 2005), although not confirmed later, making SgrA∗ a candidate for a black
holewith spin close to the “magic” value a = 0.983. However, a better fit is probably related
to the spin a = 0.914, when the predicted mass M ∼ 3.9 × 106 M⊙ is very close to the
star orbital motion estimate M ∼ 3.7× 106 M⊙. Another black hole candidate system for
the triple frequency set analysis could be considered in the source NGC 5408 X-1 because
of the reported triple of observed frequencies (Strohmayer et al., 2007), for application of
extended resonance model see Slaný and Stuchlík (2007).
In Tables 5–7 we present a detailed guide across all the possible triple frequency sets and

related values of the black hole spin a, shown for all the possible double combinations of
both the direct and simple combinational resonances with the order of individual reson-
ances limited by n ≤ 5 allowed by recent observations. The presented Table guide includes
also the special cases, when the resonances occur at the same radius implying expectation
of resonant phenomena in some strong form because of anticipated causally related cooper-
ative effects (see Stuchlík et al., 2007b), or some degenerate cases when the same pair of
frequencies appears at different radii. It is clear that comparison of observational data with
the guide Tablesmust be done extremely carefully, as different resonances can give the same
triple frequency ratio set and black hole spin. The resonant frequency width and resonance
strength, which differ in different versions of the resonant phenomena and depend strongly
on the order of the resonance (see Landau and Lifshitz, 1976), have to be considered in
detailed analysis of any realistic candidate black hole (or neutron star) system. We expect
a relatively realistic possibility to study systems exhibiting low integer ratios in observed
triple frequency sets, as 3 : 2 : 1, 4 : 2 : 1, 5 : 4 : 2, 6 : 4 : 3, etc., when scatter of the observed
frequencies and their ratios could enable estimates of the order of the resonance involved
and determination of its type through the detailed analysis of the resonant phenomena and
their comparison with observational data. In systems where the observed frequency ratio
sets involve high integers, we have to expect difficulties in differing between theoretical
frequency sets with very close ratios.
The efficiency of the black hole spin determination by using the triple frequency set

ratios grows strongly with growing precision of the frequency measurements. Therefore,
in the case of measurements of very high precision, the method could work even for the
frequency sets ratio of high integers, because in resonances of high order the frequencies
in the resonance must be tuned very fine in order to let the resonance to work (Landau and
Lifshitz, 1976).
On the other hand, in neutron star atoll sources (in six cases studied recently) the ob-

served QPO data could be well fitted by one frequency relation, given by the relativistic
precession model or the total precession model, which can explain coupling of twin peak
QPOs nearby the small integer frequency ratios 3 : 2, 4 : 3, 5 : 4 by resonant phenom-

3 In the neutron star atoll sources, the fitting of the observational data by the total precession frequency rela-
tions crossing the resonance points enables very precise determination of the neutron star Hartle–Thorne metric
parameters M, j , q. On the other hand, this precision of spacetime parameters measurement implies strong
restrictions on validity of acceptable equations of state (Stuchlík et al., 2007g,f; Urbanec et al., 2007).
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ena (Török et al., 2007c; Stuchlík et al., 2007f; Bakala et al., 2007). However, the frequency
fits probablymust be slightly corrected by the influence of the neutron starmagnetic field on
the epicyclic frequencies (Török et al., 2007a). The orbital resonance model and its multi-
resonant versions assume equatorial disc structures and their oscillations with frequencies
related to the epicyclic frequencies of the equatorial circular orbits. However, it was shown
quite recently (Kovář et al., 2007) that halo orbits (i.e., bound orbits concentrated around
stable off-equatorial circular orbits) could exist in vicinity of both neutron stars and black
holes due to the presence of magnetic fields related to the neutron stars or accretion discs
around the neutron stars or black holes. The oscillatory motion related to the halo orbits
with epicyclic frequencies related to the off-equatorial circular orbits can, in principle, also
explain some of the QPOs oscillations observed in the neutron star or black hole binary
systems (Stuchlík and Kovář, 2007).
We can conclude that the multi-resonant model of QPOs based on the orbital motion is

capable to explain awide rangeofQPOphenomena observed inboth black hole andneutron
star X-ray binary systems or in supermassive galactic centre (Sgr A∗) and intermediate
(NGC 5408 X-1) black holes systems. However, it seems that some basic properties of
resonant phenomena in black hole and neutron star systems differ, probably because of
presence of the surface effect in the neutron star systems. The data analysis indicates that
in neutron star systems probably one frequency relation, given by the relativistic precession
or the total precessionmodel, could explain data clustering around the resonant points with
ratios 3 : 2, 4 : 3, 5 : 4 observed in the six atoll sources investigated recently. In the black
hole systems, the QPO data indicate presence of different versions of the multi-resonance
model in concrete sources. We can speculate that the strong resonant phenomena allowed
in black hole systems with special values of dimensionless spin could be observationally
preferred because of wide range of (possibly) cooperating resonant phenomena. One of
candidates for such a system seems to be the central black hole in Sgr A∗. In any case, a
lot of observational and theoretical research is necessary for deeper understanding to the
resonant phenomena indicated in black hole system.
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ABSTRACT
We introduce the gravitational potential for the pseudo-Newtonian description of the
gravitational field around static and spherically symmetric black holes in the universe
with the repulsive cosmological constant, described in terms of the general relativ-
istic approach by the Schwarzschild–de Sitter geometry. In order to demonstrate the
accuracy of the pseudo-Newtonian approach and its possible applications, we con-
struct the effective potential for a test particlemotion and compare its behaviourwith
its general relativistic counterpart. Our results indicate that the pseudo-Newtonian
potential could be useful in applications of developed Newtonian theories of accre-
tion disks in astrophysically interesting situations in large galactic structures for
spacetimeswith the cosmological parameter y = ΛM2/3 ≤ 10−6.

1 INTRODUCTION

Recent cosmological observations of distant supernova Ia type explosions indicate an ac-
celerating universe; starting at the cosmological redshift z ∼ 1 (Spergel et al., 2003) the
accelerated expansion should be generated by some appropriate form of the so-called dark
energy. Moreover, these results are in an accordwith detailed observations of the anisotrop-
ies of the microwave cosmic background radiation indicating that the energy content of the
dark energy represents ∼ 73 % of the energy content in the observable universe; the sum
of energy densities is very close to the critical energy density corresponding to an almost
parabolic universe as given by a large variety of cosmological tests indicating a concordance
inflationary cosmological model (Bahcall et al., 1999; Wang et al., 2000). There is a variety
of possible candidates for the dark energy. All of the related models have the equation of
state with parameterw = p/ρ varying during the cosmological expansion.
Nevertheless, the recent observational data indicate that the allowed equation of state

is very close to the case of a repulsive cosmological constant Λ > 0 with ρΛ ∼
0.73ρcrit (Spergel et al., 2003). Therefore, it is quite important to consider the influence of
Λ > 0 quite seriously.
We have tested possible effects of Λ > 0 in astrophysical situations (Stuchlík, 2005),

investigating namely the properties of black-hole solutions of Einstein equations for the
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test particle motion in Schwarzschild–de Sitter (SdS, Stuchlík and Hledík, 1999) and
Kerr–de Sitter (KdS, Stuchlík and Slaný, 2004) spacetimes and the test perfect fluid in
SdS (Stuchlík et al., 2000) and KdS (Slaný and Stuchlík, 2005) spacetimes. Further, the
test particle and fluid properties were treated also in the framework of the optical reference
geometry (Kovář and Stuchlík, 2006, 2007) allowing introduction of inertial forces in the
intuitively natural Newtonian way (Abramowicz et al., 1988, 1995).
It should be stressed that all of the relevant effects ofΛ > 0 on the black-hole structure

are quite well expressed in the SdS spacetimes, since the rotational effects of the black hole
spin are concentrated into the region in the close vicinity of the black-hole horizon, where
the influence of Λ > 0 can be abandoned for realistic values of the black hole mass and
the relict cosmological constant (Stuchlík, 2005). Of course, the efficiency of the accretion
processes is controlled by the rotational effects in the innermost parts of the disc, where
the KdS spacetime structure is relevant (Stuchlík, 2005). For near-extreme black holes
the efficiency takes large values ∼ 0.4 as compared with the SdS spacetimes where the
efficiency ∼ 0.059. Therefore, in studying the large scale properties of disc structures,
investigation of the SdS spacetime is quite sufficient (only the accretion efficiency has to be
given by the KdS spacetime structure, governing the innermost parts of the disc).
For this reason, it is worth to realize more detailed studies of the disc structures around

supermassive black holes reflecting the influence of the repulsive cosmological constant.
There is one especially important problem that could be hardly solved in the framework
of full general relativistic approach, namely influence of Λ > 0 on the structure of self-
graviting disc. We expect that the pseudo-Newtonian approach could be successful. For
those purposes, we introduce here a pseudo-Newtonian potential of the SdS spacetimes
that could enable us to use directly standard techniques developed in the framework of
Newtonian physics.
By using the standard Newtonian quantities and formulas for the central gravitational

field with the gravitational potential ψN replaced by the pseudo-Newtonian potential ψ,
we are able to include the repulsive cosmological constant and some relativistic effects
into account and use the standard Newtonian routines. In a central gravitational field, we
manage in the standard way with the orbital velocity v, angular velocity Ω , and with the
angularmomentum lc per “free” particlemass given by the relations

v =
(
r

dψ
dr

)1/2
, Ω =

(
1
r

dψ
dr

)1/2
, lc =

(
r3 dψ

dr

)1/2
(1)

in the case of circularmotion.
Defining the pseudo-Newtonian potential for the SdS spacetime, we have to reflect

properly both the gravitational attraction of the black hole and the repulsive effects of
the cosmological constant. In comparison with the well known Paczyński–Wiita poten-
tial ψPW = 1/(r − 2GM/c2) (Paczyński and Wiita, 1980) describing with high precision
properties of Schwarzschild black holes (related to accretion processes) that has naturally
defined behaviour at infinity, in the SdS spacetimes, we have to find a proper reference point
that could in a well defined way serve in a similar sense as infinity in asymptotically flat
spacetimes. It is shown (Stuchlík andHledík, 1999;Hledík, 2002; Stuchlík, 2002) that such
a role could be attributed to the so-called static radius, where the gravitational attraction
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of the black hole acting on matter is exactly balanced by the cosmic repulsion, i.e., test
particles feel no force, similarly to asymptotic infinity in flat spacetimes. Concentrating on
the properties of the stationary configurations in the SdS spacetimes, the static radius is
appropriately chosen; we do not reflect here properties of the spacetime near the cosmo-
logical horizon of the SdS spacetimes, nevertheless, the pseudo-Newtonian potential we
are using here reflects the basic spacetime property near the cosmological horizon, since it
diverges there.
In the pseudo-Newtonian potential we properly fix position of themarginally stable orbit,

marginally bound orbit, the static radius, and the energy at these radii in agreement with
the exact general relativistic values.

2 THEBACKGROUNDANDGRAVITATIONALPOTENTIAL

In the standard Schwarzschild coordinates (t, r, θ,φ), and the geometric system of units
(c = G = 1), the SdS spacetimes are determined by the line element (Stuchlík and Hledík,
1999)

ds2 = −
(

1−
2M
r
−
Λr2

3

)
dt2 +

(
1−

2M
r
−
Λr2

3

)−1
dr2 +r2(dθ2 +sin2 θ dφ2) , (2)

whereM is themassparameter of the spacetimes. It is useful to introduce thedimensionless
parameter y = ΛM2/3 and use dimensionless coordinates t → t/M , r → r/M , which is
equivalent to puttingM = 1.
The pseudo-singularities of the line element, i.e., black-hole and cosmological horizons,

are given by the relation gtt = 1− 2/r − yr2 = 0, thus by solutions of the equation

y = yh ≡
r − 2
r3 , (3)

which can be expressed in the form

rh =
2
√

3y
cos

π + ξ

3
, (4)

rc =
2
√

3y
cos

π− ξ
3

, (5)

where ξ = cos−1 (3
√

3y). Both the horizons exist for 0 < y < ycrit = 1/27, separating
the spacetimes into two dynamic regions and one static region. For y = 1/27, both the
horizons coalesce at the radius of the so-called static radius1

r = rs ≡ y−1/3 , (6)

taking the value rs = 3 in this case. For y > 1/27, the horizons disappear and the SdS
spacetimes become dynamic naked-singularity spacetimes (see Fig. 1).

1 At the static radius the gravitational attraction of the central object is just balanced by the cosmic repulsion. The
gravitational force, defined in the general relativistic framework of the optical reference geometry (Stuchlík and
Hledík, 1999; Hledík, 2002; Stuchlík, 2002), disappears there.
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Figure 1. Functions yh(r) (solid) determining the radii of horizons, ymb (dashed) determining the
marginally bound orbits, and yms(r) (dotted) determining the marginally stable circular orbits. The
regions above the solid curve correspond to the dynamic parts of the SdS spacetimes determined by
fixed value of y.

According to the standardway (Mukhopadhyay, 2002;Mukhopadhyay andMisra, 2003),
the pseudo-Newtonian gravitational potential can be defined by replacing the Newtonian
angular momentum per particle mass in the Newtonian definition of the potential2 with
the general relativistic angular momentum per rest mass and energy per rest mass ratio
l = L/E , which plays the role of the pseudo-Newtonian angular momentum per free
particlemass, i.e.,

ψ =
∫ L2

E2r3 dr . (7)

Considering now the circular geodesic motion at the radii corresponding to the extrema of
the relativistic effective potential (Stuchlík andHledík, 1999)

Veff(r; L, y) =
[(

1−
2
r
− yr2

)(
1 +

L2

r2

)]1/2

, (8)

2 In the Newtonian physics, the gravitational potential for the central field can be defined by the relation
∂rψN = −Gr/m = l2N/r3, where Gr is the gravitational force radial component and lN = LN/m is the an-
gular momentum per free particle mass.



Pseudo-Newtonian gravitational potential in SdS spacetimes 421

and the related relativistic constants of motion (Stuchlík and Hledík, 1999)

Lc(r; y) ≡
[
r(1− yr3)

]1/2
(

1−
3
r

)−1/2
, (9)

Ec(r; y) ≡
(

1−
2
r
− yr2

)(
1−

3
r

)−1/2
, (10)

the gravitational potential (7) can be written in the form

ψ =
r

2(2− r + r3y)
+ K , (11)

where K is the integrating constant. Note that this method works quite well in spherically
symmetric, non-rotating spacetimes. However, it is much more complicated task to find
in a proper way a pseudo-Newtonian potential in rotating (e.g., Kerr or KdS) spacetimes,
because of a non-trivial influence of the dragging of inertial frames.
By using the condition ψ(r = rs) = 0 relating the potential at the static radius to the

“starting point” corresponding to infinity in asymptotically flat spacetime, we obtain the
potential in the form

ψ(r; y) =
r3y − 3ry1/3 + 2

2(1− 3y1/3)(2− r + r3y)
(12)

illustrated in Fig. 2.
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Figure 2.Pseudo-Newtonian gravitational potentialψ(r; y) for three fixed values of the cosmological
parameter y = 0 (dotted), y = 10−5 (dashed) and y = 10−4 (solid).
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3 TESTPARTICLEMOTION

In the case of central gravitational fields a test particle motion is confined to central planes
and we can choose the equatorial plane. Following the Newtonian physics, the radial
equation of the Keplerian equatorial motion can be written in the form

1
2

(dr
dt

)2
= e + veff , (13)

where e is the commonNewtonian energy per particlemass (energy) and veff is the pseudo-
Newtonian effective potential per particle mass (effective potential) defined by the relation

veff(r; l, y) = ψ(r; y) +
l2

2r2 , (14)

whereas ψ(r; y) is the pseudo-Newtonian gravitational potential (12) and l is the pseudo-
Newtonian angular momentum per particle mass (angular momentum) defined in Sec-
tion 2. The circular (Keplerian) orbits are then determined by the extrema of the effective
potential, i.e., by the condition ∂rveff = 0. The solution is given by the relation for the
pseudo-Newtonian angularmomentum at a given radius, and takes the form

l2 = l2c (r; y) ≡
r3(1− r3y)

(2− r + r3y)2 . (15)

The corresponding energy of particles on the circular orbits is given by the relation

ec(r; y) ≡ veff(r; l = lc, y) =
1

2(1− 3y1/3)
−

r(r − 3)

2(2− r + r3y)2 . (16)

3.1 Marginally stable and bound orbits

Behaviour of the pseudo-Newtonian effective potential veff(r; l, y) qualitatively follows the
behaviour of its general relativistic counterpart Veff(r; L, y) as shown in Fig. 3.
We demonstrate this statement by a detailed investigation of the behaviour of the func-

tions l2c (r; y), governing the extrema of the potential veff(r; l, y), and the energies (the ef-
fective potential extrema) of the related circular orbits ec(r; y), given by Eqs (15) and (16),
and their general relativistic counterparts L2

c(r; y) and Ec(r; y), given by Eqs (9) and (10).
The functions l2c (r; y) and ec(r; y) diverge at the radius of the black-hole horizon rh and

vanish at the static radius, while L2
c(r; y) and Ec(r; y) diverge at the radius of the photon

circular orbit, L2
c(r; y) vanishes at the static radius, and Ec(r; y)doesnot (seeFigs 4 and5).

Note that the energy Ec(r = rs; y) = (1 − 3y1/3) ≡ Es(y) corresponds to the rest
energy of particles. Thus, the pseudo-Newtonian approach implies that the existence of the
circular orbits is limited by the static radius from above, in accord with the full relativistic
approach, and by the black-hole horizon frombelow, in contrast to the relativistic approach,
where the lower limit is given by the photon orbit. Of course, this is caused by the fact that
we do not obtain the photon circular orbit in the pseudo-Newtonian approach.3

3 The same situation occurs for the standard Paczyński–Wiita pseudo-Newtonian potential defined for the
Schwarzschild spacetimes (Paczyński andWiita, 1980).
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Figure 3.Pseudo-Newtonian veff (r; l, y) (thick) and relativistic (Veff(r; L , y)− Es(y)) (thin) effect-
ive potentials in SdS spacetimewith y = 10−4, corresponding to test particlemotionwith the pseudo-
Newtonian and relativistic angular momenta l2 = l2c (r = 7) = 13.4 and L2 = L2

c(r = 7) = 11.8,
i.e., both determining the stable circular orbits at the radius rst = 7 (for the energy and radius notation
see the text below).
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Figure 4. Radial profiles of the pseudo-Newtonian l2c (r; y) (thick) and relativistic L2
c(r; y) angular

momenta determining circular geodesics in SdS spacetimewith y = 10−4. The momenta determine
the extremaof the potentials veff(r; l, y) andVeff(r; L , y) (see Fig. 3). We showan example of typical
behaviour of the angular momenta, each with two extrema. The solid vertical line denotes the radius
of black-hole horizon, the dashed vertical lines denote the radius of photon circular orbit (r = 3)
and the radii of marginally stable orbits determined by the extrema of the angular momenta profile.
The dashed-dotted vertical line denotes the static radius. The dotted lines suggest determination
of the difference ∆r in positions of the outer unstable circular orbits runo and Runo, defined in the
pseudo-Newtonian and relativisticways, for coalescing value of the stable circular orbit at rst = 7.
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Figure 5. Pseudo-Newtonian ec(r; y) (thick) and relativistic Ec(r; y) − Es(y) energy (y = 10−4).
The dotted lines demonstrate determination of the energy difference (potential barrier) ∆e (∆E)
between the outer unstable orbit at runo (Runo), and central stable orbits at rst (Rst = rst) (for the
dashed-dotted and dashed vertical linesmeaning see Fig. 4).

As in the general relativistic approach, the stable circular orbits, determined by the
minima of the effective potential veff(r; l, y), satisfy the condition ∂r l2c (r; y) > 0 and
the unstable circular orbits, determined by the maxima of veff(r; l, y), satisfy the condition
∂r l2c (r; y) < 0.
Marginally inner and outer stable circular orbits are determined by extrema l2msi(y) and

l2mso(y) of the function l2c (r; y), located at the radii given by solutions of the equation

y = yms(r) ≡
r − 6

r3(4r − 15)
, (17)

just as in the fully general relativistic approach, because loci of the extrema of the functions
l2c (r; y) and L2

c(r; y) coincide. The stable circular orbits are then limited by the condition
4yr4 − 15yr3 − r + 6 ≤ 0. The function yms(r) vanishes at r = 6, corresponding to the
marginally stable circular orbit in the Schwarzschild spacetime, diverges at r = 0 and at
r = 15/4, and hasminimumat r = 3, where yms(r = 3) = 1/27. The function is irrelevant
at the range 0 < r < 15/4 where yms(r) > 1/27. The physically relevant part of yms(r) is
located at r ≥ 6. Its maximum is located at rms,e = 15/2 and the corresponding maximum
is yms(r = rms,e) = 12/154 ≡ yms,e (see Fig. 1).
This value of y = yms,e

.= 0.000237 represents limiting value of y for the SdS spacetimes
admitting existence of stable geodesics, i.e., existence of accretion discs. The behaviour
of the effective potential determining the innermost and outermost stable circular orbits is
illustrated in Fig. 6.
The marginally bound circular orbits, i.e., two unstable circular orbits with the same

energy and appropriately chosen angularmomentum, located at the radii rmbi and rmbo, are
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Figure 6. Marginally stable circular orbits. Pseudo-Newtonian veff(r; l, y) (thick) and relativistic
Veff(r; L , y) − Es(y) effective potentials for y = 10−4, and l2 = l2c (r = 6.2) = 13.3 and L2 =
L2

c(r = 6.2) = 11.7 (upper figure); l2 = l2c (r = 12.3) = 14.8 and L2 = L2
c(r = 12.3) = 13.2

(lower figure). The inflex points of the effective potentials determine the marginally stable circular
orbits with the energies emsi, emso, and Emsi − Es, Emso − Es.

determined by the condition (see Fig. 7)

ec(r = rmbi; y) = ec(r = rmbo; y) ≡ emb(y) . (18)

The radii rmbi, rmbo and the corresponding value emb(y) can be found by using the
following numerical procedure. The unstable circular orbits become the marginally bound
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Figure 7. Marginally bound circular orbits. Pseudo-Newtonian veff(r; l, y) (thick) and relativistic
Veff(r; L , y) − Es(y) effective potentials for y = 10−4, l2 = l2c (r = 15.3) = 13.7 and L2 =
L2

c(r = 15.3) = 12.2. The circular orbits corresponding to the potential extrema eemb and Emb− Es
determine the marginally bound circular orbits at the radii rmbi and rmbo, having the same value for
both the pseudo-Newtonian and relativistic cases.

orbits for the particular choice of l2c (r; y) = l2mb(y). Thus the radii of such orbits can
be determined from Eq. (15), choosing the proper two roots, now the functions of l2c and
y. By using condition (18), we immediately obtain l2mb(y) and by using the relation (15)
again, the searched radii rmbi(y), rmbo(y), and also the function ymb(r) governing these
radii (see Fig. 1). The general relativistic formulas imply the same results, because

ec(r; y) = 1
2

[
E−2

s (y)− E−2
c (r; y)

]
, (19)

and for fixed values of r , corresponding to rmbi and rmbo, there is Ec(r = rmbi) = Ec(r =
rmbo), and thus ec(r = rmbi) = ec(r = rmbo).

3.2 Potential barriers

For values of the cosmological parameter y allowing existence of the stable circular orbits,
i.e., 0 < y < yms,e, the functions l2c (r; y) and L2

c(r; y) have two extrema governed by the
function yms(r) (see Fig. 4). These extrema correspond to the innermost and outermost
stable circular geodesics with l2 = l2msi and l2 = l2mso, and L2 = L2

msi and L2 = L2
mso,

respectively, which determine extension and accretion efficiency of thin, Keplerian discs.
The marginally stable perfect fluid configuration with l2(r, θ) = const and l2 ∈ (l2msi, l2mso)
are determined by intersections of l2 = const and l2c (r, y) curve that determine the centre
and edges of the fluid configuration (Stuchlík et al., 2000). Therefore we realize a de-
tailed comparison of the potentials veff(r; l, y) and Veff(r; L, y), concentrating on the
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Figure 8. Left: Efficiency of the Keplerian discs accretion determined in the pseudo-Newtonian
∆ems(y) (thick) and relativistic ∆Ems(y) ways. Right: Characteristic quantity χ describing the
inaccuracy in the determination of the Keplerian accretion efficiency as a function of the cosmological
parameter.

differences in positions of the inner, central and outer circular orbits (determined in the
pseudo-Newtonian and relativistic ways), and the differences in the corresponding values
of both the potentials.
We start with analyzing the pseudo-Newtonian and relativistic energy differences

between the outer and innermarginally stable circular orbits, which determine efficiency of
the accretion processes in Keplerian discs

∆ems(y) = emso(y)− emsi(y) , (20)

∆Ems(y) = Emso(y)− Emsi(y) . (21)

The energy differences ∆ems(y) and ∆Ems(y) are compared in Fig. 8. Clearly, for astro-
physically relevant values of y < 10−15, the pseudo-Newtonian and relativistic efficiencies
are very close. The differences of the pseudo-Newtonian and relativistic efficiency, can be
characterized by the quantity

χ =
∆ems −∆Ems

∆Ems
100 % , (22)

the dependence of which on the cosmological parameter is illustrated in Fig. 8. In the limit
of y → 0, i.e., in the Schwarzschild spacetimes, there is∆ems = 0.0625,∆Ems = 0.0572
andχ ∼ 10 %, and these values hold for the astrophysically relevant values of y.
Further, it is of astrophysical relevance to compare dependence of the pseudo-Newtonian

and relativistic characteristics of marginally stable discs with uniform distribution of angu-
lar momentum l2(r, θ) = const. Assuming a fixed radius of stable circular orbit corres-
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ponding to the disc centre, we can determine and compare the outer edge of the disc and the
potential energy well for the matter of the disc.
By fixing a value of the radius of stable circular orbit r = rst, and calculating the

corresponding values of both the pseudo-Newtonian and relativistic angular momenta
l2c (r = rst; y) and L2

c(r = rst; y) (see Fig. 4), we can determine the radii of the corres-
ponding outer unstable circular geodesics (edge of the disc) runo(rst; y) (calculated by using
l2c ) and Runo(rst; y) (calculated by using L2

c), and their difference

∆runo(rst; y) = runo(rst; y)− Runo(rst; y) . (23)

The inaccuracies in the pseudo-Newtonian determination of the positions of the outer
unstable orbit, in dependence on the position of the stable central circular orbit, can be
characterized by the quantity

ξ =
∆runo

Runo − rst
100 % . (24)

We can also calculate the pseudo-Newtonian energies at the radius of the stable circular
orbit and at the related outer unstable orbit, i.e., ec(r = rst; y) ≡ est(rst; y) and ec(r =
runo; y) ≡ euno(rst; y), and their difference (potential barrier)

∆e(rst; y) = euno(rst; y)− est(rst; y) . (25)
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Figure 9. Left: Characteristic quantity ξ describing the inaccuracies in the pseudo-Newtonian de-
termination of the positions of the outer unstable orbit; Right: Characteristic quantity η describing
the inaccuracies in the pseudo-Newtonian determination of the potential barrier between the outer
unstable and central stable circular orbits, for y = 10−4 (solid), y = 10−5 (dashed-dotted) y = 10−6

(dashed) y = 10−7 (dotted) y = 0 (thick dotted).
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The same can be done in the relativistic case, i.e., we calculate the energies Ec(r = rst; y) ≡
est(rst; y) and Ec(r = Runo; y) ≡ Euno(rst; y), and their difference (potential barrier)

∆E(rst; y) = Euno(rst; y)− Est(rst; y) . (26)

The inaccuracies in the pseudo-Newtonian determination of such a potential barrier, in
dependence on the position of the stable central circular orbit, can be characterized by the
quantity

η =
∆e−∆E
∆E

100 % . (27)

Dependencies of both the characteristic quantities ξ and η are given in Fig. 9 for selected
values of y. Clearly, the precision is high for both ξ and η, when y < 10−6. Note that
for y → 0, the positions of unstable circular orbits runo → ∞, Runo → ∞, and ξ → 0.
In fact, it is irrelevant to study ξ for y = 0, because there are no outer unstable orbits in
the Schwarzschild spacetime. On the other hand, there is euno → 0 and Euno → 1 for
y → 0, runo → ∞ and runo → ∞. Thus, in the case y = 0, η describes the differences in
the pseudo-Newtonian and relativistic determinations of the potential barrier between the
stable orbit and infinity.

4 CONCLUSIONS

We have shown that the gravitational field of the spherically symmetric and static black
hole in the universewith a positive cosmological constant, described by the Schwarzschild–
de Sitter solution of Einstein’s equations, can be alternatively described with a relatively
high precision by using appropriately defined pseudo-Newtonian gravitational potential.
The presented gravitational potential satisfies important conditions. It admits existence

of the static radius, diverges at horizons, and it gives marginally stable and bound orbits at
radii exactly equal to those given in the relativistic expressions. The energy difference of
these orbits is close to the relativistic relations.
We have tested the potential correctness by comparing some pseudo-Newtonian results

concerning the test particle geodetical motion with the general relativistic ones. We have
been interested in astrophysically relevant situations. Thus, we have chosen range of the
cosmological parameter (0 < y ≤ 0.000237), allowing the existence of stable circular
geodesics, i.e., existence of accretion discs. The differences in the pseudo-Newtonian
and relativistic calculations of the accretion processes efficiency have been also studied,
whereas the related inaccuracies of the pseudo-Newtonian efficiency determination are less
then 15 % for y ≤ 10−5.
Moreover, assuming the central circular orbit position fixed, we have compared results

of the pseudo-Newtonian and relativistic calculations of the outer unstable circular orbits
positions, and the related energy differences (potential barriers) between the central stable
and outer unstable orbits. The comparisons suggest that within a certain inaccuracy (less
than 1 % in the case of the radii determination, and less than 15 % in the case of the potential
barriers determination, for y ≤ 10−5), the obtainedpseudo-Newtonian results are in a good
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agreement with the relativistic ones. As for the the potential barriers, we can state that the
differences between the results of both the approaches tend to be smaller for y decreasing.
Note that in principlewe could characterize differences between the positions of the inner

unstable orbits determined in the pseudo-Newtonian and relativistic ways, and between the
related potential barriers. We could also study the differences between the positions of
the inner unstable circular orbits or central stable orbits, determined in both the ways,
and the differences between the related potential barriers when fixing the positions of the
outer unstable orbit, etc. We have not proceeded these comparisons representing, in a way,
alternatives of the presented ones. We prepare a detailed study of the application of the
pseudo-Newtonian potential on the perfect fluid dynamics, which is in accordancewith our
intention to study accretion processes and the properties of accretion discs in dependence
on the parameter y in the pseudo-Newtonian way (Stuchlík andKovář, 2008).
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Equilibrium configurations of perfect fluid
in Reissner–Nordström–de Sitter spacetimes

Zdeněk Stuchlík, Hana Kučáková and Petr Slaný
Institute of Physics, Faculty of Philosophy& Science, SilesianUniversity in Opava,
Bezručovo nám. 13, CZ-746 01Opava, CzechRepublic

ABSTRACT
Marginally stable perfect fluid tori with uniform distribution of specific angular mo-
mentumare determined in theReissner–Nordström–de Sitter black-hole and naked-
singularity spacetimes. Perfect fluid toroidal configurations are allowed only in the
spacetimes admitting existence of stable circular geodesics. The configurationswith
equipotential surfaces crossing itself in a cusp allow accretion (inner cusp) and/or
excretion (outer cusp) of matter from the toroidal configuration. The classification
of the Reissner–Nordström–de Sitter spacetimes according to the properties of the
marginally stable tori is given.

1 INTRODUCTION

Many observations suggest that the energy sources in quasars and active galactic nuclei
are accretion discs orbiting massive black-holes. However, despite the cosmic censorship
hypothesis (Penrose, 1969) that is not probed yet, existence of naked singularities related
to the black hole solutions of the Einstein equations is not excluded (see, e.g., de Felice and
Yunqiang, 2001) and is still worth of consideration.
The accretion discs could be geometrically thin with low accretion rates and negligible

pressure, characterized by quasicircular geodeticalmotion, or geometrically thickwith high
accretion rates and relevant pressure gradients that could be, in the basic approximation,
determined by equipotential surfaces of test perfect fluid orbiting the central object (Ab-
ramowicz, 1998).
The presence of a repulsive cosmological constant (dark, or vacuum, energy) Λ0 ∼

10−56 cm−2 indicated by wide range of cosmological tests (Spergel et al., 2003) could
influence significantly the properties of the accretion discs (Stuchlík, 2005), as shown both
for the Schwarzschild–de Sitter (SdS) spacetimes (Stuchlík and Hledík, 1999; Stuchlík
et al., 2000) and Kerr–de Sitter (KdS) spacetimes (Stuchlík and Slaný, 2004; Slaný and
Stuchlík, 2005).
Geodetical motion and related thick accretion disc properties in the Reissner–Nord-

ström–de Sitter (RNdS) spacetimes were studied in Stuchlík and Hledík (2002). Since
some characteristics of the geodetical motion in RNdS spacetimes differ from those in SdS
and KdS spacetimes, we shall study here properties of equilibrium tori in the RNdS
spacetimes.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Recall that Reissner–Nordström–(anti-)de Sitter (RN(a)dS) black-hole spacetimes and
some RNdS black-hole spacetimes a region containing stable circular geodesics exists,
which allows accretion processes in the disk regime. On the other hand, around some
naked singularities even two separated regions with stable circular geodesics exist. The
inner region is limited frombelowbyparticleswith zero angularmomentum that are located
in stable equilibriumpositions (Stuchlík andHledík, 2002).
The hydrodynamical structure of perfect fluid orbiting RNdS black holes (and naked-

singularities) is investigated for configurations with uniform distribution of angular mo-
mentum density. In the black-hole and the naked-singularity backgrounds admitting the
existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing
the existence of toroidal accretion disks, can exist (Stuchlík et al., 2000).
It is well known that at low accretion rates the pressure is negligible, and the accretion

disk is geometrically thin. Its basic properties are determined by the circular geodesic mo-
tion in the black-hole (naked-singularity) background (Novikov and Thorne, 1973). At
high accretion rates, the pressure is relevant, and the accretion disk must be geometric-
ally thick (Abramowicz et al., 1988). Its basic properties are determined by equipotential
surfaces of test perfect fluid (i.e., perfect fluid that does not alter the black-hole geometry)
rotating in the black-hole (naked-singularity) background.
The accretion is possible, if a toroidal equilibrium configuration of the test fluid contain-

ing a critical, self-crossing equipotential surface can exist in the background. The cusp
of this equipotential surface corresponds to the inner edge of the disk, and the accretion
inflowofmatter into the black hole is possible due to amechanical non-equilibriumprocess,
i.e., because of matter slightly overcoming the critical equipotential surface. The pressure
gradients push the inner edge of the thick disks under the radius rms, which corresponds to
marginally stable circular geodesic (Kozłowski et al., 1978; Abramowicz et al., 1978).
The simplest, but quite illustrative case of the equipotential surfaces of the test fluid can

be constructed for the configurations with uniform distribution of the angular momentum
density. This case is fully governed by the geometry of the spacetime, however, it contains
all the characteristic features of more complex cases of the rotation of the fluid (Jaroszyński
et al., 1980). Moreover, this case is also very important physically since it corresponds to
marginally stable equilibrium configurations (Seguin, 1975).

2 PROPERTIESOF THEREISSNER–NORDSTRÖM–(ANTI-)DESITTER
SPACETIMES

In the standard Schwarzschild coordinates (t, r, θ,φ), and the geometrical units (c =
G = 1), the RNdS (Λ > 0), and RN(a)dS (Λ < 0) spacetimes are given by the line
element (Stuchlík and Hledík, 2002)

ds2 =−
(

1−
2M
r

+
Q2

r2 −
Λ

3
r2
)

dt2

+
(

1−
2M
r

+
Q2

r2 −
Λ

3
r2
)−1

dr2 + r2(dθ2 + sin2 θ dφ2) , (1)
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and the related electromagnetic field is given by the four-potential

Aµ =
Q
r
δtµ .

Here, M denotes mass and Q denotes electric charge of the spacetimes. However, it is
convenient to introduce a dimensionless cosmological parameter

y ≡ 1
3ΛM

2 ,

a dimensionless charge parameter

e ≡
Q
M

,

and dimensionless coordinates t → t/M , r → r/M . It is equivalent to puttingM = 1.

3 GEODETICALMOTION

Motion of uncharged test particles and photons is governed by the geodetical structure of
the spacetime. The geodesic equation reads

Dpµ

dλ
= 0 ,

where pµ ≡ dxµ/dλ is the four-momentum of a test particle (photon) and λ is the affine
parameter related to the proper time τ of a test particle by τ = λ/m.
It follows from the central symmetry of the geometry Eq. (1) that the geodetical motion

is allowed in the central planes only. Due to existence of the time Killing vector field
ξ(t) = ∂/∂ t and the axial Killing vector field ξ(φ) = ∂/∂φ, two constants of the motionmust
exist, being the projections of the four-momentum onto the Killing vectors (Stuchlík and
Hledík, 2002):

pt = gtµ pµ = −Ẽ ,

pφ = gφµ pµ = Φ .

In the spacetimes with Λ ̸= 0, the constants of motion Ẽ and Φ cannot be interpreted as
energy and axial component of the angular momentum at infinity since the geometry is not
asymptotically flat.
It is convenient to introduce specific energy E , specific axial angular momentum L and

impact parameter ℓ by the relations

E =
Ẽ
m

, L =
Φ

m
, ℓ =

Φ

Ẽ
.

Choosing the plane of the motion to be the equatorial plane (θ = π/2 being constant along
the geodesic), we find that the motion of test particles (m ̸= 0) can be determined by an
“effective potential” of the radialmotion

V 2
eff(r; L, y, e) ≡

(
1−

2
r

+
e2

r2 − yr2
)(

1 +
L2

r2

)
.
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Since
(
ur
)2 =

( dr
dτ

)2
= E2 − V 2

eff(r; L, y, e) ,

the motion is allowedwhere

E2 ≥ V 2
eff(r; L, y, e) ,

and the turning points of the radialmotion are determined by the condition

E2 = V 2
eff(r; L, y, e) .

The radialmotionof photons (m = 0) is determinedbya “generalized effective potential”
ℓ2

ph(r; y, e) related to the impact parameter ℓ. The motion is allowed, if

ℓ2 ≤ ℓ2
ph(r; y, e) ≡

r4

r2 − 2r + e2 − yr4 ,

the condition ℓ2 = ℓ2
ph(r; y, e) gives the turning points of the radial motion (Stuchlík and

Hledík, 2002).
The special case of e = 0 has been extensively discussed in Stuchlík and Hledík (1999).

Therefore, we concentrate our discussion on the case e2 > 0. The effective potentials
V 2

eff(r; L, y, e) and ℓ2
ph(r; y, e) define turning points of the radial motion at the static

regions of the RN(a)dS spacetimes. (At the dynamic regions, where the inequalities
V 2

eff(r; L, y, e) < 0 and ℓ2
ph(r; y, e) < 0 hold, there are no turning points of the radial

motion.) Effective potential V 2
eff is zero at the horizons, while ℓ

2 diverges there. At r = 0,
V 2

eff → +∞, while ℓ2
ph = 0. Circular orbits of uncharged test particles correspond to

local extrema of the effective potential (∂Veff/∂r = 0). Maxima (∂2Veff/∂r2 < 0) determ-
ine circular orbits unstable with respect to radial perturbations, minima (∂2Veff/∂r2 > 0)
determine stable circular orbits. The specific energy and specific angular momentum of
particles on a circular orbit, at a given r , are determined by the relations (Stuchlík and
Hledík, 2002)

Ec(r; y, e) =
1− 2/r + e2/r2 − yr2
(
1− 3/r + 2e2/r2

)1/2 , Lc(r; y, e) =
(

r − e2 − yr4

1− 3/r + 2e2/r2

)1/2

.

(The minus sign for Lc is equivalent to the plus sign in spherically symmetric spacetimes.)

4 BOYER’SCONDITION FOREQUILIBRIUMCONFIGURATIONSOF TEST
PERFECTFLUID

We consider test perfect fluid rotating in the φ direction. Its four velocity vector field Uµ

has, therefore, only two non-zero components

Uµ = (Ut , 0, 0,Uφ) ,
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which can be functions of the coordinates r , θ . The stress-energy tensor of the perfect fluid
is

Tµ
ν = (p + ϵ)UµUν + p δµν ,

where ϵ and p denote the total energy density and the pressure of the fluid. The rotating
fluid can be characterized by the vector fields of the angular velocity Ω , and the angular
momentum per unit mass (angularmomentum density) ℓ, defined by

Ω =
Uφ

Ut , ℓ = −
Uφ
Ut

.

Projecting the energy conservation law Tµν
;ν = 0 onto the hypersurface orthogonal to

the four velocityUµ by the projection tensor hµν = gµν + UµUν , we obtain the relativistic
Euler equation in the form (Stuchlík et al., 2000)

∂µ p
p + ϵ

= −∂µ(lnUt ) +
Ω ∂µℓ

1−Ωℓ
,

where

(Ut )2 =
g2
tφ − gtt gφφ

gφφ + 2ℓgtφ + ℓ2gtt
.

The solution of the relativistic Euler equation can be given by Boyer’s condition determ-
ining the surfaces of constant pressure through the “equipotential surfaces” of the potential
W (r, θ) by the relations (Abramowicz et al., 1978)

∫ p

0

dp
p + ϵ

= Win −W , (2)

Win −W = ln(Ut )in − ln(Ut ) +
∫ ℓ

ℓin

Ω dℓ
1−Ωℓ

; (3)

the subscript “in” refers to the inner edge of the disk. The equipotential surfaces are
determined by the condition

W (r, θ) = const ,

and in a given spacetime can be found from Eq. (3), if a rotation lawΩ = Ω(ℓ) is given.
The surfaces of constant pressure p(r, θ) = const are given by Eq. (2).

5 EQUIPOTENTIAL SURFACESOFTHEMARGINALLY STABLE
CONFIGURATIONS

Equilibrium configurations of test perfect fluid rotating around an axis of rotation (θ = 0)
in a given spacetime are determined by the equipotential surfaces, where the gravitational
and inertial forces are just compensated by the pressure gradient (Stuchlík et al., 2000).
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The equipotential surfaces can be closed or open. Moreover, there is a special class of
critical, self-crossing surfaces (with a cusp), which can be either closed or open. The closed
equipotential surfaces determine stationary equilibrium configurations. The fluid can fill
any closed surface – at the surface of the equilibrium configuration pressure vanish, but its
gradient is non-zero (Kozłowski et al., 1978). The critical, self-crossing closed equipotential
surfacesWcusp are important in the theory of thick accretion disks, because accretion onto
the black hole through the cusp of the equipotential surface located in the equatorial plane
is possible due to the Paczyński mechanism.
According to Paczyński, the accretion into the black hole is driven through the vicinity of

the cusp due to a little overcoming of the critical equipotential surface,W = Wcusp, by the
surface of the disk. The accretion is thus driven by a violation of the hydrostatic equilibrium,
rather than by viscosity of the accretingmatter (Kozłowski et al., 1978).
All characteristic properties of the equipotential surfaces for a general rotation law are

reflected by the equipotential surfaces of the simplest configurations with uniform distri-
bution of the angular momentum density ℓ (Jaroszyński et al., 1980). Moreover, these
configurations are very important astrophysically, being marginally stable (Seguin, 1975).
Under the condition

ℓ(r, θ) = const ,

holding in the rotating fluid, a simple relation for the equipotential surfaces follows from
Eq. (3):

W (r, θ) = lnUt (r, θ) ,

withUt (r, θ) being determined by ℓ = const, and the metric coefficients only.
The equipotential surfaces are described by the formula θ = θ(r), givenby thedifferential

equation (Stuchlík et al., 2000)

dθ
dr

= −
∂p/∂r
∂p/∂θ

,

which for the configurations with ℓ = const reduces to

dθ
dr

= −
∂Ut/∂r
∂Ut/∂θ

.

The equipotential surfaces are given by the formula

W (r; θ, y, e) = ln
(1− 2/r + e2/r2 − yr2)1/2r sin θ

[
r2 sin2 θ − (1− 2/r + e2/r2 − yr2)ℓ2]1/2 .

The best insight into the nature of the ℓ = const configurations can be obtained by the
examination of the behaviour of the potential W (r, θ) in the equatorial plane (θ = π/2).
The condition of the local extrema of the potentialW (r, θ = π/2, y, e) is identical with the
condition of vanishing of the pressure gradient (∂Ut/∂r = 0, ∂Ut/∂θ = 0). The extrema
of W (r, θ = π/2, y, e) correspond to the points, where the fluid moves along a circular
geodesic (Stuchlík et al., 2000).
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6 CLASSIFICATIONOFTHEREISSNER–NORDSTRÖM–DESITTER
SPACETIMES

Seven types of the RNdS spacetimes with qualitatively different behaviour of the effective
potential of the geodetical motion (and the circular orbits) exist. The description of the
types of the Reissner–Nordström (RN) spacetimes with a positive cosmological constant
(y > 0) according to the properties of the circular geodesics can be given in the following
way (Stuchlík and Hledík, 2002):

dS-BH-1 One region of circular geodesics at r > rph+ with unstable then stable and
finally unstable geodesics (for radius growing).1

dS-BH-2 One region of circular geodesics at r > rph+ with unstable geodesics only.
dS-NS-1 Two regions of circular geodesics, the inner region consists of stable geodesics
only, the outer one contains subsequently unstable, then stable and finally unstable circu-
lar geodesics.

dS-NS-2 Two regions of circular orbits, the inner one consist of stable orbits, the outer
one of unstable orbits.

dS-NS-3 One region of circular orbits, subsequently with stable, unstable, then stable
and finally unstable orbits.

dS-NS-4 One region of circular orbits with stable and then unstable orbits.
dS-NS-5 No circular orbits allowed.

7 PROPERTIESOF EQUILIBRIUMCONFIGURATIONSOFPERFECTFLUID

We shall discuss the perfect fluid configurations in the framework of the RNdS spacetime
classification due to circular geodesic properties. Of course, only the spacetimes admit-
ting existence of stable circular geodesics are taken into account, since the equilibrium
configurations are allowed only in these spacetimes (Stuchlík and Hledík, 2002).
The behaviour of the potentialW (r, θ = π/2), and corresponding equipotential surfaces

(meridional sections) are given, according to the values of ℓ = const, and illustrated by
representative sequences of figures. The radial coordinate is expressed in units of M . The
cusps of the toroidal disks correspond to the local maxima of W (r, θ = π/2), the central
rings correspond to their localminima.

7.1 dS-BH-1 (M = 1, e = 0.5, y = 10−6)

(1) Open surfaces only, no disks are possible, surface with the outer cusp exists
(ℓ = 3.00);
(2) an infinitesimally thin, unstable ring exists (ℓ = 3.55378053);
(3) closed surfaces exist, many equilibrium configurations without cusps are possible,

one with the inner cusp (ℓ = 3.75);

1 Type dS-BH-1 means asymptotically de Sitter black-hole spacetime of type 1; in the following, the notation has
to be read in an analogousway.
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(4) there is an equipotential surfacewith both the inner and outer cusps, themechanical
non-equilibrium causes an inflow into the black hole, and an outflow from the disk,with the
same efficiency (ℓ = 3.8136425);
(5) accretion into the black-hole is impossible, the outflow from the disk is possible

(ℓ = 4.00);
(6) the potential diverges, the inner cusp disappears (ℓ = 4.96797564);
(7) the closed equipotential surfaces still exist, one with the outer cusp (ℓ = 6.00);
(8) an infinitesimally thin, unstable ring exists (the centre, and the outer cusp coalesce)

(ℓ = 7.11001349);
(9) open equipotential surfaces exist only, there is no cusp in this case (ℓ = 10.00).
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7.2 dS-NS-1 (M = 1, e = 1.02, y = 0.00001)

(1) Closed surfaces exist, one with the outer cusp, equilibrium configurations are pos-
sible (ℓ = 2.00);
(2) the second closed surface with the cusp, and the centre of the second disk appear,

the inner disk (1) is inside the outer one (2) (ℓ = 3.04327472);
(3) two closed surfaces with a cusp exist, the inner disk is still inside the outer one

(ℓ = 3.15);
(4) closed surface with two cusps exists, two disks meet in one cusp, the flow between

disk 1 and disk 2, and the outflow from disk 2 are possible (ℓ = 3.2226824);
(5) the disks are separated, the outflow from disk 1 into disk 2 only, and the outflow

from disk 2 are possible (ℓ = 3.55);
(6) the cusp 1 disappears, the potential diverges, two separated disks still exist

(ℓ = 3.91484803);
(7) like in theprevious case, theflowbetweendisk 1anddisk 2 is impossible, the outflow

from disk 2 is possible (ℓ = 4.40);
(8) disk 1 exists, so does an infinitesimally thin, unstable ring exists (region 2)

(ℓ = 4.9486708);
(9) disk 1 exists only, there are no surfaces with a cusp (ℓ = 5.15);
(10) disk 1 is infinitesimally thin (ℓ = 5.39574484);
(11) no disks, open equipotential surfaces only (ℓ = 6.00).

1 5 10 50 100
r

-1.5
-1.25

-1
-0.75
-0.5
-0.25

0
0.25

W
(
r
,
θ
=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1

cusp
-0.05

-0.05
-0.3

-0.3

10.0

-0.025

0.0

(1)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ
=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1
cent2

cusp2

cusp1

cusp1

-0.04

-0.04

-0.3

10.0

-0.025

0.0

(2)

(plots continued on the next page)



442 Z. Stuchlík, H. Kučáková and P. Slaný

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1
cent2

cusp2

cusp1

cusp1

-0.04

-0.04

-0.3

10.0

-0.025

0.0

(3)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1 cent2

cusps
-0.04

-0.04

-0.3

10.0

-0.025
0.0

(4)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ
=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1
cent2

cusp2

cusp1

-0.04

-0.04

-0.3

10.0

-0.025
0.0

(5)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ
=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1 cent2

cusp
-0.035

-0.035

-0.3

10.0

-0.0250.0

(6)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1 cent2

cusp

-0.03

-0.03

-0.3

10.0 -0.0250.0

(7)

1 5 10 50 100
r

-1.25
-1

-0.75
-0.5
-0.25

0
0.25
0.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ
cent1 cent2

cusp

-0.04

-0.3
10.0

-0.025

0.0

(8)

10 20 50 100 200
r

-1

-0.5

0

0.5

1

1.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1

-0.04

-0.3

10.0 -0.0250.0

(9)

10 20 50 100 200
r

-1

-0.5

0

0.5

1

1.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

cent1

-0.04

-0.3

10.0 -0.0250.0

(10)

10 20 50 100 200
r

-1

-0.5

0

0.5

1

1.5

W
(
r
,
θ

=
π
/
2
)

0 0.5 1 1.5 2
(log r) sin θ

-2

-1

0

1

2

(
l
o
g
r)

c
o
s

θ

-0.3

10.0 -0.0250.0

-0.07

(11)



Equilibrium configurations of perfect fluid in RNdS spacetimes 443

7.3 dS-NS-2 (M = 1, e = 1.02, y = 0.01)

(1) There are only one centre and one disk in this case, closed equipotential surfaces
exist, one with the cusp, the outflow from the disk is possible (ℓ = 4.00);
(2) the potential diverges, the cusp disappears, equilibrium configurations are possible

(closed surfaces exist), but the outflow from the disk is impossible (ℓ = 4.25403109);
(3) the situation is similar to the previous case (ℓ = 5.00);
(4) the disk is infinitesimally thin (ℓ = 6.40740525);
(5) no disk is possible, open equipotential surfaces only (ℓ = 7.00).
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7.4 dS-NS-3 (M = 1, e = 1.07, y = 0.0001)

(1) Closed surfaces exist, one with the outer cusp, equilibrium configurations are pos-
sible (ℓ = 2.50);
(2) the second closed surface with the cusp, and the centre of the second disk appear,

the inner disk (1) is inside the outer one (2) (ℓ = 2.93723342);
(3) two closed surfaces with a cusp exist, the inner disk is still inside the outer one

(ℓ = 3.00);



444 Z. Stuchlík, H. Kučáková and P. Slaný

(4) closed surface with two cusps exists, two disks meet in one cusp, the flow between
disk 1 and disk 2, and the outflow from disk 2 are possible (ℓ = 3.0411677);
(5) the disks are separated, the outflow from disk 1 into disk 2 only, and the outflow

from disk 2 are possible (ℓ = 3.20);
(6) an infinitesimally thin, unstable ring exists (region 1), also disk 2 (ℓ = 3.42331737);
(7) one cusp, and disk 2 exist only, the outflow from disk 2 is possible (ℓ = 3.50);
(8) an infinitesimally thin, unstable ring exists (region 2) (ℓ = 3.59008126);
(9) no disk, no cusp, open equipotential surfaces only (ℓ = 3.80).
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7.5 dS-NS-4 (M = 1, e = 1.07, y = 0.01)

(1) There are only one centre and one disk in this case, closed equipotential surfaces
exist, one with the cusp, the outflow from the disk is possible (ℓ = 3.00);
(2) an infinitesimally thin, unstable ring exists (ℓ = 3.63788074);
(3) no disk is possible, no cusp, open equipotential surfaces exist only (ℓ = 3.80).
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8 CONCLUSIONS

The RNdS spacetimes can be separated into seven types of spacetimes with qualitatively
different character of the geodetical motion. In five of them toroidal disks can exist, because
in these spacetimes stable circular orbits exist.
The presence of an outer cusp of toroidal disks nearby the static radius which enables

outflow ofmass and angularmomentum from the accretion disks by the Paczyński mechan-
ism, i.e., due to a violation of the hydrostatic equilibrium. This is the same mechanism that
drives the accretion into the black hole through the inner cusp (Stuchlík et al., 2000).
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The motion above the outer horizon of black-hole backgrounds has the same character
as in the SdS spacetimes for asymptotically de Sitter spacetimes. There is only one static
radius in these spacetimes. No static radius is possible under the inner black-hole horizon,
no circular geodesics are possible there.
The motion in the naked-singularity backgrounds has similar character as the motion in

the field of RN naked singularities. However, in the case of RNdS, two static radii can exist,
while the RN naked singularities contain one static radius only. The outer static radius
appears due to the effect of the repulsive cosmological constant. Stable circular orbits exist
in all of the naked-singularity spacetimes. There are even two separated regions of stable
circular geodesics in some cases. The inner one is limited by the inner static radius from
bellow, where particles with zero angular momentum (in stable equilibrium positions) are
located. In the asymptotically de Sitter naked-singularity spacetimes, two regions of stable
circular orbits can exist, if e2 < 275/216, and y < 0.00174 (Stuchlík and Hledík, 2002).
Then two separated tori are possible in these spacetimes.
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ABSTRACT
Change of sign of the LNRF-velocity gradient has been found for accretion discs
orbiting rapidly rotating Kerr black holes with spin a > 0.9953 for Keplerian discs
and a > 0.99979 for marginally stable thick discs. Such a “humpy” LNRF-velocity
profiles occur just above the marginally stable circular geodesic and could be related
to oscillations of accretion discs. The frequency of such “hump”-induced oscilla-
tions can be identified with the maximal rate of change of the orbital velocity within
the “humpy” profile. Therefore, we introduce an extended orbital resonance model
(EXORM) of quasiperiodic oscillations (QPOs) assuming non-linear resonant phe-
nomena between oscillations with the orbital epicyclic frequencies and the humpy
frequency defined in a fully general relativistic way. The EXORM is developed for
both Keplerian discs and perfect-fluid tori where the approximation of oscillations
with epicyclic frequencies is acceptable. Clearly, the EXORMcould be applied to the
near-extreme Kerr black hole systems exhibiting relatively complex QPO frequency
patterns. Assuming a Keplerian disc, it can be shown that in the framework of the
EXORM, all the QPOs observed in the microquasar GRS 1915+105 could be ex-
plained, while it is not possible in the case of QPOs observed in the Galactic Centre
source Sgr A∗.

Keywords: Black hole physics – accretion, accretion disks – relativity

1 INTRODUCTION

High frequency (kHz) twin peak quasi-periodic oscillations (QPOs) with frequency ratios
3 : 2 (and sometimes 3:1) are observed in microquasars (see, e.g., van der Klis, 2000; Mc-
Clintock and Remillard, 2004; Remillard, 2005). In the Galactic Centre black hole Sgr A∗,
Genzel et al. (2003) measured a clear periodicity of 1020 sec in variability during a flaring
event. This period is in the range of Keplerian orbital periods at a few gravitational radii
from a black hole with mass M ∼ 3.6 × 106 M⊙ estimated for SgrA∗ (Ghez et al., 2005;
Weinberg et al., 2005). More recently, Aschenbach et al. (2004); Aschenbach (2004, 2006)
reported three QPO periodicities at 692 sec, 1130 sec and 2178 sec that correspond to fre-
quency ratios (1/692) : (1/1130) : (1/2178) ∼ 3 : 2 : 1. These observational data are not
quite convincing (see, e.g., Abramowicz et al., 2004), but surely deserve attention (Aschen-
bach, 2007).

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Detailed analysis of the variable X-ray black-hole binary system (microquasar)
GRS 1915+105 reveals high-frequency QPOs appearing at five frequencies, namely
ν1 = (27 ± 1) Hz (Belloni et al., 2001), ν2 = (41 ± 1) Hz, ν3 = (67 ± 1) Hz (Morgan et al.,
1997; Strohmayer, 2001), and ν4 = (113 ± 5) Hz, ν5 = (167 ± 5) Hz (Remillard and Mc-
Clintock, 2006). In this rangeof their errors, bothupperpairs are close to the frequency ratio
3 : 2 suggesting the possible existence of resonant phenomena in the system. Observations
of oscillationswith these frequencies have different qualities, but in all five cases the data are
quite convincing (seeMcClintock andRemillard, 2004; Remillard andMcClintock, 2006).
Severalmodels have been developed to explain the kHzQPO frequencies, and it is usually

preferred that these oscillations are related to the orbital motion near the inner edge of an
accretion disc. In particular, two ideas based on the strong-gravity properties have been
proposed. While Stella and Vietri (1998, 1999) introduced the “Relativistic Precession
Model” considering that the kHz QPOs directly manifest the modes of a slightly perturbed
(and therefore epicyclic) relativistic motion of blobs in the inner parts of the accretion disc,
Kluźniak and Abramowicz (2001) propose models based on non-linear oscillations of an
accretion disc that assume resonant interaction between orbital and/or epicyclic modes.
In a different context, the possibility of resonant coupling between the epicyclic modes of
motion in the Kerr spacetime was also mentioned in the early work of Aliev and Galtsov
(1981). The radial and vertical epicyclic oscillations could be related to both the thin
Keplerian discs (Abramowicz et al., 2003; Kato, 2001) and the thick, toroidal accretion
discs (Rezzolla et al., 2003). In particular, the observations of high frequency twin peak
QPOs with the 3 : 2 frequency ratio in microquasars can be explained by the parametric
resonance between the radial and vertical epicyclic oscillations, νv : νr ∼ 3 : 2. This
hypothesis, under the assumption of geodesic oscillations (i.e., for thin discs), puts strong
limit on themass-spin relation for the central black hole inmicroquasars (Török et al., 2005;
Török, 2005; Török et al., 2006).
Aschenbach (2004, 2006, 2007) discovered that two changes of sign of the radial gradi-

ent of the Keplerian orbital velocity as measured in the locally non-rotating frame (LNRF,
Bardeen et al., 1972) occur in the equatorial plane of Kerr black holes with a > 0.9953.
Stuchlík et al. (2005) have found that the gradient sign change in theLNRF-velocity profiles
occurs also for non-geodesic motion with uniform distribution of the specific angular mo-
mentum ℓ(r, θ) = const (i.e., in marginally stable thick discs) around extremely rapid Kerr
black holes with a > 0.99979.1 The global character of the phenomenon is given in terms
of topology changes of the vonZeipel surfaces (equivalent to equivelocity surfaces in the tori
with ℓ(r, θ) = const). Toroidal von Zeipel surfaces exist around the circle corresponding to
the minimumof the equatorial LNRF-velocity profile, indicating possibility of development
of some instabilities in that part of the marginally stable disc with positive gradient of the
orbital velocity in LNRF (Stuchlík et al., 2004, 2005, 2006a,b, 2007a,b,c,d).
The positive radial gradient of orbital LNRF-velocity around black holeswitha > 0.9953

seems to be a physically interesting phenomenon, even if a direct mechanism relating this

1 Note that the assumption of uniform distribution of the specific angular momentum can be relevant at least
at the inner parts of the thick disc and that matter in the disc follows nearly geodesic circular orbits nearby the
center of the disc and in the vicinity of its inner edge determined by the cusp of its critical equipotential surface (see
Abramowicz et al., 1978).
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phenomenon to triggering the oscillations, and subsequent linking of the oscillations to
the excitation of radial (and vertical) epicyclic oscillations, is unknown. Therefore, an
extended orbital resonancemodel (EXORM) has been developed, with hypothetical hump-
induced oscillations assumed to enter a non-linear resonance with the radial or vertical
epicyclic oscillations (Stuchlík et al., 2007b). It should be stressed that due to the non-linear
resonance, combinational frequencies are allowed to be observable.
In the EXORM, the frequency of the hump-induced oscillations is related to the maximal

positive radial gradient of the LNRF-velocity in the “humpy” velocity profile in the general
relativistic, coordinate-independent form. Further, since the gradient is defined locally,
being connected to the LNRF, it has to be transformed into the form related to distant
stationary observers, giving observationally relevant “humpy” frequency νh. Then the
“humpy” and epicyclic frequencies could be estimated at the radius of definition of the
“humpy” frequency.
In the case of Keplerian discs, the epicyclic resonance radii r3:1 and r4:1 (with νv : νr =

3 : 1, 4 : 1) are located in vicinity of the “humpy” radius rh where efficient triggering of
oscillationswith frequencies∼ νh could be expected. Asymptotically (for 1−a < 10−4) the
ratio of the epicyclic andKeplerian frequencies and the humpy frequency is nearly constant,
i.e., almost independent of a, being for the radial epicyclic frequency νr : νh ∼ 3 : 2. In
the case of thick discs, the situation is more complex due to dependence on distribution of
the specific angular momentum ℓ determining the disc properties. For 1 − a < 10−6, the
frequency ratios of the humpy frequency and the orbital and epicyclic frequencies are again
nearly constant and independent of both a and ℓ being for the radial epicyclic frequency
νr : νh ∼ 4 : 1. In the limiting case of very slender tori (ℓ ∼ ℓms) the epicyclic resonance
radius r4:1 ∼ rh for all the relevant interval of 1− a < 2× 10−4.
In Section 2, we briefly summarize properties of the Aschenbach effect for Keplerian thin

discs, and ℓ = const thick discs. In Section 3, the extended resonance model is introduced,
i.e., the critical “humpy” frequency, connected to the LNRF-velocity positive gradient in
the humpy profiles, is given in the physically relevant, coordinate independent form for the
both Keplerian and ℓ = const discs. At the radius of its definition, the humpy frequency
is compared to the radial and vertical epicyclic frequency and the orbital frequency. In
Section 4, fitting of the observed frequencies in the GRS 1915+105 microquasar in the
framework of the EXORM is summarized, while it is demonstrated that the data reported
for SgrA∗ could not be probably fitted by EXORM. In Section 5, concluding remarks are
presented.

2 LNRF-VELOCITYPROFILESOFACCRETIONDISCS

The locally non-rotating frames (LNRF) are given by the tetrad of 1-forms (Bardeen et al.,
1972)

e(t) =
(
Σ∆

A

)1/2
dt , e(ϕ) =

(
A
Σ

)1/2
sin θ(dϕ − ω dt) ,

e(r) =
(
Σ

∆

)1/2
dr , e(θ) = Σ1/2 dθ ,

(1)
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where

ω = −
gtϕ
gϕϕ

=
2ar
A

(2)

is the angular velocity of the LNRF relative to distant observers.
In the Kerr spacetimes with the rotational parameter assumed to be a > 0, the relevant

metric coefficients in the standard Boyer–Lindquist coordinates read:

gtt = −
∆− a2 sin2 θ

Σ
, gtϕ = −

2ar sin2 θ

Σ
, gϕϕ =

A sin2 θ

Σ
, grr =

Σ

∆
, gθθ = Σ , (3)

where

∆ = r2 − 2r + a2 , Σ = r2 + a2 cos2 θ , A = (r2 + a2)2 −∆a2 sin2 θ . (4)

The geometrical units, c = G = 1, together with putting the mass of the black hole M = 1,
are used in order to obtain completely dimensionless formulae hereafter.
For matter orbiting a Kerr black hole with a 4-velocity Uµ and angular velocity profile

Ω(r, θ), the azimuthal component of its 3-velocity in the LNRF reads

V(ϕ) =
Uµe(ϕ)

µ

U νe(t)
ν

=
A sin θ
Σ
√
∆

(Ω − ω) . (5)

2.1 Keplerian thin discs

In thin discs matter follows nearly circular geodetical orbits characterized by the Keplerian
distributions of the angular velocity and the specific angular momentum (in the equatorial
plane, θ = π/2)

Ω = ΩK(r; a) ≡
1

(r3/2 + a)
, ℓ = ℓK(r; a) ≡

r2 − 2ar1/2 + a2

r3/2 − 2r1/2 + a
. (6)

The azimuthal component of the Keplerian 3-velocity in the LNRF reads

V
(ϕ)
K (r; a) =

(r2 + a2)2 − a2∆− 2ar(r3/2 + a)
r2(r3/2 + a)

√
∆

(7)

and formally diverges for r → r+ = 1 +
√

1− a2, where the black-hole event horizon is
located. Its radial gradient is given by

∂V
(ϕ)
K
∂r

= −
r5 + a4(3r + 2)− 2a3r1/2(3r + 1)− 2a2r2(2r − 5) + 2ar5/2(5r − 9)

2∆3/2√r (r3/2 + a)2 . (8)

As shown by Aschenbach (2004, 2006), the velocity profile has two changes of the gradi-
ent sign (where ∂V(ϕ)/∂r = 0) in the field of rapidly rotating Kerr black holes with
a > ac(K)

.= 0.9953.
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2.2 Marginally stable tori

Perfect-fluid stationary and axisymmetric toroidal discs are characterized by the 4-velocity
field Uµ = (Ut , 0, 0,Uϕ) with Ut = Ut (r, θ), Uϕ = Uϕ(r, θ), and by distribution of
the specific angular momentum ℓ = −Uϕ/Ut . The angular velocity of orbiting matter,
Ω = Uϕ/Ut , is then related to ℓ by the formula

Ω = −
ℓgtt + gtϕ
ℓgtϕ + gϕϕ

. (9)

The marginally stable tori are characterized by uniform distribution of the specific angu-
larmomentum

ℓ = ℓ(r, θ) = const , (10)

and are fully determined by the spacetime structure through equipotential surfaces of the
potentialW = W (r, θ) defined by the relations (Abramowicz et al., 1978)

W −Win = ln
Ut

(Ut )in
, (Ut )2 =

g2
tϕ − gtt gϕϕ

gttℓ2 + 2gtϕℓ+ gϕϕ
; (11)

the subscript “in” refers to the inner edge of the disc. The LNRF orbital velocity of the torus
is given by

V
(ϕ)
T =

A(∆− a2 sin2 θ) + 4a2r2 sin2 θ

Σ
√
∆ (A − 2aℓr) sin θ

ℓ . (12)

For marginally stable tori it is enough to consider the motion in the equatorial plane,
θ = π/2. Formally, this velocity vanishes for r → ∞ and r → r+, i.e., there must be a
change of its radial gradient for any values of the parameters a and ℓ, contrary to the case of
Keplerian discs. The radial gradient of the equatorial LNRF velocity of ℓ = const tori reads

∂V
(ϕ)
T
∂r

=
{

[∆+ (r − 1)r ][r(r2 + a2)− 2a(ℓ− a)]
[r(r2 + a2)− 2a(ℓ− a)]2

√
∆

−
r(3r2 + a2)∆

[r(r2 + a2)− 2a(ℓ− a)]2
√
∆

}
ℓ , (13)

so it changes its orientation at radii determined for a given ℓ by the condition

ℓ = ℓex(r; a) ≡ a +
r2[(r2 + a2)(r − 1)− 2r∆]

2a[∆+ r(r − 1)]
. (14)

For both thick tori andKeplerian discswe have to consider the limit on the disc extension
given by the innermost stable orbit. For Keplerian discs this is the marginally stable geo-
detical orbit, rin ≈ rms, while for thick tori this is an unstable circular geodesic kept stable
by pressure gradients and located between the marginally bound and the marginally stable
geodetical orbits, rmb ! rin ! rms, with the radius being determined by the specific angular
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Figure 1. Von Zeipel surfaces (meridional sections). For a > ac(T) and ℓ appropriately chosen,
two surfaces with a cusp, or one surface with both the cusps, together with closed (toroidal) surfaces,
exist, being located always inside the ergosphere (dashed surface) of a given spacetime. Both the outer
cusp and the central ring of closed surfaces are located inside the toroidal equilibrium configurations
corresponding tomarginally stable thickdiscs (light-gray region; its shape is determinedby the critical
self-crossing equipotential surface of the potential W (r, θ). The cross (+) denotes the centre of the
torus. Dark region corresponds to the black hole. Figures illustrating all possible configurations of
the von Zeipel surfaces are presented in Stuchlík et al. (2005). Here we present the figure plotted for
the parameters a = 0.99998, ℓ = 2.0065. Critical value of the von Zeipel radius corresponding to
the inner and the outer self-crossing surface is Rc(in)

.= 3.429 and Rc(out)
.= 3.804, respectively,

the central ring of toroidal surfaces corresponds to the value Rcenter
.= 3.817. Interesting region

containing both the cusps and the toroidal surfaces is plotted in detail at the left lower figure. Right
lower figure shows the behaviour of the von Zeipel radius in the equatorial plane. (Taken from
Stuchlík et al., 2007b)
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momentum ℓ = const ∈ (lms, lmb) through the equation ℓ = ℓK(r; a); ℓms (ℓmb) denotes
specific angularmomentum of the circularmarginally stable (marginally bound) geodesic.
Detailed discussion of Stuchlík et al. (2005) shows that two physically relevant changes

of sign of ∂V(ϕ)
T /∂r in the tori occur for Kerr black holes with the rotational parameter

a > ac(T)
.= 0.99979. The interval of relevant values of the specific angular momentum

ℓ ∈ (ℓms(a), ℓex(max)(a)), where ℓex(max)(a) corresponds to the local maximum of the
function (14), grows with a growing up to the critical value of ac(mb)

.= 0.99998. For
a > ac(mb), the interval of relevant values of ℓ ∈ (ℓms(a), ℓmb(a)) is narrowing with the
rotational parameter growing up to a = 1, which corresponds to a singular case where
ℓms(a = 1) = ℓmb(a = 1) = 2. Notice that the situation becomes to be singular only
in terms of the specific angular momentum; it is shown (see Bardeen et al., 1972) that
for a = 1 both the total energy E and the axial angular momentum L differ at rms and
rmb, respectively, but their combination, ℓ ≡ L/E , giving the specific angular momentum,
coincides at these radii.
A physically reasonable global quantity characterizing rotating fluid configurations in

terms of the LNRF orbital velocity is so-called von Zeipel radius defined by the relation

R ≡
ℓ

V
(ϕ)
LNRF

= (1− ωℓ) ϱ̃ , (15)

which generalizes in another way as compared with (Abramowicz et al., 1995) the Schwar-
zschildian definition of the gyration radius ϱ̃ (Abramowicz et al., 1993). Note that, except
for the Schwarzschild case a = 0, the von Zeipel surfaces, defined as the surfaces of
R(r, θ; a, ℓ) = const, do not coincide with those introduced by Kozłowski et al. (1978) as
the surfaces of constant ℓ/Ω (see Stuchlík et al., 2005 for more details).
In the case of marginally stable tori the von Zeipel surfacesR = const coincide with the

equivelocity surfacesV(ϕ)(r, θ; a, ℓ) = V
(ϕ)
T = const. Topology of the von Zeipel surfaces

can be directly determined by the behaviour of the von Zeipel radius in the equatorial plane

R(r, θ = π/2; a, ℓ) =
r(r2 + a2)− 2a(ℓ− a)

r
√
∆

. (16)

The localminima of the function (16) determine loci of the cusps of the von Zeipel surfaces,
while its local maximum (if it exists) determines a circle around which closed toroidally
shaped von Zeipel surfaces are concentrated (see Fig. 1). Notice that the inner cusp is
always physically irrelevant being located outside of the toroidal configuration of perfect
fluid. Behaviour of the von Zeipel surfaces nearby the centre and the inner edge of the thick
discs orbiting Kerr black holes with a > ac(T)

.= 0.99979, i.e., the existence of the von
Zeipel surface with toroidal topology, suggests possible generation of instabilities in both
the vertical and radial direction.
In terms of the redefined rotational parameter (1 − a), the “humpy” profile of the LNRF

orbital velocity of marginally stable thick discs occurs for discs orbiting Kerr black holes
with 1 − a < 1 − ac(T)

.= 2.1 × 10−4, which is more than one order lower than the value
1−ac(K)

.= 4.7×10−3 found byAschenbach (2004) for theKeplerian thin discs. Moreover,
in the thick discs, the velocity difference∆V

(ϕ)
T is smaller but comparable with those in the

thin discs. In fact, for a → 1, the velocity difference in the thick discs∆V
(ϕ)
T ≈ 0.02, while

for the Keplerian discs it goes even up to∆V
(ϕ)
K ≈ 0.07 (Stuchlík et al., 2007d).
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3 EXTENDEDORBITALRESONANCEMODEL

The orbital resonance model assumes non-linear parametric and forced resonances of os-
cillations with the orbital (Keplerian) and radial or vertical epicyclic frequencies, or their
combinations. Here, we extend this model by introducing hypothetical additional oscilla-
tions, induced by the hump in the LNRF-velocity profile of accretion discs of bothKeplerian
and toroidal character, that are supposed to be in a non-linear resonance with orbital or
epicyclic oscillations.
In Kerr spacetimes, the frequencies of the radial and latitudinal (vertical) epicyclic oscil-

lations related to an equatorial Keplerian circular orbit at a given r are determined by the
formulae (see, e.g., Aliev and Galtsov, 1981)

ν2
r = ν2

K(1− 6r−1 + 8ar−3/2 − 3a2r−2) , (17)

ν2
v ≡ ν

2
θ = ν2

K(1− 4ar−3/2 + 3a2r−2) , (18)

where the Keplerian frequency νK = ΩK/2π. A detailed analysis of properties of the epi-
cyclic frequencies can be found in Török and Stuchlík (2005a,b). The epicyclic oscillations
with the frequencies νr, νv can be related to both the thin Keplerian discs (Abramowicz and
Kluźniak, 2001; Kato, 2004) and thick, toroidal discs (Rezzolla et al., 2003).
According to Aschenbach (2004, 2006), the non-monotonicity of the LNRF-velocity

profile of accretiondiscs could excite oscillationswith characteristic frequency that has to be
related to the maximum gradient in the “humpy” part of the accretion discs velocity profile.
Although there is no detailed idea on the mechanism generating the hump-induced os-

cillations, it is clear that the Aschenbach proposal of defining the characteristic frequency
deserves attention. It should be stressed, however, that a detailed analysis of the instability
could reveal a difference between the characteristic frequency and the actual observable
one, as the latter should be associated with the fastest growing unstable mode. In any case,
the humpy frequency represents an upper limit on the frequencies of the hump-induced
oscillations, as it is given by maximum of the LNRF-velocity gradient in the humpy part of
the velocity profile.
At the present state of the EXORM, we assume that the characteristic humpy frequency

is a typical frequency of oscillations induced by the conjectured “humpy instability,” and
that the humpy oscillations could excite oscillations with the epicyclic frequencies or some
combinational frequencies, if appropriate conditions for a forced resonance are satisfied in
vicinity of the radiuswhere the humpy oscillations occur (Stuchlík et al., 2007d).
The fully general relativistic definition of the critical frequency for a possible excitation of

oscillations in the disc is given by the relations

ν R̃crit =
∂V(ϕ)

∂ R̃

∣∣∣∣∣
max

, dR̃ =
√
grr dr =

√
Σ

∆
dr , (19)

where V(ϕ) = V
(ϕ)
K (r; a) in thin Keplerian discs, and V(ϕ) = V

(ϕ)
T (r; l, a) in marginally

stable thick discs and R̃ is the physically relevant, coordinate independent proper radial
distance. Such a locally defined frequency, confined naturally to the observers orbiting the
black hole with the LNRF, should be further related to distant stationary observers by the
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formula (taken at the BL coordinate r corresponding to (∂V(ϕ)/∂ R̃)max)

νh = ν R̃∞ =
√
−(gtt + 2ωgtϕ + ω2gϕϕ) ν R̃crit . (20)

We call such a coordinate-independent and, in principle, observable frequency the “humpy
frequency,” as it is related to the humpy profile of V(ϕ), and denote it νh. It should be
stressed that the physically relevant humpy frequency νh = ν R̃∞, connected to observations
by distant observers and exactly defined by Eqs (19) and (20), represents an upper limit on
characteristic frequencies of oscillations induced by the hump of the LNRF-velocity profile,
and the realistic humpy frequencies, as observed by distant observers, can be expected
close to but smaller than ν R̃∞. Further, we denote rh the BL radius of definition of the humpy
oscillations frequency, where ∂V(ϕ)/∂ R̃ = (∂V(ϕ)/∂ R̃)max.
In the case of the Keplerian discs we obtain the “humpy frequency” to be given by the

relation

νh =
−r5

h − a
4(3rh + 2) + 2a3r1/2

h (3rh + 1)− 2a2r2
h (2rh − 5) + 2ar5/2

h (5rh − 9)

2∆hr2
h (r3/2

h + a)2

×

√

rh − 2−
4a2

rh(r2
h + a2) + 2a2 , (21)

where∆h = r2
h−2rh+a2. TheBLradiusrh where thepositivegradientof thevelocity profile

in terms of the proper radial distance reaches its maximum, so-called “humpy radius,” is
given by the condition

∂

∂r

(
∂V(ϕ)

∂ r̃

)

= 0 (22)

leading to the equation

3a7(r + 2) + a6√r(21r2 + 18r − 4)− a5r(33r2 + 10r + 20)

+ a4r
√
r(45r3 − 62r2 − 68r + 16)− a3r3(83r2 − 122r − 60)

+ a2r4√r(27r2 − 130r + 136)− 9ar5(7r2 − 26r + 24)

+ r7√r(3r − 2) = 0 , (23)

which must be solved numerically. The spin dependence of the humpy radius and the
related humpy frequency is illustrated in Fig. 2. The humpy radius rh falls monotonically
with increasing spin a, while the humpy frequency νh has a maximum for a = 0.9998,
where νh(max) = 607 (M⊙/M) Hz, and it tends to νh(a→1) = 588 (M⊙/M) Hz.
The ratios of the humpy frequency and the orbital and epicyclic frequencies at the

humpy radiusweredetermined inStuchlík et al. (2007b) revealing almost spin-independent
asymptotic behaviour for a → 1 represented closely by the ratios of integer numbers,
νK :νv :νr :νh ∼ 46 :11 :3 :2, which imply a possibility of resonant phenomena between the
hump-induced and orbital or epicyclic oscillations. ForKeplerian discs, the ratios of the epi-
cyclic frequencies and the humpy frequency are given in the dependence on the black-hole
spin in Fig. 3.
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Figure 2.Spin-dependence of the humpy frequency νh and the humpy radius rh that is comparedwith
the Boyer–Lindquist radius of the innermost stable circular orbit. (Taken from Stuchlík et al., 2007d)

Themarginally stable tori have a structure that depends on the value of the specific angu-
lar momentum ℓ ∈ (ℓms, ℓmb). The oscillations of slender tori (ℓ ≈ ℓms) have frequencies
equal to the epicyclic frequencies relevant for test particle motion, but the frequencies of
non-slender tori are different, as shown for pseudo-Newtonian tori (Šrámková, 2005; Blaes
et al., 2007) and expected for tori in the strong gravitational field of Kerr black holes. There-
fore, comparison of the humpy frequencies and the epicyclic frequencies is relevant for the
slender tori only.
The humpy frequency is defined for all a > 0.99979 and all ℓ ∈ (ℓms, ℓmb), see Fig. 4.

It is important that in the field of Kerr black holes with 1 − a < 10−8, there is νh(a, ℓ) ≃
150 Hz (M/M⊙)−1 independently of a and ℓ (Stuchlík et al., 2007b). Further, the physically
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important case of tori admitting evolution of toroidal von Zeipel surfaces with the critical
surface self-crossing in both the inner and the outer cusps is allowed at ℓ = ℓcrit, where
ℓcrit " ℓms only slightly differs from ℓms, i.e., such tori can be slender, see Fig. 4. The ratios
of νr/νh, νv/νh and νo/νh are given for the tori with ℓ ≈ ℓms in Fig. 5. Their asymptotical
values, valid for 1− a < 10−6, are independent of both a and ℓ.
Of course, in realistic situations the hump-induced oscillation mechanism could work at

the vicinity of rh, with slightly different frequencies; we should take into account that the
shift of the radius, where the mechanism works, shifts both the locally measured (LNRF)
frequency (Eq. (19)) and the frequency related to distant observers (Eq. (20)). The zones
of radii, where the critical frequency ν R̃crit differs up to 1 %, 10 % and 20 % of its maximal
value (given by (∂V(ϕ)/∂ R̃)max) for thin (Keplerian) discs or 1 %, 5 % and 10 % of its
maximum for marginally stable discs with ℓ = ℓms, are given in Fig. 6. We can see (Fig. 6)
that the resonant epicyclic frequencies radii r3:1 and r4:1 are located within the zone of the
hump-induced oscillationmechanism in both thin discs andmarginally stable tori.
In Keplerian discs the sign changes of the radial gradient of the orbital velocity in LNRF

occur nearby the r = r3:1 orbit (with νv : νr = 3 : 1), while in the vicinity of the r = r3:2
orbit (with νv : νr = 3 : 2), ∂V(ϕ)/∂r < 0 for all values of a for both Keplerian discs and
marginally stable tori with all allowed values of ℓ. The parametric resonance, which is the
strongest one for the ratio of the epicyclic frequencies νv :νr = 3 :2, can occur at the r = r3:2
orbit, while its effect is much smaller at the radius r = r3:1, as noticed by Abramowicz et al.
(2003). Nevertheless, the forced resonance may take place at the r3:1 orbit. Notice that the
forced resonance at r = r3:1 can generally result in observed QPOs frequencies with 3 : 2
ratio due to the beat frequencies allowed for the forced resonance as shown in Abramowicz
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Figure 6.Positions of local extrema ofV(ϕ) (in BL coordinates) for Keplerian discs (a) andmarginally
stable discs with ℓ = ℓms (b) together with the locations of resonant orbits r3:1 and r4:1 (where the
resonance between the vertical and radial epicyclic oscillations takes place) in dependence on the
rotational parameter a of the black hole. Dashed curve corresponds to the maximum positive values
of theLNRForbital velocity gradient in termsof the proper radial distancewhere the critical frequency
ν R̃crit is defined, boundaries of shaded regions correspond to orbits where the velocity gradient giving
the characteristic frequency, ∂V(ϕ)/∂ R̃, reaches (a) 99 %, 90 %, 80 % and (b) 99 %, 95 %, 90 % of its
maximum. (Taken from Stuchlík et al., 2007b)

et al. (2004). But the forced resonance at r3:1 between the epicyclic frequencies, induced
by the humpy profile of V(ϕ), seems to be irrelevant in the case of microquasars, since all
observed frequencies lead to the values of the rotational parameter a < ac(K), as shown
by Török et al. (2005).

4 APPLICATIONOFTHEEXTENDEDRESONANCEMODEL

The extended orbital resonance model with hump-induced oscillations can be applied only
to black hole systems containing a near-extreme Kerr black hole candidates. One of the
most promising of such systems seems to be the microquasar GRS 1915+105, where the
extremely high spin a ∼ 1was predicted by continuous spectra fitting method (McClintock
et al., 2006). Another promising candidate for the near-extreme Kerr black hole could
be considered the Galaxy Centre SgrA∗. In fact, all the QPO frequencies observed in
GRS1915+105microquasar could be explained in the framework of theEXORM(Stuchlík
et al., 2007d; Slaný and Stuchlík, 2007). Therefore, we briefly summarize these results, and
thenwe consider the case of Sgr A∗, assuming relevance of all the three frequencies reported
by Aschenbach (Aschenbach, 2004, 2007).

4.1 GRS 1915+105

AssumingmassM = 14.8 M⊙ and dimensionless spin a = 0.9998 for the GRS 1915+105
Kerr black hole (see Stuchlík et al., 2007d; Slaný and Stuchlík, 2007 for details), the
EXORM predicts the following pattern of observable frequencies composed from the
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humpy and epicyclic frequencies and their combinations

ν1 ∼ (νr − νh) = (26 ± 2) Hz , (24)

νh ≡ ν2 = (41 ± 1) Hz , (25)

νr ≡ ν3 = (67 ± 1) Hz , (26)

ν4 ∼ (νr + νh) = (108 ± 2) Hz , (27)

ν5 ∼ (νv − νr) = (0.17 ± 0.01) kHz . (28)

The corresponding humpy radius is rh = 1.29. At such a radius, the vertical epicyclic
frequency of a particle orbiting the Kerr black hole with the mass and spin given above
reaches the valueνv = (0.23±0.01) kHz that enters thehighest (combinational) frequency.

4.2 SgrA∗

There are three frequencies related to the SgrA∗ QPOs (Aschenbach, 2004; Török, 2005):

νu = 1.445 mHz , νm = 0.885 mHz , νl = 0.459 mHz . (29)

These frequencies come in the rational ratio νu : νm : νl ∼ 3 : 2 : 1. Assuming EXORM
with the humpy and radial epicyclic frequency and their combinational frequencies, we
can distinguish three different cases of the resonant phenomena explaining the observed
frequencies.

νr :νh ∼ 3 :2

The observed frequency pattern is given by νu = νr, νm = νh, νl = νr − νh. The value of
the spin, given by the frequency ratio, and the humpy frequency are then given by (compare
Figs 2 and 3)

a3:2 = 0.999984 , νh(3:2) = 590
M⊙
M

Hz . (30)

Using the condition νm = νh, we obtainmass of the black hole to be

M = 0.667× 106 M⊙ . (31)

(Note that in this casewe have chosen – see Fig. 3 – the value of the spin at the region where
the frequency ratio νr :νh starts to be close to the asymptotical value of ∼ 3 :2.)

νr :νh ∼ 2 :1

The observed frequency pattern is given by νu = νr + νh, νm = νr, νl = νh. The value of the
spin and the humpy frequency are then given by (compare Figs 2 and 3)

a2:1 = 0.99925 , νh(2:1) = 567
M⊙
M

Hz . (32)

Using the condition νl = νh, we obtainmass of the black hole to be

M = 1.235× 106 M⊙ . (33)
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νr :νh ∼ 3 :1

The observed frequency pattern is given by νu = νr, νm = νr − νh, νl = νh. The value of the
spin and the humpy frequency are given by (Figs 2 and 3)

a3:1 = 0.999984 , νh(3:1) = 425
M⊙
M

Hz . (34)

Using the condition νl = νh, we obtainmass of the black hole to be

M = 0.926× 106 M⊙ . (35)

However, by analysing data of the orbits of stars moving within 1000 light hours of the
SgrA∗ black hole, its mass is estimated to be M ∼ 3.6 × 106 M⊙, and the error of the
estimate is given by (Ghez et al., 2005; Weinberg et al., 2005)

2.8× 106 M⊙ < M < 4.6× 106 M⊙. (36)

Clearly, the SgrA∗ black hole mass predicted by the three simple variants of the EXORM
are all completely out of the mass estimates given by relatively precise star-orbit measure-
ments. Therefore, we can conclude that theEXORMcannot be applied to explain theQPOs
observed in the SgrA∗ black hole candidate. Although we expect a fast rotating black hole
in the Galaxy Centre, it is probably not a near-extreme Kerr black hole that sites in SgrA∗.

5 CONCLUDINGREMARKS

The extended orbital resonance model with the hypothetical humpy oscillations could be
related to the QPO resonant phenomena in both thin Keplerian discs andmarginally stable
tori orbiting near-extreme Kerr black holes. The non-linear resonance is assumed between
oscillations with the humpy frequency and the radial or vertical epicyclic frequency. Both
parametric and forced resonance phenomena are possible, therefore, the combinational
frequencies are allowed too. Generally, more than two observable oscillations are predicted.
The EXORM can successfully explain all five QPO frequencies observed in the mi-

croquasar GRS 1915+105 (Stuchlík et al., 2007d), where a near-extreme black hole with
a ∼ 1 is predicted by spectral X-ray continuum fitting (McClintock et al., 2006). Al-
though Middleton et al. (2006) refer to a substantially lower, intermediate value of the
black-hole spin, a ∼ 0.7, to which the EXORM cannot be applied, the recent analysis
by Narayan et al. (2007) and McClintock et al. (2007) demonstrated convincingly that the
near-extreme black hole is more probable there, making the predictions of the EXORM still
well viable. This model is successfully applied to explain QPOs observed also in the case of
the other microquasar XTE J1650−500, and in the near-extreme intermediate-mass Kerr
black hole candidate in the systemNGC 5408 X-1 (Slaný and Stuchlík, 2007).
On the other hand, the EXORM is not able to explain, in any of its variants, the QPOs

observed in the SgrA∗ source, i.e., in the Galactic Centre Kerr black hole. The differences in
the black hole mass estimated by the EXORM and by analysing the star orbits in vicinity of
the black hole are too high to believe that some more exact QPOs measurements could give
a solution of this discrepancy. On the other hand, it is worth to note that the Sgr A∗ QPOs,
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if true, could be explained within the multiresonance model based on the assumption of
strong resonances of oscillation with the orbital and both epicyclic frequencies (Stuchlík
et al., 2007a). The spin estimated in this case is∼ 0.983, corresponding to a fast rotating,
but not near-extreme Kerr black hole.
We can conclude that the EXORM could be considered as a promising model of QPOs in

near-extreme Kerr black holes systems, where the oscillations occur in the innermost parts
of the accretion disc. The model enables very precise measurements of the black hole para-
meters, in particular, of the black hole spin since its value is given (usually) by the frequency
ratio of the humpy frequency and the radial epicyclic frequency. However, the predictions
of the EXORM have to be confronted to the black hole parameter estimates coming from
other methods, as those based on the optical phenomena in strong gravitational fields, e.g.,
the spectral X-ray continuum fitting, the profiled spectral (Fe-K) lines fitting, time delay
methods, or by methods based on the orbital motion analysis. The present situation seems
to be rather controversial, however, we believe that in future, with developing both the the-
oretical models and observational techniques, we could be able to understand the accretion
phenomena inmuch deeper detail as compared to the present understanding.
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ABSTRACT
While they occur, gamma-ray bursts are nearly as bright as the visible universe.
We briefly discuss the observational constraints on the macrophysical properties
of the long-duration variety, and what we infer to be the relevant microphysics for
their evolution. Finally, we present simulations of the early stages of long-duration
gamma-ray bursts (LGRBs), starting fromaphysical progenitor andusing smoothed
particle hydrodynamics. We show that self-gravitating disks formed around black
holes during stellar core-collapse are hydrodynamically unstable to forming spiral
structure which facillitatesLGRBproduction.

Keywords: Gamma-ray bursts – supernovae Ic – collapsar – accretion disk –
hydrodynamic instabilities – Toomre criterion – smoothed particle hydrodynamics –
neutrino cooling

1 INTRODUCTION

Even by astrophysical standards, gamma-ray bursts (GRBs) are extreme phenomena:
though stellar-sized in origin, they are some of the brightest events in the universe, re-
leasing up to ≈ 1051–1052 erg in a few seconds, and they have been observed out to a
redshift distance of z = 6.29, or roughly 12.7 billion lightyears. Yet they are also a relatively
recent discovery, first reported by Klebesadel et al. (1973), and our understanding of these
bursts has had to both increase and adapt swifly during these few intervening decades.
The first 16 GRB detections were recorded by the Cold War era Vela satellites, designed

to detect high-energy photons from nuclear test explosions on Earth. Since then, thou-
sands have been catalogued, and valuable information has been gained from subsequent
observations spanning the electromagnetic spectrum – perhaps one day to be augmented
by gravitational wave data aswell. Even so, we still have far from a complete picture of what
makes GRBs, from their progenitor(s) to their source of energy. Here, we present a model
whose basic form is provided by observational constraints and by some theoretical argu-
ments in order to explain one class of GRBs. We first review in an “evolutionary” fashion
the macrophysics of GRBs and the self-consistent requirements imposed upon any model.
Once we believe ourselves to be on firm, theoretical ground, we then discuss the numerical

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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implementation of relevant microphysics. Finally, we present our initial simulations and
results for producing a GRB.

2 OBSERVATIONALBACKGROUNDANDCONSTRAINTS

Asmentioned,GRBswerefirst reported in the1970s. Asan increasingnumberofdetections
were made, they were determined to be distributed isotropically across the sky, and to be of
cosmic origin (redshift distance z ≥ 0.0085). Initial estimates of the total energy released
by GRBs based on typical distances to sources were extraordinarily large, ≈1053–1054 erg.
These were quickly scaled down by orders of magnitude by the assumption that observed
gamma-rays were released in relativistic jets, as evinced by achromatic breaks in observed
lightcurves (e.g., Rhoads, 1997).
Observations of temporal duration and spectral hardness ratios led to the classification

of two types of burst: short (SGRBs, < 2 s) and long (LGRBs, > 2 s), each with distinct
progenitor scenarios. Here, we focus on the latter case of LGRBs, which have all been
observed at z ≥ 1. A recent a3ndmajor breakthrough for the understanding of these events
came with their observed association with rather energetic core-collapse (Type Ic) super-
novae (SNe): first, with GRB980425 and SN1998bw (Galama et al., 1998), and then with
GRB030329 andSN2003dh (Stanek et al., 2003). Subsequent studies of host galaxies have
shown that LGRBs tend to occur in low-metallicity star forming regions (SFRs, Le Floc’h
et al., 2003; Conselice et al., 2005). Therefore, the emergent picture of a LGRBwas that of
a massive (short-lived), stellar progenitor collapsing in on itself, which led to the adoption
of the “Collapsar” model (Woosley, 1993) originally used in explaining core-collapse SNe;
very briefly, the scenario assumes the production of a jet from a disk-black hole system
formed in a collapsing star.
There are a number of important constraints placed upon the collapsar progenitor and

its early evolution. Firstly, the progenitor must be massive (> 25 M⊙ for a single-star),
in accordance with the large remnant masses (2.9 M⊙ for SN1998bw) and associated SNe
kinetic energies (related to the amount of nickel produced), ∼ 2 × 1052 erg; some astro-
nomers created a high-energy extension of SNe, calling GRB-related events hypernovae
(HNe), though further associations have not necessarily borne this out. Also, the progen-
itormust not possess an envelope, as the SNe Ic spectra necessarily contained neither H nor
He lines. The lack of an envelope further assists jet propagation – its energy is not dissipated
into kinetic energy (the “baryonmassloading problem”).
In order to form a disk,we require the progenitor to have rapid rotation, so that the entire

star does not collapse directly into a black hole (BH) but instead becomes centrifugally
balanced around a compact central object formed by the core, such as a neutron star (NS),
which accretes material; disk-BH systems are common in astrophysics (quasars, X-ray
binaries, etc.) and tend to produce collimated outflows aligned along or near the rotation
axis; such systems are also typically very efficient in converting the energy of infallingmatter
into outgoing radiation. This rotation requirement is also consistent with the observed
polarisation of the associated SNe/HNe (Mazzali et al., 2005). Any centrifugally supported
disk must have enough specific angular momentum to remain outside the BH innermost
stable circular orbit (ISCO), which, for a 2 M⊙ BH, is given by jISCO ≥ 2 × 1016 cm2 s−1.
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Also, we expect a stable disk-BH system to exist for approximately the duration of the burst,
up to the order of 1000 s (which also requires the disk to be at least a sizeable fraction of
the mass of the central BH at any given time, even if it gains material from the continually
infalling star).
Finally, while the exact mechanism for producing the jets of gamma-rays is uncertain,

most models, such as the Blandford–Znajek mechanism (Blandford and Znajek, 1977)
or neutrino annihilation (Paczyński, 1990; Popham et al., 1999), require high accretion
rates, ∼ 0.01–0.1 M⊙ s−1, onto the central BH. Assuming that the system contains suffi-
cient angularmomentum to form a centrifugally balanced disk in the first place, it becomes
a formidable challenge to transfer that angular momentum outwards through the disk effi-
ciently to meet the necessary accretion rates.
We shall not go into detail on the subject here, but, very briefly, we meet the first three

requirements by utilising a pre-collapse progenitor evolved from the merger of two helium
stars (more details below). The remnant object possesses enough mass; most importantly,
the merging process is able to eject the H and He envelopes from the system during a
common-envelope phase, as well as to retain sufficient angular momentum to form a cent-
rifugally balanced disk (which are nearly mutually exclusive goals for realistic single-star
progenitors, where losing an envelope results in losing angular momentum). The high BH
accretion rate remains the crucial requirement for this model to meet.
We note that much of the matter in the collapsing star will be quite hot and dense, and

that it will be shocked to higher temperatures (T > 1010 K ∼ 0.1 MeV) and densities
(ρ > 109 g cm−3) as it settles into the equatorial plane. Also, the disk/central object mass
ratio is quite large compared to most astrophysical systems. Such self-gravitating disks
are susceptible to local clumping and in particular globally unstable to forming structures
such as spiral arms, which are quite efficient at transferring angular momentum outwards
andmatter inwards. A hydrodynamically unstable diskwould provide a fully self-consistent
model for forming LGRBs, and we provide preliminary results in support of this scenario
below.

3 DISK STABILITY ANDMICROPHYSICS

In studying galaxies, Toomre (1964) provided a useful dimensionless parameter, QT, for
characterising the hydrodynamic stability of a (galactic) disk against forming clumps or
spiral arms, since called the Toomre parameter:

QT =
κcs

πGΣ
, (1)

where κ is the epicyclic frequency (Ω for a Keplerian case); cs, the local sound speed; G,
the gravitational constant;Σ , the surface density of the disk; and QT " 1 describes global
stability. This parameter has been successfully applied to other disk-like systems, notably
proto-stellar and planetary disk studies (e.g., Pickett et al., 2000), and also to analytical
models of GRB disks by Panaitescu et al. (2001). The parameter compares the stabilising
effects of rotation (centrifugal support) and large sound speed (essentially, a higher thermal
pressure resisting compression and clumping), to the destabilising effects of self-gravity
(largerΣ and, locally,ρ) and cooling (so that thermal support against clumping is reduced).
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In the case of disks formed in collapsars, the dense material is optically thick to radiation
but is in a regime of T -ρ phase space where cooling via neutrino emission is important by
such processes as pair annihilation, the photoneutrino process and plasmon decay, given
respectively by

e+ + e− → νe + ν̄e , (2)

e± + γ→ e± + νe + ν̄e , (3)

and

γphot→ ν + ν̄ , (4)

where e+ are positrons; e−, electrons; γ, photons; ν(e), (electron-)neutrinos; and ν̄(e),
(electron-)antineutrinos. Such cooling is quite rapid, efficient and destabilising to col-
lapsar disks.

4 SIMULATINGWITHSPH

We now test the self-consistency of the collapsar model described above by using an adap-
ted version of the smoothed particle hydrodynamics (SPH) code, GADGET (Springel, 2005).
Briefly, SPH approximates a continuous fluid with discrete particles, interpolating (and
hence smoothing) values of the fluid equations. Generally, SPH is good for modelling sys-
tems with large and changing density ranges, such as we expect for the collapsar. GADGET,
in particular, is a versatile code used for simulating stellar to galactic to cosmological scales,
and it is easy to implement additional physics (i.e., to accompany the hydrodynamics and
gravitation), such as cooling via neutrino emission and interaction with a NS/BH central
object. We discuss further expansions of the code in Section 5.
Here, we simulate the 3D evolution of a collapsing progenitor, the formation and evolu-

tion of a disk-BH system, and the development of spiral structure which facilitates angular
momentum transfer and rapid accretion. The collapsar progenitor comes from the (1D)
resultant of the merger of two He stars (8 + 8 M⊙), evolved until the point of core collapse
by Fryer and Heger (2005). Wemap the 1Dmodel into a 3D star made of concentric shells,
each with constant angular velocity. We begin our simulation at approximately 2 s after
core-collapse, when a proto-NS has formed from the homologous core, and an outgoing,
spherical rarefactionwave leads to the infall of further layers of the progenitor.
Following Colgate et al. (1993); Fryer (2006), we assume that around the central proto-

NS a hot, convective envelope has formed which, at radius r ≈ 1 × 107 cm, balances
the ram pressure of the infalling star with Ṁ/shell rates approximating those in similar
scenarios in Fryer (2006). We evolve the system in time, representing a neutron star by a
single, hydrodynamical body in the centre, which accretes matter and maintains a mass-
radius relation given by static proto-NS models of Nicotra (2006). At a maximum NS
mass (= 1.9602 M⊙, for this model) the central object becomes a BH, modelled as a free
boundary which accretes matter at the ISCO for a Schwarzschild BH, RISCO = 6 GM/c2.
The outer boundary condition of the simulationmimics continued infall, i.e., the outermost
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Equatorial Plane, Density (g cm-3);   log(ρmax)=9.80, t=0.750s
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Figure 1.Mass density contours of a thin slice of the inner collapsar region in the equatorial plane.
Arrows indicate high-density spiral arms.

boundary of SPH particles moves inwards but remains at a radius much greater than the
evolving accretion disk. We utilise a polytropic equation of state for the gas, with γ = 4/3.
In Figs 1 and 2, we show the mass density and entropy (per baryon), respectively, of the

central region of the collapsar at t = 750 ms after the beginning of the simulation. By
this point, the original central NS has just accreted enough mass to become a BH ≈2 M⊙.
The disk/BH mass ratio is ≈ 1/10 (defining the “disk” as material near the equatorial
plane with density ρ > 108 g cm−3), and the minimum value of the stability parameter
in the disk is QT = 1.3; indeed, the superimposed arrows show two spiral arms rotating
anti-clockwise, stretching outward from the central BH (shown as black dot, real size of
boundary, RISCO). The spirals are characterised by increased density and decreased entropy
compared tomatter at similar radii; the latter effect reflects the efficient cooling by neutrinos
which carries away both energy and entropy from these regions heated by compression.
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Equatorial Plane, Entropy per Baryon  (kb/N), t=0.750s
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Figure 2. Entropy per baryon contours of a thin slice of the inner collapsar region in the equatorial
plane. Arrows indicate spiral arms with low entropy (from neutrino cooling), which shock surround-
ingmaterial to high entropy and facilitate the inward radial motion of material.

Furthermore, the spiral arms shock surrounding material to noticeably higher entropy, a
process which also facilitates inward accretion of material. Values of the accretion rate onto
the central BH fall within the range, 0.04–0.08 M⊙ s−1.

5 CONCLUSIONS

Wehave shown, using a “real” progenitor, that collapsars can formcircum-BHdisks hydro-
dynamically unstable to the formation of spiral arms, and that the resulting spiral structure
provides a mechanism for meeting the requirements of the early stages of a LGRB (as we
currently understand them). The spiral instability develops in the disk on the short dynam-
ical timescales established in the system by the rapid rotation of the inner disk region. The
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high accretion rates onto the BH from the disk match those required theoretically to fuel
relativistic jets.
Here, we have only considered hydrodynamics and the important role of microphysics

enacted as cooling by neutrino production. We have not included magnetic effects, the
most relevant being the possible presence of the magnetic rotation instability (MRI), which
provides another mechanism for transferring angular momentum outward in disks. Other
groupshavebegun to implement idealmagnetohydrodynamics intodisk simulations,which
assumes a fluid of infinite conductivity, but we have chosen the opposite extreme; we plan
to estimate the susceptibility of forming relevantmagnetic fields in future work.
This simulation is wholly Newtonian, both in the self-gravity of the disk matter and

in the attraction of the central NS/BH source. While this approximation may be valid
throughout most of the disk outside the central region, we also plan to investigate the
inclusion of general relativistic effects in future simulations; given the rapid rotation in
the system, we assume the central NS and subsequent BH should possess interestingly
large angular momenta. In SPH studies of SGRBs, simulations of merging neutron stars
have approximated relativistic effects using conformal flatness (Oechslin et al., 2002), and
we plan to implement a similar scheme for our single BH. We expect this to alter the
accretion dynamics slightly, by changing the behaviour of the inner boundary, but probably
not disturbing the global dynamics of the disk and spiral structures.
Finally, resolution is an important issue for numerical modelling; these simulations com-

menced with ≈ 5 × 105 particles to represent a collapsing star; we plan to increase the
number of particles (and hence, the resolution) by at least an order of magnitude in further
studies, to minimise any computational effects of coarse graining. This will be particu-
larly relevant at the inner boundary, where we require the smoothing lengths of individual
particles to bemuch smaller than the radius of the central object in order to avoid numerical
artifacts in accretion.
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ABSTRACT
Relation between the lower and upper frequency mode of twin peak quasiperiodic
oscilations observed in neutron star X-ray binaries is qualitatively well fitted by the
frequency relation following from the relativistic precession model. Assuming this
model with no preferred radius and the probability of a twin QPO excitation being
uniform across the inner edge of an accretion disc, we compare the expected and
observed twin peak QPO distribution in the case of atoll source 4U 1636−53. We
find these two distributions highly incompatible.We also find that the observed dis-
tribution roughly corresponds to the expected one if an additional consideration of
preferred resonant orbits is included. We notice that our findings are relevant for
some disc-oscillationQPOmodels as well.

Keywords: X-rays: binaries – accretion: accretion disks – stars: neutron

1 INTRODUCTION

Several models have been outlined to explain observations of the kHz quasiperiodic os-
cilations (QPOs) in the X-ray fluxes from neutron-star binary systems, and it is mostly
preferred that their origin is related to orbital motion near the inner edge of an accretion
disc (see van der Klis, 2006; Lamb, 2003; Lamb and Boutloukos, 2007 for a recent review).
It is often argued that relation between the lower and upper QPO frequency mode (νL, νU)
is qualitatively well fitted by the frequency relation implied by the particular relativistic
preccesionmodel (Stella and Vietri, 1999). Sources roughly follow the relation given by the
model for central compact object massM ∼ 2 M⊙ (Belloni et al., 2007b).
In this paper we examine the twin QPO distribution given by the relativistic preccesion

model (in next the RPmodel) and compare it with those observed in the case of atoll source
4U 1636−53. We also discuss amodel including preferred orbits.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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2 APPLIEDOBSERVATIONALDATAANDTHEIRPARAMETRIZATION

The data we examine are taken from the study of Barret et al. (2005) and follow from
the shift-add procedure through continuous segments of observation (see Méndez et al.,
1998; Barret et al., 2005 for details). We seek over data corresponding to nine years of
4U 1636−53 monitoring by RXTE for all detected twin peak QPOs, i.e., for simultaneous
detections of the lower and upper kHzQPO oscillations.
Note that we choose the twin peak QPO occurences as there is no apparent link between

distributions of the individual QPO modes (see Bulik, 2005; Török et al., 2007b). We take
into account only detections of oscillations above 500 Hzwith quality factor (defined as the
QPO centroid frequency over the full-width of the peak at its half-maximum) Q ≥ 3 and
significance (defined as the integral of the Lorentzian fitting the peak in PDS divided by its
error) S ≥ 3.
For the purposes of our study we parametrize the twin peak QPO occurences by their

frequency ratio

R ≡
νU

νL
. (1)

Asdiscussed in the next section this choicemakes our discussion less dependent on the concrete
properties of the central compact object in 4U 1636−53. It also avoids possible confusion of
the linear parametrization with a parametrization of an individual QPO mode distribution.
Further advantage of this choice in the relation to resonant QPO models is discussed in
Section 3.2.

3 MODELLINGDISTRIBUTION

In the RP model (Stella and Vietri, 1999) the kHz QPOs represent a manifestation of the
modes of a relativistic epicyclic motion of blobs in the inner parts of accretion disc. The
motion of a hot spot (radiating blob) is assumed to be nearly geodesic. Observed lower
QPO oscillation frequency is then related to the relativistic precession of the orbiting hot
spot while the upper QPO oscillation is associated directly to its Keplerian frequency

νl(r) = νP = νK(r)− νr(r) , νU(r) = νK(r) , (2)

where νK, νr, νθ are Keplerian and radial or vertical epicyclic frequencies of the geodesic
motion and νP is the periastron precession frequency.
In a given axially symmetric spacetime, the relevant angular velocities of the azi-

muthal, radial and vertical “quasielliptic” orbital motion reads in the spherical coordin-
ates r, θ,φ (see, e.g., Abramowicz et al., 2003a),1

ΩK = uφ/ut , (3)

ω2
i =

(gt t +ΩK + gtφ)
2

2gii

(
∂2U
∂i2

)

ℓ

, (4)

1 Henceforth we already use the geometrical units (c = G = 1, M = GM∗/c2 , r = r∗ , t = ct∗), where the
asterisk denote the standard units.
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with gµν being components of the metric tensor, andU being the effective potential for the
equatorial geodetical motion given by the standard relation

U(r, θ, ℓ) ≡ gt t − 2ℓgtφ + ℓ2gφφ ,

where ℓ denotes the specific angularmomentum of the orbiting test particle

ℓ = −
uφ
ut

;

for a Keplerian motion ℓ = ℓK(r, θ). In the following we suppose the external neutron
star spacetime described by the Hartle–Thorne metric (Hartle and Thorne, 1968) which
represents the solution of vacuum Einstein field equations for the exterior of rigidly and
relatively slowly rotating, stationary and axially symmetric body. The components gµν ,
µ, ν ∈ {t, r, θ,φ} of relevant metric tensor together with explicit formulae (3), (4) derived
in Abramowicz et al. (2003a) are given in the Appendix A.

3.1 Distributionmodel I

Let us assume that there is no preferred radius in theRPmodel and the probability of aQPO
excitation is uniform distributed across the inner part of the accretion disc. Then after a
sufficient integration time the number of QPO excitations (and detections) dn(r) should be
equal for any given radius r when related to the unit length in the radial direction
dn
dr̃

= const , dr̃ =
√
grr dr , (5)

where r̃ denotes a proper distance in the radial direction in the equatorial plane of the disc.
Considering mass M , angular momentum j and quadrupole moment q of the central

compact object, one may find from relations (1), (2) and (5) a QPO distribution dn/dR
which is illustrated in Fig. 1.2

3.1.1 Properties of central compact object and implied distribution

Because the parameters M, j and q of the central compact object in 4U 1636−53 are
not known, similarly to the other QPO sources, i.e., Barret et al. (2005), we produce an
averaged distribution (in next the mean distribution) dn/dR for a family of sources. The
family we consider is characterized by parameters M ∈ (1.2M⊙, 2.2M⊙), j ∈ (0, 0.14)
and q ∈ ( j2, 6 j2)with a Gaussian distribution on a 2σ level for each interval

p(xi) =
w

σ
√

2π
exp

[
−

(xi − x̄i )2

2σ 2

]
,

where {M, j, q} ∋ xi ∈ (x̄i ±∆xi) and 2σ = ∆x .

2 Strictly speaking, thedensitydn/dR is a functionof j andq, independentofM – frequencies (2) scalewith1/M,
nevertheless, themass still play a role for finite distributions if observational restrictions are connected to theQPO
frequency.
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Figure 1. The distribution function dn/dR for two representative values of the angularmomentum j
and Kerr limit of quadrupole moment q = j2. Shadow in the inserted figure roughly indicates
relevant part of the accretion disc.

For hundred sources we produce ∼ 200 datapoints per each source corresponding to
a constant density dn/dr̃ in the region located between the radius corresponding to the
maximum of radial epicyclic frequency and a marginally stable orbit.3 We also discard any
datapoints below νL = 500 Hz in order to obtain results comparable with our observational
data as these are restricted by the same limit. To mimic an observational error we blur the
implied frequencies with the 3%Gaussian error on a 2σ level of confidence.
We find that the variations of individual distributions to the mean are rather small which

follows from the partial 1/M scaling of the orbital frequencies (2) and from small influence
of the low neutron star angular momentum to the frequency ratio R (see Fig. 1). Within
the considered radial range the ratio R is a monotonic and decreasing function of the
radial coordinate, changing from R = 1 to R ∼ 2.4 Maximum variations ∆R( j, q) =
R(rmax, 0, 0) − R(rmax, j, q) at the maximum of the radial epicyclic frequency within the
examined interval of the angularmomentum do not exceed∆R ∼ 0.02.
The mean distribution therefore rather well represents all the considered combinations

(M, j, q). The mean distribution is shown in Fig. 2a together with the “Schwarzschild”
distribution ( j = 0 and q = 0). Fig. 2b provides a comparison to the observational data.

3 The considered radial interval agrees with rough observational constraints to themodel (see, e.g., Belloni et al.,
2007b).
4 The value R = 1 represents rather asymptotic number corresponding to the marginally stable circular orbit.
Notice also that for the Schwarzschild spacetime the value at the maximum of radial epicyclic frequency reads
exactly R = 2 and slowly decreases with the increasing angular momentum j (see, e.g., Török and Stuchlík,
2005).
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Figure 2. (a) The twin peakQPOdistribution implied byRPmodel with no preferred orbits (model I).
Colours correspond to: Grey – averaged distribution, black – “Schwarzschild” distribution ( j =
0, q = 0), white – j = 0.3, q = 0.09). Vertical axes scale is arbitrary for a given distribution. (b) The
observed twin peakQPO distribution. (c) The distributionmodel II (see themain text).

3.2 Distributionmodel II

One can easily recognize from Fig. 2 that the constructed distribution (in next the model I)
significantly differs from the empirical one. We apply the Kolmogorov–Smirnov (KS)
test (Press et al., 1997) to quantify this statement. In terms of the test, the probability
that the constructed and the observed distributions come from the same parent distribution
is pKS ∼ 10−5 for any parametersM, j, q from the considered intervals.
The unsatisfactory result presented above is connected to the conclusions of the studies of

kHz QPO ratio distribution in the neutron star sources (Abramowicz et al., 2003b; Belloni
et al., 2005, 2007a; Török et al., 2007b) – the ratio distribution tends to cluster close to ratio
of small natural numbers.
It was proposed that the clustering can be connected to different instances of one or-

bital resonance (Török et al., 2007b) involving modes formally identical or similar to the
modes (2). In such a case it is impossible to model the underlying distribution without a
precise knowledge of the physical mechanism. Nevertheless, in Fig. 2c we show a mod-
ified version (model II) of the simulated distributional model I, satisfying the following
restrictions:

• The datapoints are created only close to the “resonant” radii with the ratio R = k/ l,
where k, l ∈ {1, 2, 3, 4, 5, 6}.
• The distribution of datapoints around the resonant radii is implied by the Cauchy–
Lorentz distribution in the ratio R

p(R) = wk/ l
λk/ l/π

(R − k/ l)2 + λ2
k/ l

.

• The weightswk/ l of individual Lorentzians are normalized as
∑

wk/ l = 1 , wk/ l ∼ 1/j2 , (6)
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where j is the higher number from the two k, l. The width of the Lorentzians is arbitrarily
given as λ = 0.013R so there is ∼ 97 % of datapoints relevant to the Lorentzians in the
interval R ∈ (1, 2).
• All the other properties are the same as in the case of model I.

The distribution guess (model II) above includes preference of orbits with the Keplerian
and periastron frequency being in resonant ratios, and its detailed properties are rather
arbitrary. Its comparison with observation gives the KS probability pKS ∼ 40 %within the
considered range of central compact object parameters.

4 CONCLUSIONS

The observational data we use correspond to all the RXTE observations of 4U 1636+53 till
2005 proceeded by the shift-add technique through continuous segments of observation.
The part of data displaying significant twin peak QPOs is restricted to about 20 hours
of observation represented in our study by 23 datapoints corresponding to the individual
continuous observations. It is needed for a further study to proceed this data by other
methods in order to obtain more detailed view of the distribution. However, in terms of the
RP model the 23 significant datapoints we use represent5 the statistics of ∼ 107 individual
hot spots averaged inwell defined waywhich allows us to conclude that

• The twin peakQPOdistribution obtained from the relativistic precession (RP)model under
the consideration of the QPO excitation probability being uniform across the inner part of
the accretion disc is highly incompatible with that given by observational data. This result
is independent of the choice of reasonable sample of intervals of parameters M, j, q .6
Because of the shape of resulting histograms (Figs 1 and 2a) the result is also independent
of the exact delimitation of the radial disc region (which we consider between a maximum
of the radial epicyclic frequency and the marginally stable circular orbit).
• On the other hand the arbitrary consideration of preferred “resonant” radii implies a twin
peak QPO distribution showing similarities to the observational one.7

Finally we notice that several QPO models (hot spot- or disc oscillations-like) introduce
frequency relations which are qualitatively and also quantitatively similar to those implied
by the relativistic precession model. Moreover, in the limit of the Schwarzschild spacetime
these relations coincide (Horák et al., 2007; Török et al., 2007b; Stuchlík et al., 2007).
Our discussion of quantitative distribution of observations is thus roughly relevant also
for those models, including the model considering the radial m = 1 and vertical m = 2
disc-oscillationmodes.

5 Under the assumption of the hot spot lifetime being equal to few orbits.
6 For completeness, we check also for “extreme values” like j ∼ 0.3.
7 It has been recently noticed (Török et al., 2007a) that the distribution can be well described (KS probability ∼
98 %) by a sumof twoLorentzians having the centroids at R = 1.51 and 1.28. Nevertheless the eventual relevance
of (exactly) these frequency ratios to a QPOmodel is not clear at present.
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APPENDIXA: FORMULAEFORORBITALGEODESIC FREQUENCIES IN THE
HARTLE–THORNEMETRIC

Components of the metric tensor

ds2 = gt t dt2 + grr dr2 + gθθ dθ2 + gφφ dφ2 + gφt dφdt + gtφ dtdφ ,

are given as

gt t = + (1− 2M/r)
(

1 + j2F t
1 + qF t

2

)
,

grr = − (1− 2M/r)−1
(

1 + j2F r
1 − qF

r
2

)
,

gθθ = −r2
(

1 + j2F θ
1 + qF θ

2

)
,

gφφ = −r2 sin2 θ
(

1 + j2F φ
1 + qF φ

2

)
,

gtφ = −2(M2/r) j sin2 θ ,

where

F t
1 = [8Mr4(r − 2M)]−1[u2(48M6 − 8M5r − 24M4r2 − 30M3r3 − 60M2r4

+ 135Mr5 − 45r6) + (r − M)(16M5 + 8M4r − 10M2r3 − 30Mr4 + 15r5)]
+ A1(r) ,

F t
2 = [8Mr (r − 2M)]−1 [5(3u2 − 1)(r − M)(2M2 + 6Mr − 3r2)]− G1(r) ,

F r
1 = [8Mr4 (r − 2M)]−1[(G2 − 72M5r)− 3u2(G2 − 56M5r)]− G1(r) ,

F r
2 = F t

2 ,

F θ
1 = (8Mr4)−1(1− 3u2)(16M5 + 8M4r − 10M2r3 + 15Mr4 + 15r5) + G3(r) ,

F θ
2 = (8Mr)−1[5(1− 3u2)(2M2 − 3Mr − 3r2)]− G3(r) ,

F φ
1 = F φ

1 ,

F φ
2 = F φ

2 ,
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and

G1 =
15r(r − 2M)(1− 3u2)

16M2 ln
r

r − 2M
,

G2 =
15(r2 − 2M2)(3u2 − 1)

16M2 ln
r

r − 2M
,

G3 = 80M6 + 8M4r2 + 10M3r3 + 20M2r4 − 45Mr5 + 15r6 ,

u = cos θ .

The angular velocity for corotating circular particle orbits reads

ΩK =
uφ

ut
=

M1/2

r3/2

[
1− j

M3/2

r3/2 + j2F Ω
1 (r) + qF Ω

2 (r)
]

,

where

F Ω
1 (r) = (48M7 − 80M6r + 4M5r2 − 18M4r3 + 40M3r4 + 10M2r5

+ 15Mr6 − 15r7)[16M2(r − 2M)r4]−1 + H (r) ,

F Ω
2 (r) =

5(6M4 − 8M3r − 2M2r2 − 3Mr3 + 3r4)

16M2(r − 2M)r
− H (r) ,

H (r) =
15(r3 − 2M3)

32M3 ln
r

r − 2M
.

The epicyclic frequencies of circular geodesic motion are given by formulae

ω2
r =

M(r − 6M)

r4

[
1 + j H1(r)− j2H2(r)− qH3(r)

]
,

ω2
θ =

M
r3

[
1− j I1(r) + j2 I2(r) + q I3(r)

]
,

where

H1(r) =
6M3/2(r + 2M)

r3/2 (r − 6M)
,

H2(r) = [8M2r4(r − 2M)(r − 6M)]−1(384M8 − 720M7r − 112M6r2 − 76M5r3

− 138M4r4 − 130M3r5 + 635M2r6 − 375Mr7 + 60r8) + J (r) ,

H3(r) =
5(48M5 + 30M4r + 26M3r2 − 127M2r3 + 75Mr4 − 12r5)

8M2r(r − 2M)(r − 6M)
− J (r) ,

I1(r) =
6M3/2

r3/2 ,

I2(r) = [8M2r4(r − 2M)]−1(48M7 − 224M6r + 28M5r2

+ 6M4r3 − 170M3r4 + 295M2r5 − 165Mr6 + 30r7)− K (r) ,

I3(r) =
5(6M4 + 34M3r − 59M2r2 + 33Mr3 − 6r4)

8M2r(r − 2M)
+ K (r) ,
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with

J (r) =
15r(r − 2M)(2M2 + 13Mr − 4r2)

16M3(r − 6M)
ln

r
r − 2M

,

K (r) =
15(2r − M)(r − 2M)2

16M3 ln
r

r − 2M
.

For completeness, the relation determining the marginally stable circular geodesic reads

rms = 6M

[

1− j
2
3

√
2
3

+ j2
(

251647
2592

− 240 ln
3
2

)
+ q

(
−

9325
96

+ 240 ln
3
2

)]

.
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ABSTRACT
The kHz quasiperiodic oscillations (QPOs) observed in low-massX-ray neutron star
binaries aremost likely connected to the orbitalmotion in the accretion disc and show
datapoint clustering of frequency ratio between the upper and lower QPOs in small
natural numbers. It is shown for the atoll source 4U 1636−53 that using theHartle–
Thorne metric to describe the neutron star spacetime, the data clustered around the
frequency ratios 3/2 and 5/4 could be fitted by threemodels (Relativistic Precession,
Vertical Precession and Total Precession) involving the hot spot orbital motion with
Keplerian, radial epicyclic and vertical epicyclic frequencies. We demonstrate that
with taking into account the hotspots interaction with the neutron star magnetic
field the discussed three models can provide good fits implying reasonable values of
the neutron star mass and angular momentum. Therefore the hypothesis of more
instances of one orbital resonance has the potential to explain the kHz QPO nature
in the source 4U 1636−53.

Keywords: X-ray – neutron stars – binaries – accretion discs – QPOs

1 INTRODUCTION

General belief dominating in the astrophysical community links the observed neutron star
kHzQPOs to the orbital motion near the inner edge of an accretion disc.
The ratio between frequencies of the upper and lower observed twin peak QPO cluster

close to ratios of small natural numbers, most often close to the 3/2 value, but the other
rational ratios 5/4 and 4/3 occur in some sources as well. The class of QPOs orbital
resonancemodels considers a resonance betweenKeplerian and epicyclic frequencies of the
geodesic motion.

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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Figure 1. Left, from Stuchlík et al. (2007); Horák et al. (2007): The twin QPO rms amplitude
difference together with the lower frequency quality factor as a function of the frequency ratio. It has
been recently shown (Horák et al., 2007) that such a behaviour may result from the resonant energy
exchange between two time-dependent eigenfrequency modes. Right, from Stuchlík et al. (2007);
Horák et al. (2007): The frequency correlation in the atoll source 4U 1636−53. Curve νK determines
the upper QPO frequency following from the relativistic precession model (Stella and Vietri, 1999)
under the consideration of the gravitational field described by the Schwarzschild metric with the
central mass M = 1.84 M⊙, the grey curve denotes the same relation but for M = 2 M⊙, i.e., the
trend reported by Belloni et al. (2007b). Note that the actual (observed) frequencies of the resonance
are allowed to differ from given resonant eigenfrequencies (Landau and Lifshitz, 1976; Abramowicz
et al., 2005).

The results of several studies (Belloni et al., 2005; Barret et al., 2005, 2006; Abramowicz
et al., 2005; Méndez, 2006; Barret et al., 2006) indicate that for a given source the upper
and lower QPO frequency can be traced through the whole observed range of frequencies
but the probability to detect both QPOs simultaneously increases when the frequency ratio
is close to the ratio of small natural numbers, namely 3/2, 4/3 and 5/4 in the case of six
atoll sources (Stuchlík et al., 2007). In Fig. 1 we show correlation corresponding to the
occurences of twin peaks for the atoll source 4U 1636−53 taken from Abramowicz et al.
(2005), method A in the paper. This correlation was obtained by the shift-add (Méndez
et al., 1998) fitting of continuos segments of observations from all the at available RXTE
data (see Barret et al., 2005, 2006; Abramowicz et al., 2005 for details). We stress that
contrary to the studies considering separated single QPO distributions, e.g., the recent
paper of Belloni et al. (2007a), the twin peakQPO distribution examined here includes only
simultaneous significant detections of bothQPO frequencies (i.e., the detections of both the
peaks above 2.5σ significance having quality factor higher than 3). These two approaches
in counting the number of occurences are different, but both legal being dependend on the
reason (and assumptions) of the counting.
In the sense described above, the atoll source 4U 1636−53 shows twin peak clustering

around two distinct values (3/2 and 5/4) of the frequency ratio. The same frequency ratios
correspond to the change in sign of the twin peak QPO amplitude difference, suggesting
existence of a resonant energy overflow (Stuchlík et al., 2007; Horák et al., 2007). We
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explore the idea of Török et al. (2007) that the two clusters may follow from different
instances of one orbital resonance.

2 ORBITALFREQUENCIESOFGEODESICMOTIONCLOSE TOROTATING
NEUTRONSTARS

The correct treatment of an orbital motion close to (rotating) neutron stars requires the
general relativistic approach. For a given axially symetric spacetime the angular velocities of
the azimuthal, radial and vertical “quasielliptic” orbital motion read (see, e.g., Abramowicz
et al., 2003a)

ΩK = uφ/ut , ω2
i =

(
gtt +Ω± gtφ

)2

gii

(
∂2U
∂i2

)

ℓ

, (1)

where gµν are components of the line element, i ∈ (r, θ) and U is an effective potential
U(r, θ, ℓ) ≡ gtt − 2ℓgtφ + ℓ2gφφ , with ℓ denoting the specific angular momentum of
the orbiting test particle ℓ = −uφ/ut . In the following we consider Keplerian motion
and l = lK(r, θ). Due to the inequality between the azimuthal and radial frequency, the
eccentric orbits waltz at the periastron precession frequency νP and in addition the orbits
tilted relative to the equatorial plane of the spinning central mass wobble at the nodal (often
called Lense–Thirring) precession frequency (e.g.Misner et al., 1973)

νLT = νK − νθ , νP = νK − νr .

Both the declination of the quasi-ellipse plane and position of the periastron then reach the
initial state simultaneously in the period characterized by the total precession frequency

νT = νP − νLT = νθ − νr .

We consider the external neutron star spacetime described by the Hartle–Thorne met-
ric (Hartle and Thorne, 1968), which represents the solution of vacuum Einstein field
equations for the exterior of rigidly and relatively slowly rotating, stationary and axially
symmetric body, and the explicit form of Eq. (1) derived by Abramowicz et al. (2003a).

3 TESTINGTHEHYPOTHESISOF ARESONANCEBETWEENTWO
TIME-DEPENDENTEIGENFREQUENCYMODES

3.1 Frequency identification

Usually the n :m orbital resonant models assuming a non-linear resonance between Kep-
lerian and/or epicyclic frequencies (see, e.g., Abramowicz et al., 2004) identify the resonant
eigenfrequencies ν0

L , ν0
U as

ν0
L = νr(rn:m ) , ν0

U = νv(rn:m ) νv ∈ [νθ , νK] ,
νv(rn:m )

νr(rn:m )
=

n
m

. (2)
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where n,m are small natural numbers and rn:m is the generic resonant radius.
In thecaseof a considerablyweak forcedorparametric non-linear resonance (Landauand

Lifshitz, 1976), the upper and lower observed QPO frequencies νL and νU are related to the
resonant eigenfrequencies either directly νL

.= ν0
L , νU

.= ν0
U, or as their linear combinations

νL
.= αν0

L , νU
.= βν0

U, where α and β are small integral numbers.
In general case of a system in a non-linear resonance, the observed frequencies differ

from resonance eigenfrequencies by a frequency corrections proportional to the square of
small dimensionless amplitudes (Landau and Lifshitz, 1976). It was shown byAbramowicz
et al. (2003b) that a resonance characterized by one pair of eigenfrequenciesmay reproduce
the whole range of frequencies observed in a neutron star source. Later Abramowicz et al.
(2005) considered the idea of one eigenfrequency pair (so called resonant point in the
frequency-frequency plane) common for a set of neutron star sources. It was found that the
coefficients of linear fits well approximating individual sources are anticorrelated, in good
accord with the non-linear resonance and the hypothesis of one eigenfrequency-pair. On
the other hand this approach, incorporating certain difficulties (e.g., the extremely large
extension of the observed frequency range), is not proved yet, and some observational facts
like the multi-peaked ratio distribution suggest that more then one resonant points may be
responsible for the almost linear observed frequency correlation (Stuchlík et al., 2007).
In next we focus on the hypothesis of more resonant points corresponding to different

instances of one orbital resonance and suppose that the observed frequencies are close to
the resonance eigenfrequencies, i.e., that the observed frequency correlation follows the
generic relation between resonant eigenfrequencies,

νL ∼ ν0
L , νU ∼ ν0

U . (3)

We checked in the Hartle–Thorne spacetimes that the ratio between the Keplerian (or
vertical epicyclic) frequency and radial epicyclic frequency monotonically increases with
decreasing radius r whereas the Keplerian (vertical epicyclic) frequency increases (Stuchlík
et al., 2007). In other words, for the models given by Eq. (2) considering resonance
between Keplerian (vertical epicyclic) frequency and radial epicyclic frequency satisfying
relation (3), the ratio of observed frequencies should increase with increasing QPO fre-
quency, but that is opposite to what is observed.
However, such relations are not the only possible in the framework of resonance models,

and inBursa (2004) so called vertical precession resonance introduced in order tomatch the
spin estimated from fits of the X-ray spectral continua for the microquasar GRO J1655−40
was discussed. The resonance should occur between the vertical epicyclic frequency and
the periastron precession frequency fulfilling the relation (Bursa, 2004)

ν0
L (r) = νP(r) = νK(r)− νr(r) , ν0

U(r) = νθ (r) , “Bursa” (4)

for a particular choice of the resonant radius r defined by the condition νu = 3/2νl.
As noticed in Török et al. (2007), for the Schwarzschild spacetime the relations (4)

coincide with those following from the Relativistic Precession model (Stella and Vietri,
1999):

ν0
L (r) = νP(r) = νK(r)− νr(r) , ν0

U(r) = νK(r) . “Stella” (5)
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Opposite to the relations (2), the two relationships (4), (5) aswell as the other two relation-
ships (Stuchlík et al., 2007)

ν0
L (r) = νθ (r)− νr(r) , ν0

U(r) = νθ (r) “Total precession I”;
ν0

L (r) = νT(r) = νθ (r)− νr , ν0
U(r) = νK(r) “Total precession II”

imply increase of ν0
U for increasing ν0

L . Wefit theQPO frequencies observed in 4U 1636−53
by the four different frequency relationships presented above testing the hypothesis that an
appropriate resonance formulamay be responsible for all the observed datapoints.

3.2 Matching the data

In order to obtain a rough scan we calculated the above frequency relations in the Hartle–
Thorne metric for the range of the mass M ∈ 1–4 M⊙, the internal angular momentum
j ∈ 0–0.5 and a physically meaningful quadrupole momentum q with a step equivalent to
the thousand points in all three quantities, i.e., for 3-dimensional maps each having 109

points. Then, for each pair (M, j), we keep the value of the quadrupole momentum q
which gives the lowest χ2 with respect to the observed datapoints. For the Schwarzschild
spacetime (q = j = 0), when relations giving all the considered models merge, the best fit
is reached for the massM .= 1.77 M⊙, with a χ2 .= 400 ∼ 20 d.o.f.
Having a rough clue given by these maps we searched for local χ2 minima using the

Marquardt–Levenberg non-linear least squares method (Marquardt, 1963). The map for
the relation “Stella” coinciding with the prediction given by Relativistic Precession model
of Stella &Vietri and its representative fit are shown in Figs 2 and 3.
As previously realized, the relation “Stella” match the observational data most likely for

relatively high angularmomentum close to j ∼ 0.5 and the central massM ∼ 2.4–2.8 M⊙,
reaching (not very satisfactory) χ2 ∼ 15 d.o.f.. Unfortunately, the detailed analysis shown

Figure 2.Map of χ2 (inverse quality measure) of the fits by relation “Stella.”
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Figure 3. The best fit reached by relation “Stella.”

that the other three relations do not provide better results, although the mass estimates
could be lower in comparison with the estimate given by Relativistic Precession model.

4 DISCUSSION

The discussed geodesic relations provide fits which are in good qualitative agreement with
general trend observed in the neutron star kHzQPO data (see Belloni et al., 2007b). Never-
theless, no one of this relations provides really good fits (we checked for the other five atoll
sources that trends are the same as for 4U 1636−53). Moreover, the best fits require rather
unrealistic values of mass and angularmomentumwith respect to the present knowledge of
the neutron star equation of state (Glendenning, 1997) as tested in Urbanec et al. (2007).
This is, of course, fundamental problem for any model considering the presented geodesic
frequency relations, and not only for their resonant interpretation.
To check whether some non-geodesic influence can resolve the problem given above

we consider assumption that the effective frequency of radial oscillations may be lowered,
e.g., by the radiation blob interaction with the accretion disk or with the neutron star
magnetic field (of course, in such a case all the frequencies would be modified by dependent
corrections, nevertheless, in the case of themagnetic field it was shownbyAliev andGaltsov
(2006); Bakala et al. (2007) that corrections to radial epicyclic frequency should be the
strongest one). Then, in the lowest order approximation, the effective frequency of radial
oscillationsmay be written as

ν̃r = νr(1− k) ,

where k is a small constant.
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Figure 4. Behaviour of frequency-frequency plot implied by the relation “Stella” vs. those implied by
the “Total Precession II” for the case of ν̃r = νr and ν̃r = 0.8νr.

Figure 5. Themap of χ2 reached by the relation “Total precession II” for k ∈ (0, 0.2).

In Figs 4 and 5we show the qualitative behaviour of the frequency-frequency plot implied
by the relation “Stella” vs. the one implied by the “Total Precession relation II.” In the
frequency relation ν̃r is used instead of νr.
Because the discussed frequencies of the Keplerian orbital motion scale roughly as

1/M , the relations given by the “Total Precession” imply lower frequencies in terms of
the frequency-frequency plot that should require lower mass in comparison with the Re-
lativistic Precession model in order to fit the same datapoints. In general, the mass is
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Figure 6.χ2 (inverse qualitymeasure) of the fits by theRelativistic Precession frequency relationwith
ν̃r used instead of νr. For a given combination M, j , the coefficient k is chosen as the best one from
the interval 0–20%. A correction of the result presented in Stuchlík et al. (2007)

Figure 7. The representative low angular momentum fit for the “Total Precession II” relation. A
correction of the result presented in Stuchlík et al. (2007).

lower when the vertical epicyclic frequency is included instead of the Keplerian one in the
frequency relation. The same holds for substitution of νr by ν̃r.
Having this motivation and assuming lowering of both the χ2 of fits and related neutron-

star mass, we repeated the fitting procedure described above using the frequency ν̃r instead
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of νr for all four discussed relationships. The resulting quality of fits is shown in the Figs 6
and 7 for the three most convenient frequency relations together with a representative fit.

5 CONCLUSIONS

The modified frequency relations with ν̃r provide the best fits having χ2 ∼ 2–5 d.o.f.when
the coefficient k is in the interval 5–20 %. The mass required for a reasonable χ2 value is
then in the interval 1.6–1.8 M⊙ and the relevant angular momentum j ∼ 0.05–0.2. For
a fixed angular momentum, the frequency relations corresponding to the Total Precession
implies slightly lowermass than those includingRelativistic Precession.
We stress that the Total Precession frequency corresponds to similar effect as the relativ-

istic precession frequency but when considering a resonance, this may naturally include all
the three fundamental precessions: Keplerian, periastron, and Lense–Thirring. For the
perfect free particle motion, if the Keplerian and total precession frequency form rational
fractions, the trajectory is self-repeating (i.e., closed, Stuchlík et al., 2007).
The debate above touching the blobQPO interpretation requires further research includ-

ing realistic consideration of the frequency corrections. In addition the proposed multi-
resonance may also occur not between the considered hot spot modes but between similar
disc oscillationsmodes as well, which deserves attention too.
The observational facts like the ratio clustering and rms amplitudes difference behaviour,

together with the fact that the discussed frequency relations can provide good fits condi-
tioned by reasonable values of the neutron starmass and angularmomentum, indicates that
the hypothesis of more instances of one orbital resonance has the potential to explain the
neutron star kHzQPO nature.
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ABSTRACT
We further investigate the issue of clustering of kHz QPO frequency ratios in neut-
ron star low mass X-ray binaries. In this note we report on the recent analysis of
occurrences and properties of kHz QPOs in the source 4U 1636−53. Assuming that
kHz QPOs occur in pairs whose frequencies are linearly correlated, we find a prom-
inent frequency (or a narrow frequency region) that separates upper and lowerQPO
observations. The two QPO modes are then simultaneously detected mainly in the
vicinity of this transition points. We show that this can be understood in terms of
correlations of QPO properties with frequency, such as quality factor and rms amp-
litude. We find that rms amplitudes and quality factors of both QPOs nearly equal
at the transition point. In addition, the QPO frequencies are nearly commensurable
there. We investigate also five other atoll sources obtaining similar results.

Keywords: X-rays: binaries – stars: neutron – accretion, accretion disks

1 INTRODUCION

A long discussion has been devoted to the issue of distributions of kHzQPO in neutron-star
low mass X-ray binaries (LMXB). The first work in the subject was by Abramowicz et al.
(2003)whoexamined simultaneousdetections of theupper and lowerQPOs in theZ-source
Sco X-1. The authors show that that the ratios of the lower and upper QPOs frequencies
cluster most often close to the value νU/νL = 3/2. Recently, Török et al. (2007a) have
examined occurrence of the twin QPOs in the atoll source 4U 1636−53 applying the same
methodology asAbramowicz et al. (2003). They found that the distribution of the frequency
ratios of two simultaneously detected QPOs peaks near 3/2 and 4/3.
A preference of the commensurable frequency ratios data of kHz QPOs has been sys-

tematically checked by a group of Belloni and his collaborators. Belloni et al. (2005) have
re-examined the ratio distribution in Sco X-1 and later in a larger sample comprising four
atoll sources including4U1636 (Belloni et al., 2005). They argued that such clusteringdoes
not provide any useful information because frequencies of the two QPOs are correlated and

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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the distribution of the ratio of two correlated quantities is completely determined by the
distribution of one of them. Keeping this argument, a recent study of Belloni et al. (2007)
based on systematic eighteen month observation of 4U 1636−53 concludes that there is no
preferred frequency ratio.
In our view the disagreement in results of groups of Abramowicz et al and Belloni et al

comes from a confusion between the observed frequency distribution (the one, which can
be recovered from observed data) and the intrinsic distribution (the “invisible” one really
produced by the source). While Abramowicz et al. (2003) examine the frequency ratios
of the actually observed QPO pairs, analyses of Belloni et al. (2005, 2007) study primarily
distributions of frequencies of a single QPO and they make implications for the distribution
of the other, often invisible, QPO.
The incompatibility of the two observational single frequency distributions and that of

the double peak detections in 4U 1636−53 has been recently clearly demonstrated by Török
et al. (2007a). Assuming that kHzQPOs are intrinsically occurs in pairs whose frequencies
are linearly correlated, Török et al. (2007b) concluded that the observational upper an
lower QPO distributions are nearly complementary and find some prominent frequencies
(or a narrow frequency regions) that separate upper and lower QPO observations. The
existence of this prominent frequencies ismost likely implied byQPOquality factor and rms
amplitude correlations.

2 THELOWERVS. UPPERKHZQPODISTRIBUTION

In Figs 1a and 1c, we show frequency histograms of continuous observations from the study
of Belloni et al. (2007). This study is based on large systematic eighteen-months observa-
tional campaign resulting in the sample of 305 comparable continuous observations. The
authors found only three observations in which both QPOs were detected simultaneously.
We plot their data with the upper and lower QPO frequency being drawn in accordwith the
observational frequency correlation (νU = 0.701νL + 520 Hz; Abramowicz et al., 2005). It
is clear from the figure that the two distributions of lower and upper kHzQPO observations
are nearly complementary, i.e. the lower QPO mode is mainly seen above the 3/2 point,
while the upper QPOmode is seenmainly below it.
We conclude this section with a finding that when only one (lower or upper) QPO peak is

detected, it almost always occur above or below, respectively, the critical frequency corres-
ponding to the 3/2 ratio. When both peaks are detected simultaneously, they seem to occur
either close to 3/2 or 5/4 ratio.

3 PROPERTIESOFOSCILLATIONMODES

In the process of finding QPOs, the important properties are the quality factor Q of peaks
(defined as the QPO centroid frequency over the peak full-width at its half-maximum) and
their fractional root-mean-squared amplitudes r (a measure for the signal amplitude given
as a fraction of the total source flux that is proportional to the root mean square of the peak
power contribution to the power spectrum PDS). Shape of a peak in the PDS is most often
fitted by a Lorentzian. Only peaks that are sufficiently significant and have Q > 2 are
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Figure 1. Distribution of the frequencies identified as the lower resp. upper kHz QPO. Frequency
values are averaged per observation. Set I: from Belloni et al. (2007). Set II: from Török et al.
(2007a), after Barret et al. (2005). The frequency axes are drawn with respect to the observed
frequency correlation (νU = 0.701νL + 520 Hz; Abramowicz et al., 2005). The dashed vertical line
corresponds to the frequency at which the correlation passes the 3/2 ratio, surrounding shaded area
denotes an arbitrary scatter of 5% in frequency ratio with the observational uncertainty. We use the
distributions from the original papers without any additional rebinning. The upper QPO frequency
range investigated in Set I extends to lower values than in Set II because of a different sensitivity of the
analysis, which ismarked by shadow area in the left part of the panel (b). The black filled folds in Set II
correspond to simultaneous observations of the secondQPO in pair. Note that the two sets represent
two different analysis of data observed in different epochs. Both sets display the same cut-off close
to νL ∼ 650 Hz. The color-scale indicates frequency ratio and its eventual correspondence to the
distance from Innermost-Stable-Circular-Orbit if the relativistic precession model is considered (see
Török et al., 2007c for details).

considered as a QPO. The significance S is given by the relation between the integral area
of a Lorentzian in PDS and its error. For a particular detection it depends on the source
countrate and observational conditions and it is proportional to r and Q as S ∝ r2√Q/ν.
Usually, S ≥ 2–4 is being used as the low threshold limit for detections.1

1 The standard process of the QPOdetermining is in detail described in van der Klis (1989).
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Barret et al. (2005) (see also Méndez, 2006) have shown that both quality factors
and rms amplitudes are determined mainly by frequency of QPO, i.e., Q = Q(ν), r =
r(ν). Moreover, their profiles greatly differ between lower and upper QPO modes. The
quality factor of the upper QPO is usually small and tends to stay at a constant level

Figure 2. Left: Quality factor behaviour in 4U 1636−53. Right: rms amplitude behaviour. Data
in both panels come from the study of Barret et al. (2005). Continuous curves are obtained from
interpolation by several exponentials (see, e.g., Török, 2007).

Figure 3. Left: The QPO significance as implied by the rms amplitude and quality factor behaviour.
The continuous curves from Fig. 2 were considered. Note that the question how close to the 3/2
and 5/4 frequency ratio are the intersections in Q, r and S requires a further observational (but
also theoretical) study. Right: At frequencies, where the expected significances of the upper and
lower QPO modes equal, there is the highest chance that if one mode can be detected the other
could be detected as well. The probability of the simultaneous detection should be therefore roughly
proportional to e−1|∆S|. This function is plotted over the histogram of twin peak distribution in
frequency ratios (same data are used as in Fig. 1b,d). Note the function e−1|∆S| express the relative
share between twin and single detections. Its relation to absolute numbers is non-trivial and depends
on the intrinsical frequency distribution (which could be, e.g., uniform), on the source countrate and
measurement conditions. The agreement between position of peaks then suggests that the observed
ratio clustering ismostly related to the QPO amplitude and quality factor correlations.
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around QU ∼ 10, in contrast with the lower QPO quality factor that improves with fre-
quency and can reach up to QL ∼ 200 before a sharp drop of coherence at high frequencies.
Amplitudes of upper QPO generally decrease with frequency, while the lower QPO amp-
litudes show first an increase and then start to decay too.
Figure 2 shows the behaviour of amplitudes and quality factors of individualQPOmodes

in 4U 1636−53 and how they changewith frequencies. Note that both of the twoproperties
are becoming similar as the frequency approaches points corresponding to 3/2 or 5/4
ratio (see in this context also Török, 2007). Both quantities are becoming similar as the
frequency approaches points corresponding to 3/2 or 5/4 ratio (see in this context also
Török, 2007). The leftpanel ofFig. 3 shows theprofilesof lowerandupperQPOsignificance
as inferred from the behavior of r and Q. Obviously, close to 3/2 or 5/4 points, the QPO
significances are comparable, while they are much different elsewhere. The upper QPO
mode is usually more significant left from the 3/2 point (at lower frequencies), while the
lower QPOmode dominates right from that point.
Different profiles of significance have interesting implications for detections of both

QPOs. At frequencies, where the expected significances equal, there is the highest chance
that if one mode can be detected, the other could be detected as well. The probability of
simultaneous detection (normalized with respect to probability of total lower and upper
QPO detections) should be therefore roughly proportional to exp(−|∆S|), where∆S is the
difference of significances. Figure 3 (right) shows the calculated probability of simultan-
eous detection. For reference, the histogram of simultaneous observations of both QPOs
is plotted too. The clustering of frequency ratios close to 3/2 in the data is in this view
determined by the behavior of rms amplitudes and quality factors and namely related to the
fact that these quantities become equal close to that frequency ratio. In the same view, the
special importance of the 3/2 point (and also 5/4, etc.) lies in the fact that around this point
QPOmodes exchange dominance (cf. Török, 2007; Török et al., 2007c).

4 FIVEOTHERATOLL SOURCES

We apply similar approach to five other atoll sources, namely 4U 1728−34, 4U 1608−52,
4U 0614+09, 4U 1820−30 and 4U 1735−44. We use the approximated profiles of amp-
litudes and quality factors derived by Török et al. (2007c). The results are shown in Figs 4
and 5.

5 DISCUSSION

The complementarity in the lower and upper QPO distributions, shown in Section 2, can
now be easily understood as a direct consequence of changing significance due to varying
QPO properties Q and r . The (two) significances shown in Fig. 3 (left) exhibit the same
relations as the (two) distributions from Fig. 1.
It is likely that if QPOs are produced in a source, they are always produced in pairs, but

often only one mode of the pair gains enough power to be actually observed. Around the
special points 3/2 and 5/4, where significances are comparable, there is a great chance that
if one mode can be detected the other could be detected as well (Fig. 3, left), because both
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Figure 4. The QPO significancy as implied by the rms amplitude and quality factor behaviour. The
continuous curves from Figs 2 and 3 in Török et al. (2007c) were considered. In the case of 4U 0614
only parts of curves corresponding to the frequency range νL ∼ 500–800 Hz are reliable. The shape
of dotted parts is mostly given only by two distant datapoints.
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Figure 5. Functions exp(−∆S) as follow from Fig. 4. Grey folds indicate the total twin peak QPO
distribution in the source, based on the availableRXTE data used in Török et al. (2007c).
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peaks have nearly the same properties. Indeed, this is exactly what is observed and has been
laboured or challenged many times (Abramowicz et al., 2003; Belloni et al., 2005; Bulik,
2005; Yin et al., 2005; Belloni et al., 2007) that pairs of QPOs cluster close to the 3/2 and
some other small rational number ratios.
Figure 3 (right) illustrates the reasons for the clustering of pairs. At frequencies, where

the expected significances of the upper and lower QPO modes equal, there is the highest
chance that if one mode can be detected, the other could be detected as well. The prob-
ability of the simultaneous detection should be therefore roughly proportional to e−1|∆S|,
where∆S is the difference of significances.
We have been able to find the same effect at work in the case of several other atoll sources

(Figs 4 and 5), which further supports our arguments.
From time to time, the conditions at the source become such that both QPOs can be

detected simultaneously regardless of their frequency, because of their high brightness.
These events allows us not only to see QPO pairs close to the critical point, but sporadically
also all the way along the frequency–frequency correlation line. The relative number of
twin QPO occurences far from critical points is however low with respect to number of
significant detections of the only one peak.
The clustering of frequency ratios close to 3/2 is in this view determined by the behaviour

of rms amplitudes and quality factors and namely by the fact that these quantities become
equal close to that frequency ratio. In the same view, the special importance of the 3/2
point (and also 5/4, etc.) lies in the fact that around this point QPO modes exchange
dominance (cf. Török, 2007; Török et al., 2007c).

6 CONCLUSIONS

We have compared the frequency distributions of individually detected lower and upper
QPOs in 4U 1636−53 and pointed out that there is a narrow transition region, where the
occurrence of QPOs is changed. On one side of the transition point (at low frequencies)
upper QPO mode is most often detected, while on the other side (at high frequencies) the
lower QPOmode occursmostly. The position of the critical point is close to the 3/2 point in
frequency ratios.
We show that this transition can be understood as a consequence of correlations of

QPO rms amplitudes and quality factors with frequency. The qualitative difference in
the distributions of observed lower and upper QPOs is given by intrinsic changes of the
oscillator properties resulting in the varying significance of peaks. We demonstrate that
at frequencies, where the both QPO modes have comparable properties, there is a high
probability of detecting both peaks of a twin pair simultaneously. Comparing with the
observed twin QPO distribution, we found a precise matchwith our prediction.
We therefore conclude that there is a fundamental difference between observed and

intrinsic distribution of kilohertz QPOs over frequencies, because the observed distribution
is affected by actual properties of the two oscillators. Even if the intrinsic distributions of
both modes were uniform in frequencies, there would be a non-trivial profile of observed
distributions and clustering of double-peak detections around certain points.
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This note is based mainly on the detailed analysis of a single atoll source 4U 1636−53.
We have also checked five other atoll sources (six in total), and we find similar results in all
cases. The problem is worth to be investigated in further details, nevertheless it seems the
above 4U 1636−53 results have a general validity:
Figures 4 and 5 suggest that while both upper and lower oscillations are produced across

a large range of frequencies, the probability of twin peak QPO detection is for a given source
increased (or enhanced), where the freqency ratio is close to ratio of small integers (5/4, 4/3,
3/2, 5/3). The special importance of these points seem not to be so much in that clustering,
but it comes from the very fact that one mode is dumped and the other excited whenever the
QPO pair cross them – both modes have similar properties there, so that both can be seen in
all probability at once.
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ABSTRACT
Several models have been outlined to explain the (upper and lower) kilohertz quasi-
periodic oscillations (QPOs) detected inmany accreting neutron star X-ray binaries.
When facing the theory to observation, rather limited attention has been payed to
the mutual relations between the (correlated) QPO amplitudes and quality factors
till now. In this paper we report on recent results on these relations. For six neutron
star atoll sources (namely 4U 1728−34, 4U 1608−52, 4U 1636−53, 4U 0614+09,
4U 1820−30 and 4U 1735−44) spanning wide range of frequencies we investigate
whether the relationship between the rms amplitudes and quality factors of the ob-
served kHzQPOmodes νL, νU display features that could have a significantmeaning
in terms of the proposed QPO models.We find for all the six sources that after the
twin kHzQPOs pass a point (or the narrow interval)where their ratio R equals ∼1.5
the lower/upperoscillation becomes stronger/weakerthan other onewith increasing
QPO frequency. Existence of a similar effect close to R = 1.33 or R = 1.25 is also
indicated. Moreover, for increasing QPO frequency, shortly after passing 3/2 ratio,
the difference betweenQPO amplitudes as well as lower QPO quality factor reaches
its maxima on a narrow frequency interval where lower QPO is much stronger than
the upper one. This interval lies between frequencies corresponding to 3/2 and 4/3
(or 5/4) frequency ratio. This finding implies restrictions to the orbital QPOmodels
(both hot spot- and disc oscillations- like) and also to QPO modulation mechan-
ism. In a wider context, our results may indicate the existence of an energy overflow
between the upper and lower QPO mode when their ratio is close to ratio of small
integral numbers.

Keywords: X-rays: binaries – stars: neutron – accretion, accretion disks

1 INTRODUCTION

Number of black hole and neutron star sources in low mass X-ray binaries show quasi-
periodic oscillations (QPOs) in their observed X-ray fluxes, i.e., peaks in the Fourier
variability power density spectra (hereafter PDS). Frequencies of some QPOs are in the
kHz range that corresponds to frequencies of orbital motion close to central compact
object. A representative high frequency QPO observation shows two peaks in the kHz

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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(i.e., ∼ (200–1500) Hz) part of PDS. These so-called twin peak QPOs with the lower and
upper frequency νL and νU often arise simultaneuosly in case of the neutron star sources,1

while the black hole QPO peaks are rather detected from different observations (see van der
Klis, 2006 for a well-arranged review on the QPO problematic). In contrast to the black
hole kHz QPOs with fixed frequencies often having a 3 : 2 ratio, the neutron star kHz twin
(and single) peak QPOs span a large frequency range following nearly linear frequency-
frequency relation specific for a given source (Psaltis et al., 1998; Belloni et al., 2005;
Abramowicz et al., 2005a; Bursa, 2006).
Several models have been outlined to explain observations of the neutron star kHzQPOs,

and it is mostly preferred that their origin is related to orbital motion near an inner edge of
an accretion disc.2

Among others, two often discussed models based on the strong gravity properties have
been proposed. Stella and Vietri (1998, 1999) introduced the “Relativistic Precession
Model” in which the kHz QPOs represent a direct manifestation of modes of a relativistic
epicyclic motion of blobs in the inner parts of the accretion disc. In this model the lower
and upper kHzQPO frequencies are identifiedwith theKeplerian and periastron precession
frequency.
Kluźniak and Abramowicz (2001) proposed models based on non-linear accretion disc

oscillations that relate the lower and upper kHz QPO frequency to the disc oscillation
modes, which are in the basic version of the model given by the epicyclic frequencies of a
test particle orbital motion.

1.1 Strength of signal

Because of the expected links to the orbital motion, most discussions of the neutron star
kHz QPOs have for a long time been concentrated mainly on the frequencies, frequency-
frequency relations and the frequency evolution.
The other QPO properties, namely its quality factor Q (defined as a QPO centroid fre-

quency over a full-width of the peak at its half-maximum) and a fractional root-mean-
squared amplitude r (a measure of the signal amplitude given as a fraction of the total
source flux that is proportional to the root mean square of the peak power contribution to
the power spectrum), have been studied as well, but have not drug such a general atten-
tion. In the past few years both the quality factor and rms amplitude have been studied
systematically for several sources, and possible consequences for variousQPOmodels have
been outlined (see, e.g., Méndez, 2006; Barret et al., 2006 for further information and
references).
Some consequences of the quality factor behaviour have already been discussed for sev-

eral QPO models including the resonance model (see Barret et al., 2005a), but the rms
amplitudemeasurements have not been considered in this context so far. In factmost of the
consideration has been attracted to the quality factor and rms amplitudes as separated fre-
quency functions. Rather limited attention has been payed to themutual relations between

1 Note however that detections of just a single peak are not rare (see, e.g., Barret et al., 2005b;Méndez, 2006).
2 See van der Klis (2006); Lamb and Boutloukos (2007) for a recent review.
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the (correlated) QPO amplitudes and quality factors. In next we report on recent findings
on these relations.

2 SIXATOLL SOURCESDATA

In general,many of very sensitive X-ray timingmethods unfortunately do not follow properties
of both QPOs simultaneously but bring high amount of information connected to large range
of frequencies.
Inorder to takeadvantageof thismethodswe focus innext on the six atoll sources (namely

4U 1728−34, 4U 1608−52, 4U 1636−53, 4U 0614+09, 4U 1820−30 and 4U 1735−44)
spanning wide range of frequencies which have been well investigated in past years. We
profit from the existing studies and use for next proceeding the published results on rms
amplitude and quality factor correlations from the large collection made out by Méndez
(2006). Main references to original papers are as follows: 4U 1728 (Méndez et al., 2001),
4U1608 (Méndez et al., 2001), 4U1636 (Barret et al., 2005b), 4U0614 (vanStraaten et al.,
2002), 4U 1820 (Barret et al., 2006), 4U 1735 (Barret et al., 2006).
We interpolate the amplitude data for each source using the best fits for both amplitudes

by a sum of three exponentials

ri =
3∑

j=1
P(0)
i, j

[
exp

(
P(1)
i, j + νi P(2)

i, j

)
+ P(3)

i, j

]
, i ∈ {U, L} .

We interpolate in the same way also quality factor data except we use four exponentials
instead of three

Qi =
4∑

j=1
O(0)
i, j

[
exp

(
O(1)
i, j + νi O(2)

i, j

)
+ O(3)

i, j

]
, i ∈ {U, L} .

As noticed in several studies, the frequency correlations in the six sources which we
discuss in this paper are well fitted by linear relations (Abramowicz et al., 2005b; Belloni
et al., 2005; Bursa, 2006; Zhang et al., 2006). We therefore use this property to relate the
above correlations, i.e., in next we expect that frequency correlations are linear in the range
above νL = 500 Hz and follow relations found in Abramowicz et al. (2005b,a).
The results we obtained for interpolated rms amplitudes and quality factors are shown in

Figs 1 and 2.

3 AMPLITUDEDIFFERENCE

It follows from Figs 1 and 2 that the amplitudes of both oscillations (and not so clearly also
their quality factors) are comparable on a frequency rangewhich is rather narrowwith respect
to the total frequency range spanned by the six sources. Moreover, we noticed that for all six
sources the QPO properties are comparable in range corresponding to the ∼1.5 frequency
ratio (wemark this frequency among others in the above figures).
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Figure 1.Amplitudes of the lower and upper oscillation plotted vs. both QPO frequencies. The colour
scale indicates frequency ratio (and possibly also a distance of the QPO excitation radius from the
Innermost-Stable-Circular-Orbit as discussed in the Section 6). Note that while the frequency ratio is
well determined in the range above νL ∼ 500 Hz, the ratio possibly corresponding to QPO detections
below νU(νL ∼ 500 Hz) (i.e., above R " 1.7) is highly uncertain. In this range the lowerQPOs are in
this six atoll sources usually not detected or their detections are not very clear (Barret et al., 2005b),
although there are some exceptions (Zhang et al., 2006).
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Figure 2.Quality factor of the lower and upper oscillation plotted vs. bothQPO frequencies. The very
fact that the QPOs detected below νU ⇔ νL ∼ 500 Hz are well identified to be the upper oscillations
results from studies of the lower and upper QPO phenomenology which differ in many aspects (see
van der Klis, 2004; Barret et al., 2005b; Belloni et al., 2007). Even if the (undetected) lower QPO
were still present and only weak (having low r and q), the ratio corresponding to the upper QPO
oscillationswould strongly depend on frequency relation which could be easily the power-law instead
of linear relation (Zhang et al., 2006e.g.,).
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In the following, in order to investigate findings given above in detail, we characterize
an actual excess between the strength of the upper and lower observed kHz frequency
oscillation by the quantity ∆r . It is defined as a difference between the lower and upper
frequency rms amplitudes rL, rU corresponding to the same upper (lower) QPO frequency,

∆r = rL − rU . (1)

Under assumption that frequencies of the two oscillations and also their properties always
follow the same correlation,∆r should correspond to a difference rL − rU measured within a
twin peakQPO observation.

3.1 Parametrization

Some orbital QPO models, like that of Stella and Vietri, relate a given observed QPO
frequency (or a frequency pair) to a specific radial position inside the accretion disc. These
models often express the observable frequencies νL, νU as a combination of frequencies
characteristic for a geodesic orbital motion.
Frequencies of the geodesic motion at a given orbit scale inversely with mass M of the

central compact object when the angularmomentum j and quadrupolemoment q are fixed
and one canwrite

νi = M−1 νK( j, q, r)
[
1αi,K + κr ( j, q, r)αi,r + κθ ( j, q, r)αi,θ

]
, (2)

where i ∈ {U, L}, κr and κθ stand for the radial and vertical epicyclic dimensionless frequen-
cies, and αi, j are real coefficients. Because of this the ratio of observable frequencies is not
a function of the mass M of the central compact object. In relation to kinematics of a test
particle geodesic motion and in relation to a propagation of disc oscillationmodes, the ratio
of two functions of the type (2) provides a better direct indication of the orbital position
inside of the inner part of the accretion disc than the usual radial coordinate. For instance
a function νK/(νK − νr) equals 1 at the marginally stable circular orbit for any angular
momentum j and a relative change of this function with j at the position of maximum of
the radial epicyclic frequency is about 10× lower than relevant relative change of the radial
coordinate (Török et al., 2007).
Therefore, for the above class of the QPO models, the ratio R = νU/νL represents a

measure of the radial position corresponding to a QPO excitation, fully independent of
the central compact object mass M , and in a less direct sense also nearly independent of
its j and q parameters. The frequency ratio R has a genuine importance for the reson-
ant QPOmodel too.
Hence, for the amplitude difference we use in next parametrization with the frequency

ratio,

∆r = ∆r(R) .
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4 AMPLITUDESDIFFERENCEMEASUREDDIRECTLYFROMTWINQPO
OBSERVATIONS

In this Section, based on the recently submitted paper, we investigate amplitude difference
behaviour as found directly from simultaneous twinQPOobservations. Such away of analysis
use potentially much lower amount of PDS for investigation than the methods resulting to
the data we use above. On the other hand, where applicable, it should provide better sens-
itivity and view to the amplitude difference behaviour with respect to the uncertainties in the
observational correlations between frequencies of the two QPOs and their properties.
Following Barret et al. (2005b, 2006) we use all (up to the end of 2004) public archival

RXTEdata for the examined six atoll sources. We consider segments of temporally continu-
ous collection of data froma single pointing. For each segment an averagePDS is produced.

Figure 3.Difference of the rms amplitudes∆r vs. the frequency ratio R. (a), (b) The interpolation of
published data (i.e., Set I). Dashed parts of curves correspond to an extrapolation. (c), (d) From the
analysis of continuous data segment (i.e., Set II), only datapoints with significancy higher than 2.5σ
are considered. (e), (f) The same, but with significancy threshold higher than 3σ .
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The PDS is searched for a QPO using a scanning technique which looks for peak excesses
above the Poisson counting noise level (see Boirin et al., 2000). To minimize the effects of
a long term frequency drift, the QPO frequencies are estimated on the shortest statistically
permitted timescales, applying a recursive searchalgorithm. In case of presence of twoQPO
peaks in the segment averaged PDS, the peak with the highest significance S (defined as an
integral of the Lorentzian fitting of the peak divided by its error) is considered for a further
tracking. All PDS are then shifted to the reference one. The obtained PDS is then searched
for final QPOs. For a further analysis wee keep the resulting peaks detected above 500 Hz
with Q ≥ 3 and above S ≥ 3σ (respectively 2.5σ , see the caption in Fig. 3). Because of the
purpose of our study we are interested especially in segments where the two QPO peaks are
detected simultaneously. For such segments we calculate the rms amplitudes for both of the
peaks.
The above procedure allows us to determine in coherent way the discrete mean values

of the amplitude difference ∆r corresponding to the individual continuous segments of
observations, i.e., to the simultaneous significant observations of both QPOs. In next
we refer to this data as to the Set II and consequently refer to the data from interpolated
published results as to the Set I.
We plot the continuous functions ∆r(R) resulting from interpolation functions (i.e.,

Set I) as well as discrete values corresponding to individual continuous segments of obser-
vations in Fig. 3.

5 BEHAVIOUROFFUNCTION∆r(R)

It is visible from Fig. 3 that for all six sources the upper and lower QPO amplitudes equal
when the correlation passes a “zero” point close to R = 1.5. More precisely, for all six
sources the interpolated curves cross zero within the interval R = 1.5 ± 3 %.
The curves we display in the figure are plotted for the consistently mapped interval of

the frequency ratio ∼ (1.25–1.6). There is a strong indication that the trends we display
are valid for the whole available range of R (see Fig. 2). The 1.5 ± 3 % range represents
therefore at least about 10% subinterval of the actually analyzed range of data.
In addition to 4U 1636, comparing Figs 3(a) and (c), one may conclude that also in case

of 4U 1608 there exists a second such point that appears close to R = 1.25. Moreover data
of 4U 1735 and 4U 1820 sources display the existence of the second “zero” point as well,
but here it appears close to R = 1.33.
In Table 1 we give a summary of the∆r roots.

6 DISCUSSIONANDCONCLUSIONS

For the six sources (4U 1728−34, 4U 1608−52, 4U 1636−53, 4U 0614+09, 4U 1820−30
and 4U 1735−44), the upper and lower QPO amplitudes equal when the correlation func-
tion passes a “zero” pointmost likely located in the interval R = 1.5 ± 3 %.3

3 This range corresponds to the interval spanned by the individual mean values of∆r .
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Table 1.Roots R1, R2 of functions∆r(R). Displayed errors correspond to a unit variation of χ2.

Source Set I Set II
R1(∆r = 0) R2(∆r = 0) R1(∆r = 0) R2(∆r = 0)

1728 1.48 ± 0.01 – 1.50 ± 0.01 –
1608 1.48 ± 0.01 – 1.52 ± 0.02 1.26 ± 0.01
1636 1.49 ± 0.01 1.25 ± 0.01 1.52 ± 0.02 1.26 ± 0.01
614 1.45 ± 0.01 – 1.48 ± 0.01 –

1820 1.52 ± 0.01 1.33 ± 0.01 – 1.34 ± 0.01
1735 1.53 ± 0.02 1.34 ± 0.01 – 1.35 ± 0.02

For four sources (1608, 1636, 1820, 1735) and marginally also for 1728 there is an
evidence for the existence of another such point (close to R = 1.33 or 1.25).
Moreover, we notice in the Figs 1, 2 and 3 that for increasing QPO frequency, shortly

after passing 3/2 ratio, the difference between QPO amplitudes as well as lower QPO quality
factor reaches its maxima on a narrow frequency interval where lower QPO is much stronger
than the upper one.
Within the framework of the QPO resonance models, one should notice that the amp-

litude difference behaviour, together with the behaviour of quality factor, may indicate
existence of an energy overflow between the lower and upper QPO mode typical for non-
linear resonances (e.g., Horák and Karas, 2006). In this context it is also rather apparent
that the “zero” points are close to the 3/2 and 4/3 or 5/4 value (which we denote by dashed
vertical lines in Fig. 3). Nevertheless, in order to take this indicia as a serious evidence, a
model giving a detailed explanation of the effect is highly required.
Within the scope of the other orbital QPO models there should be an explanation why

the zero points appear. For instance in case of the relativistic precession model, one can
solve Eq. (2) for a particular form of expressions νK and νr in the Schwarzschild geometry
with respect to radial coordinate, obtaining (e.g., Török et al., 2007) the relation r =
6R2/(2R − 1). According to this formula, the R = 1.5 frequency ratiowould correspond to
an orbital radius r = 6.75 M which is about 14 kilometres for a neutron star with “canonic”
mass M = 1.4 M⊙. The ±3 % interval in R would be projected onto only about ±1.5 %
interval in r , i.e., onto r ∼ ±0.1 M .= ±200 m. We illustrate this “to a T” in the Fig. 4
which also gives a scale for the Figs 1 and 2. It is then a question not only why the observed
amplitudes corresponding to oscillations at this radius equal, but alsowhy they equal for six
sources at the same radiuswith a scatter less than 250 m.4,5

4 The equality of the observed amplitudes would imply also the equality of the intrinsical amplitudes if the
(questionable)modulation mechanismworks in the sameway for both oscillations.
5 For the observationally relevant illustration we use absolute units of metres, and express the distance for the
canonic mass M = 1.4 M⊙ and q = j2 = 0. For a scatter in mass the absolute interval in radius can be
substantially higher, but our value 200 m is still relevant after a normalization.



520 G. Török, Z. Stuchlík and P. Čermák

Figure 4. Relation between observed kHz QPO frequency ratio and QPO excitation distance from
the Innermost-Stable-Circular-Orbit following from the model of Stella and Vietri as derived for
Schwarzschild spacetimes and M = 1.4 M⊙. Region corresponding to a 3 % scatter in R is denoted.
Colour scale relating distance and QPO frequency ratio (and frequency) established in this way is
included into Figs 1 and 2.

An analogical question connected to orbital regions associated to equivalent amplitudes
of the observed oscillations arises for several orbital QPO models, and requires a selfcon-
sistent explanation within the framework of a given model. The same consideration is not
touching only the hot-spot-like QPO models, but also models that identify the QPOs as
radius dependent disc-oscillationmodes.
Full statistical analysis and an exact delimitation of the individual positions of “zero”

points and their consistence with the ratio of small natural numbers namelywith a 3/2 ratio
demands a further consequent observational (and theoretical) study.
We can, however, conlude that the very existence of “zero” points and the apparent similar-

ity in the amplitude difference behaviour, especially in case of 1735 and 1820 showing nearly
identical “energy conservation,” represent a strong challenge for any QPOmodel.
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ABSTRACT
Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in
theX-ray neutron star binary systems, we apply a genetic algorithmmethod for selec-
tion of neutron starmodels. Itwas suggested that pairs of kilohertz peaks in theX-ray
Fourier power density spectra of some neutron stars reflect a non-linear resonance
between two modes of accretion disk oscillations. We investigate this concept for a
specific neutron star source. Each neutron star model is characterized by the equa-
tion of state (EOS), rotation frequencyΩ and central energy density ρc. These de-
termine the spacetime structure governing geodesic motion and position dependent
radial and vertical epicyclic oscillations related to the stable circular geodesics. Par-
ticular kinds of resonances (KR) between the oscillations with epicyclic frequencies,
or the frequencies derived from them, can take place at special positions assigned
ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies
relevant to those positions are therefore fully given by KR, ρc, Ω , EOS and can
be compared to the observationally determined pairs of eigenfrequencies in order
to eliminate the unsatisfactory sets (KR, ρc, Ω , EOS). For the elimination we use
the advanced genetic algorithm. Genetic algorithm comes out from the method of
natural selectionwhen subjects with the best adaptation to assigned conditions have
most chances to survive. The chosen genetic algorithm with sexual reproduction
contains one chromosome with restricted lifetime, uniform crossing and genes of
type 3/3/5. For encryption of physical description (KR, ρc,Ω , EOS) into the chro-
mosomewe use theGray code. As a fitness functionwe use correspondence between
the observed and calculated pairs of eigenfrequencies.

Keywords: Neutron stars – genetic algorithm – X-ray variability – theory – obser-
vations

1 INTRODUCTION

Recently developed observational techniques provide good quality data from observations
of quasiperiodic oscillations (QPOs) in black hole and neutron star sources (Stuchlík et al.,

978-80-7248-419-5 © 2007 – SU inOpava. All rights reserved.
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2007a; Török et al., 2007b). It is shown that in the case of some neutron star atoll
sources (e.g., 4U1636−53, Barret et al., 2006) the data can be well fitted by the so called
multi-resonant total precession model (Stuchlík et al., 2007a). The fits give high precision
values of the neutron star spacetime parameters; in addition, in some cases the rotation
frequency of the neutron star is determined almost exactly from the QPO independent
measurements. This enables us to put some limits on equations of state (EOS) describing
the neutron star interior. Here we focus our attention on the EOS given by the Skyrmion
interaction that are very well tuned to the data given by the nuclear physics (Říkovská
Stone et al., 2003). Using the genetic algorithm method, which appears to be very fast
and efficient, we select the acceptable EOS from 27 types of the Skyrmion EOS selected by
other methods (Říkovská Stone et al., 2003), concentrating on the source data observed in
4U 1636−53. For the other five atoll sources (4U 1608−52, 4U 1728−34, 4U 0614+09,
4U 1820−30 and 4U 1735−444), the method gives similar results.

2 FITTINGTHEQPODATA

The results of recent studies of neutron star QPOs indicate that for a given source the upper
and lower QPO frequency can be traced through the whole range of observed frequencies
but the probability to detect both QPOs simultaneously increases when the frequency ratio
is close to ratio of small natural numbers (namely 3/2, 4/3, 5/4 in the case of atoll sources
studied recently (Stuchlík et al., 2007a; Török et al., 2007a,b). Therefore, themulti-resonant
orbital model based on the oscillations with Keplerian (νK) and epicyclic vertical (νθ ) or
radial (νr) frequencies was used to explain the observed data (Stuchlík et al., 2007a). They
are calculated assuming the spacetime given by the Hartle–Thorne metric (Hartle and
Thorne, 1968; Chandrasekhar and Miller, 1974; Miller, 1977). The fitting procedure has
shown that the best results are obtained using the total precession model, where in all the
sources the upper frequency νu = νK and the lower frequency νl = νT = νθ − νr (Stuchlík
et al., 2007a). We concentrate here on the case of 4U 1636−53, when the mass and
dimensionless spin of the neutron star are fitted to values (χ2 + 1 precision) in the range

M = 1.77 ± 0.07 , j = 0.051 ± 0.044 , (1)

M = 1.84 ± 0.07 , j = 0.101 ± 0.044 . (2)

This interval of allowed values of M and j will be used to test the EOS for the neutron star
in the 4U 1636−53 source.

3 THENEUTRONSTARSTRUCTURE

Inneutron stars, the stronggravity (i.e., Einstein’s gravitational equations)must be relevant
for the structure equations. The spacetime geometry is assumed to be stationary and
axisymmetric, the perturbative approach of Hartle and Thorne (1968) is used. To calculate
model of a rotating neutron star, one has to start with the static non-rotating configuration.
The line element in standard Schwarzschild coordinates (t, r, θ,φ) is given by

ds2 = −eν dt2 + [1− 2m(r)/r ]−1 dr2 + r2[dθ2 + sin2 θ (dφ − ω dt)2] , (3)
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where ν is function of r only andm(r) is the mass inside a sphere of radius r

m(r) = 4π

∫ r

0
ρ(r1)r2

1 dr1 . (4)

To calculate model of non-rotating, unperturbed star one has to integrate TOV equation
of hydrostatic equilibrium

dP
dr

= −
Gm(r)ρ
r2

(1 + P/ρc2)
[
1 + 4πr3P/m(r)c2]

1− 2Gm(r)/rc2 . (5)

The integration is done outward from the centre (for given values of central energy dens-
ity ρc) up to surface (where pressure P vanishes). One obtains the global properties of
non-rotating neutron star as its massM , radius R and the internal characteristic profiles of
metric coefficients, pressure, energy density and number density of baryons expressed as
functions of the radial coordinate.
The rotational effect is, in the linear approximation, given by the Hartle–Thorne met-

ric (Hartle and Thorne, 1968)

ds2 =− eν [1 + 2(h0 + h2P2)] dt2 +
1 + 2(m0 + m2P2)/(r − 2M)

1− 2M/r
dr2

+ r2 [1 + 2(v2 − h2)P2]
[
dθ2 + sin2 θ (dφ − ω dt)2

]
, (6)

where P2 = P2(cos θ) = (3 cos2 θ − 1)/2 is the Legendre polynomial of 2nd order,ω is the
angular velocity of the local inertial frame, which is related to star’s angular velocityΩ , and
h0, h2, m0, m2 are functions of r and are all proportional toΩ2.The angular velocity ω can
be found by solving equation

1
r4

d
dr

(
r4 j

dω̃
dr

)
+

4
r

d j
dr
ω̃ = 0 , (7)

where

j (r) = e−ν(r)/2[1− 2m(r)/r ]1/2 . (8)

One integrates Eq. (7) outward from the centre for arbitrarily chosen ω̃c with boundary
condition dω/dr = 0. At the surface one can calculate the angular momentum J and
frequency of rotationΩ corresponding to ω̃c from the relation

Ωnew = ω̃(R) +
2J
R3 . (9)

We take frequency of rotationΩ as an input parameter; thus, after integrating Eq. (7), we
rescale the frequency ω̃ in order to obtain the proper value ofΩ by

ω̃new(r) = ω̃old(r)
Ωnew
Ωold

. (10)
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The angularmomentum is given by the relation

J =
1
6
R4
(

dω̃
dr

)

r=R
. (11)

After finishing this procedure one could calculate mass and pressure perturbation factors
m0, p0 and h0 from equations

dm0
dr

= 4πr2 dρ
dP

(ρ + P)p0 +
1

12
j2r4

(
dω̃
dr

)2
−

1
3
r3 d j2

dr
ω̃2 , (12)

dp0
dr

=−
m0(1 + 8πr2P)

(r − 2m)2 −
4π(ρ + P)r2 p0

r − 2m
+

1
12

r4 j2

r − 2m

(
dω̃
dr

)2

+
1
3

d
dr

(
r3 j2ω̃2

r − 2m

)
, (13)

dh0
dr

=−
d
dr
δp0 +

1
3

d
dr

(r2e−2λ0ω̃2) . (14)

The boundary condition requires thatm0 and h0 vanish at the centre of the star. In (Miller,
1977), the series expansions of them0 and h0 terms were calculated near the centre. These
expansions has to be usedwhile calculating themodel numerically. Themass of the rotating
object is given by

M(R) = M0(R) + m0(R) + J 2/R3 . (15)

After integrating the monopole equations, one could integrate quadrupole equations to
obtain quadrupole momentum and shape of the object. Quadrupole perturbation factor
v2 = h2 + k2 is given by solution of the equation

dv2
dr

= −2
dν0
dr

h2 +
(

1
r

+
dν0
dr

)[
1
6
r4 j2

(
dω̃
dr

)2
−

1
3
r3ω̃2 d j2

dr

]

(16)

and h2 is given by

dh2
dr

=−
2v2

r(r − 2m(r)) dν0/dr

+
{
−2

dν0
dr

+
r

2(r − 2m(r)) dν0/dr

[
8π(ρ + p)−

4m(r)
r

]}
h2

+
1
6

[
r

dν0
dr
−

1
2(r − 2m(r)) dν0/dr

]
r3 j2

(
dω̃
dr

)2

−
1
3

[
r

dν0
dr

+
1

2(r − 2m(r)) dν0/dr

]
r2ω̃2 d j2

dr
. (17)

One solves these two equations with the following boundary conditions at r = 0:

h(P)
2 → ar2 , h(C)

2 → Br2 , v
(P)
2 → br4 , v

(C)
2 → − 2

3π(ρc + 3pc)Br4 . (18)



Neutron star equation of state and QPO observations 527

Index (P) denotes particular solution and index (C) denotes complementary functionwhich
is a solution of the equations homogeneous to Eqs (16), (17); constants a and b are re-
lated by

b + 2
3π(ρc + 3pc)a = 2

3π(ρc + 3pc) j2c . (19)

Outside the neutron star, where ρ = P = 0, j = 1, the functions h2 and v2 are given by the
relations

h2 = J 2
(

1
M0r3 +

1
r4

)
+ K Q2

2

(
r
M0
− 1

)
, (20)

v2 = −
J 2

r4 + K
2M0

[r(r − 2M0)]1/2 Q
1
2

(
r
M0
− 1

)
. (21)

The integration is done for arbitrarily chosen value of a; the general solution is given as a
sum of the particular solution and the complementary function

h2 = h(P)
2 + Ah(C)

2 , v2 = v
(P)
2 + Av

(C)
2 . (22)

Constants A and K can be found by solving the set of two equations. The quadrupole
momentum is given by the relation

Q = 8
5KM

3 + J 2/M . (23)

In the next approximation, the quadrupole moment q = Q/M3 of the star is introduced.
The fitting procedure shows that q ∼ j2 (Stuchlík et al., 2007a) where j = J/M2. There-
fore, the spacetime could be considered quasi-Kerr and the Kerr metric and related formula
of the orbital motion could be used.

4 SKYRMION INTERACTIONSANDRELATEDEOS

The effective Skyrmion interaction implies a variety of parametrizations in the framework
of mean-field theory. All give similar agreement with experimentally established nuclear
ground states at the saturation density n0, but they imply varying behaviour of both sym-
metric and asymmetric nuclearmatter when density grows (up to 3n0).
Thegeneral formof the effectiveSkyrme interaction implies total binding energyof nuclei

as the integral of an energy density functionalH , determined as a function of nine empirical
parameters t0, t1, t2, t3, x0, x1, x2, x3 and α in the form (Říkovská Stone et al., 2003)

H = K + H0 + H3 + Heff , (24)

where the kinetic termK = (h̄/2m)τ , is given by the kinetic densities τ = τn + τp, with τ
being the total density, τn (τp) being the neutron (proton) density. The other terms are given
by the relations

H0 = 1
4 t0
[
(2 + x0)n2 − (2x0 + 1)(n2

p + n2
n)
]

H3 = 1
24 t3n

α
[
(2 + x3)n2 − (2x3 + 1)(n2

p + n2
n)
]

(25)

Heff = 1
8 [t1(2 + x1) + t2(2 + x2)] τn + 1

8 [t2(2x2 + 1)− t1(2x1 + 1)] (τpnp + τnnn) .
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The pressure is then given by

P(nb, I ) = n2
b
∂ε

∂nb
, (26)

where ε is the binding energyper particle and I = (N−Z)/A denotes asymmetry of nuclear
matter.
In (Říkovská Stone et al., 2003), 87 different Skyrme parametrizations were restricted

to 27, using limits implied by the spherically symmetric models of neutron stars and by
experimentally tested properties of nuclear matter. Here, we shall test acceptability of nine
of these 27 Skyrme parametrizations to the limits put by the QPO measurements, using
axisymmetric models in first approximation with respect to the star rotation.

5 DETERMINATIONOFNEUTRONSTARSTRUCTUREUSINGGENETIC
ALGORITHM

Genetic algorithm (GA) arises from the method of natural selection, where subjects with
best adaptation to assigned conditionshavehighest chance to survive (Goldberg, 1989). GA
takes into account the followingnaturalmechanism–mutation and lifetime limit restricting
risk of degradation, which is kept in local extreme from optimization viewpoint. GA has
iteration character. GA doesn’t work with separate result in particular iterations, but with
population. In each iteration GA works with several results (generally a lot of results, with
standard value being of hundreds), which are included in the population trying to ensure
appearance of still better results via genetic operations with these results. Generally, the GA
scheme is given in the form

GA = (N, P, f,Θ,Ω,Ψ, τ ) , (27)

where P is population containing N elements,Θ is parent selection operator which selects
u elements from P. Evaluation for each chromosome is performed by the fitness function f ,
whereas

f : Si ← R , i = 1, . . . , N . (28)

Genetic operators included in Ω are, namely, crossover operator ΩC, mutation operator
ΩM and other problem-oriented or implementation-oriented specific operators, which all
together generate v offsprings from u parents. Ψ is deletion operator, which removes v
selected elements from actual population P(t); v elements is added into the new population
P(t + 1), τ is the stop-criterion. Parent selection operatorΘ and genetic operatorsΩ have
stochastic character, deletion operatorΨ is generally deterministic.
We have selected GA with sexual reproduction containing one chromosome with re-

stricted lifetime parameter, 5 iterations. The crossover operator is selected with uniform
crossing, using genes of type 3/3/5. We used the Gray code in order to encrypt parameters
to chromosomes, which is useful by reason of bypassing so-called Hamming barrier (see
Stuchlík et al., 2007b for details).
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Chromosomes are compound of genes; each gene presents 1 bit value. However, genes
contain more than 1 bit (using the redundancy encrypt). Bit values inside a gene are
mapped onto outside value of gene (0 or 1) via specific map function, in which border
between 0 and 1 is not crisp, but there exists so-called “shade zone,” where value carried
by the gene is determined randomly (Čermák, 2006; Čermák and Chmiel, 2004). We
pressed the number of members in each generation to 400 and iterate 40 generations. We
define two tasks of selecting neutron star structure. The first one determines ρc, Ω with
preset EOS where fitness function f is χ2 (Stuchlík et al., 2007a,b). (It is important to
say here that at present the fitness function is tabulated.) The second one determines
the EOS, ρc, Ω with using fitness function χ2. Both tasks put limits on the EOS under
consideration. Overcoming those limits implies removing the corresponding chromosomes
by setting value of fitness function to the maximum value (10200). For a given EOS,
the allowed neutron star structure is provided by the GA described above and the fitness
function χ2. The chromosome structure is given by two values, central density and rotation
frequency. Interval of central density we choose from 0.4× 1015 to 3.3× 1015.
In the first task, partition of the central density is set to 4096 (12 bits). Interval of

rotation frequency is set from 50 to 8000 and the partition to 8192 (13 bits). Table 1 shows
determination of the central density (in units of 1015 g cm−3) and the rotation frequency for
the given number of EOS.
Because the resulting frequencies do not fit the observed rotation frequency inter-

val (Lamb, 2003), and also the fitness function has too many local minima with exactly
the same value for different combinations of ρC, Ω and the same EOS, we make determ-

Table 1. Fitness function and corresponding parameters for all tested EOS, withΩ ∈ (50; 8000).

EOS type ρc Ω Fitness

0-SkT5 2.1244 964.17 56.556
1-SkO′ 1.5575 979.70 56.686
2-SkO 1.3987 711.85 56.601
3-SLy4 1.4896 1373.71 57.292
4-GS 1.1225 743.89 57.223
5-SkI2 1.1185 1241.72 57.688
6-SkI5 0.9359 791.43 57.059
7-SGI 1.0170 986.49 57.028
8-SV 0.7889 590.55 56.393

Table 2.Globalminimum forΩ ∈ (1827.21; 1828.03).

Ωmin Ωmax Fitness EOS ρc Ω

1827.21 1828.03 57.542 1 1.79021 1827.66
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ination of values mentioned before, but we set – in accord with observation – the range of
rotation frequencies from 1827.21 to 1828.03with partition 64 (6 bit).
Clearly, for selecting the most convenient EOS we need referenced χ2 value as the global

minimum χ2 over all EOS. Thus we make second task, determination of the best resulting
neutron star structure over all used EOS (see Table 2 for the result). The corresponding
EOS value is given by zero based EOS number (4 bits).

6 CONCLUSIONS

Analysis ofQPO’s inneutron star atoll sources in the framework ofHartle–Thornegeometry
gives very detailed data (neutron star parameters as mass, spin and quadrupole moment)
that could be quite well used for constraining the wide scale of allowed EOS by determining
the structure of neutron stars from the complex set of structural differential equations. The
testing by standard procedures is a long-time consuming procedure. Here, we show in the
case of the atoll source 4U 1636−53 that the genetic algorithm method could make the
proper selection in a wide sample of EOS of Skyrmion type in a very efficient and short way
(with same precision and the time consumed for the GA about 30 minutes, being by orders
shorter than the time consumed by the standardmethods).
We expect that the method based on genetic algorithm allowsmuch stronger tests, while

including the quadrupolemoment calculated directly without using the quasi-Kerr approx-
imation q ∼ j2. Further, we have to expect that the neutron star parameters, estimated
by the QPO data while assuming geodetical epicyclic oscillations given directly by the
spacetime parameters, could be to some extent shifted, because of the influence of the
neutron star magnetic field onto the frequency of the epicyclic oscillations in the inner
part of the accretion disc near the neutron star surface, where generation of QPOs is as-
sumed (Bakala et al., 2007).
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