
Proceedings of RAGtime 17–19, 17–19/23–26 Oct., 1–5 Nov., 2015/2016/2017, Opava, Czech Republic 33
Z. Stuchlı́k, G. Török and V. Karas, editors, Silesian University in Opava, 2017, pp. 33–46

Wave excitation at Lindblad resonances
using the method of multiple scales

Jiřı́ Horák
Astronomical Institute, Academy of Sciences, Bočnı́ II 141 31 Prague, Czech Republic

ABSTRACT
In this note, the method of multiple scales is adopted to the problem of excitation of
non–axisymmetric acoustic waves in vertically integrated disk by tidal gravitational
fields. We derive a formula describing a waveform of exited wave that is uniformly
valid in a whole disk as long as only a single Lindblad resonance is present. Our
formalism is subsequently applied to two classical problems: trapped p–mode oscil-
lations in relativistic accretion disks and the excitation of waves in infinite disks.
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1 INTRODUCTION

A linear wave dynamics and wave excitation in fluid disks due to time–varying non–axisy-
mmetric tidal fields have been extensively studied since publishing the seminal work on this
subject by Goldreich and Tremaine (1979). In addition to small–amplitude long–scale non–
resonant deformations of the disk, tides (originating in e.g. due to a companion star) may
excite short–wavelength non–axisymmetric density waves at Lindblad resonances, where
the frequency of a disturbing potential measured in a fluid frame matches the local epicyclic
frequency.

Dynamics of a thin disk under the influence of the disturbing tidal field is described by
following dimensionless equations
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Here, u and v are perturbations of the radial and tangential velocity, h is a perturbation of
the enthalpy related to the wave, ϕ(r) is a component of a disturbing gravitational potential,
with azimuthal wavenumber m and the angular frequency ω, Ω and κ is the equilibrium
orbital velocity and epicyclic frequency Ω = κ ∝ r−3/2 for a Keplerian disk) and cs is

978-80-7510-257-7 c© 2017 – SU in Opava. All rights reserved. äy ää äy

http://www.opava-city.cz/


34 J. Horák

the constant sound speed (assuming the isothermal equation of state). All quantities are
dimensionless, expressing ratios of corresponding dimensional physical quantities to their
typical (characteristic) values. Radial distances are scaled by r∗, a characteristic radius that
plays a role of a natural length unit. The angular frequency at this radius defines a scaling
of all frequencies and introduces a natural time unit t∗ = 1/Ω∗. The velocity perturbations u
and v are expressed in units r∗Ω∗. On the other hand, the enthalpy perturbations h are of the
order of a local sound speed and it is natural to express them in units of cs∗ = cs(r∗). Finally,
Σ expresses the density in units of Σ∗ = Σ(r∗) and a disturbing gravitational potential ϕ is
rescaled by its typical value, say ϕ∗. Because we introduced cs∗ and ϕ∗ independently to r∗
and Ω∗, two dimensionless parameters pops up in equations (1)–(3),

εd ≡
cs∗

r∗Ω∗
, εϕ ≡

ϕ∗

r2
∗Ω

2
∗

. (4)

The first one is proportional to the disk aspect ratio, εd � 1 for thin disks. The second
one expresses a relative importance of gravities of the central and perturbing object. The
perturbation approach introduced in this note is appropriate in situations when both εd and
εϕ are much smaller then unity.

As shown by Goldreich and Tremaine (1979), a wave of the form of ∝ exp[i(mφ − ωt)]
is excited at radii, where

D ≡ κ2 − (ω − mΩ)2 = − [ω − (mΩ − κ)] [ω − (mΩ + κ)] = 0, (5)

from which we find ω = mΩ ± κ. The upper/lower sign corresponds to the outer/inner
Lindblad resonance. We assume that a single Lindblad resonance exists inside the disk and
denote the corresponding radius r = rL. Our task is to find a waveform corresponding to
the excited wave.

2 SCALING THE VARIABLES, FAST RADIUS

We approach this problem using the method of multiple scales. In addition to the slow
radial variable r, we introduce a fast radial coordinate x as

x ≡ χ(r)/δ, (6)

where δ � 1 is a free small parameter and χ(r) is a “normally” varying function of r (i.e.
χ′(r) = O(1)). Both δ and χ(r) will be determined later. We allow the solutions u, v and h
to depend on both r and x. We just assume that derivatives of the solutions with respect to
r and x does not change the order in δ, that is we assume that ∂/∂x and ∂/∂r applied to the
solutions remains of the order of unity. Hence, variations with respect to x correspond to
fast (oscillatory) changes, while those with respect r describe slow (secular) changes of the
solutions (for example in the local wavelength).

The radial derivative ∂/∂r is substituted by

∂

∂r
→

∂

∂r
+
χ′

δ

∂

∂x
. (7)
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In addition, we assume the dependence ∝ exp[i(mφ−ωt)] of the solution variables u, v and
h on time and azimuth and rescale them as

u(r, φ, t) = εuû(r, x)ei(mφ−ωt), (8)
v(r, φ, t) = εuv̂(r, x)ei(mφ−ωt), (9)
h(r, φ, t) = εhĥ(r, x)ei(mφ−ωt). (10)

A relation of the additional scaling parameters δ, εu and εh to εϕ and εd will be found
using a dominant–balance argument. Introducing the Doppler–shifted frequency ω̃(r) =

ω − mΩ(r), substituting (8)–(10) into (1)–(3) and factorizing out the time and azimuthal
dependence, we obtain
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The first two equations are algebraic in û and v̂. Eliminating û from them, we find
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The variable D ≡ κ2 − ω̃2 vanishes at r = rL, a position of Lindblad resonance. We want
our solution to be valid also at this radius. Therefore it is reasonable to set

D = χ(r)D(r) = δD(r)x (15)

with

χ(rL) = 0. (16)

Here D(r) is a positive function of the slow radius r of the order of unity. Therefore, in
the vicinity of rL, χ(r) is either increasing or decreasing function depending on the type of
the Lindblad resonance. The inner Lindblad resonance corresponds to χ′(rL) > 0, while
χ′(rL) < 0 for the the outer one. In the latter case, x increases with decreasing r as can
be seen from equation (6). Hence, we adopt a convention of x being negative in the wave
propagation region and positive in the wave evanescent region.

We next proceed with the dominant balance argument. We identify the essential terms
in the governing equations and adjust the small parameters εu, εh and δ accordingly, so
that they appear in the leading order of the expansion. In the case of equation (13), it is
clear that the first term must balance the second one, because the third one is always less
important than the second. Keeping just one of the first two terms in the leading order
would result in trivial solution (either ĥ or ∂û/∂x would be zero in the leading order).
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Hence, we require εu = O(εh/δ). The same argument applies to the equation (14), where
we again has to balance the first and the second term in the leading approximation in order
to keep a nontrivial dependence of the leading–order solution on the fast variable x. This
leads to a requirement εu = O(ε2

dεh/δ
2). Finally, we want the forcing terms in equation (14)

that involves the gravitational–field perturbation to which the disk reacts to appear in the
leading order as well, this imply εu = O(εϕ/δ). To sum up, we introduce the scaling

δ = ε2/3
d , εu =

εϕ

δ
, εh =

εϕ

δ2 . (17)

The magnitude of all terms in equations (14), (12) and (13) is then proportional to εϕ, that
can be factorized out. Upon dividing equation (14) byD(r), we obtain
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ĥ = −δ
im
r
ϕ, (19)

−iω̃ĥ + c2
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where

Φ(r) ≡
1
D

(
ω̃ϕ′ −

2mΩ

r
ϕ

)
. (21)

Finally, for the reasons that will be obvious later, it is necessary to involve the fast scale
x also in the slowly varying function Φ(r) on the right–hand side of equation (18). Whe
therefore rewrite it as

Φ(r) = Φ0(r) + χ(r)Φ1(r) ≡ Φ0(r) + δΦ1(r)x. (22)

The exact form of function Φ0(r) will be determined later, once determined the function
Φ1(r) is given by

Φ1(r) =
1
χ(r)

[Φ(r) − Φ0(r)] . (23)

Equations (18)–(20) are now suitable for the perturbative solution.

3 PERTURBATIVE SOLUTION

We assume the solutions û, v̂ and ĥ of the form of power series in terms of δ,

û = u0 + δu1 + . . . , v̂ = v0 + δv1 + . . . , ĥ = h0 + δh1 + . . . . (24)

Substituting these expansions into equations (18)–(20) and comparing the terms of the
same order of δ, we obtain equations leading the approximations of various orders. For our
purposes it is sufficient to consider only zeroth order (leading) and first order equations.
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3.1 Zeroth order

The zeroth–order equations are

ixu0 +
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what together with the condition (16) leads to
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D
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This brings the equation (26) to the form

∂2u0

∂x2 − xu0 = iΦ0, (29)

which is just the inhomogeneous Airy equation. Its general solution reads

u0(r, x) = A(r)Ai(x) + B(r)Bi(x) − iπΦ0(r)Gi(x), (30)

where Ai(x), Bi(x) and Gi(x) are Airy functions and A(r) and B(r) are integration constants
whose dependence on the slow variable will be determined in the next order of approxima-
tion. The other variables follow easily,
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iκ2
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3.2 First order

In the first order, we have to solve following equations
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After some algebra and using the equation (28), one finds
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ω̃2

)
∂u0

∂x
−
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+ ixΦ1(r). (35)

When the zeroth–order solutions are substituted into this equation, one finally obtains
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2
χ′ψ

[
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dr
Ai′(x) +
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with

ψ(r) ≡

√
rΣχ′

ω̃
=

√
rΣq
ω̃

χ−1/4. (37)

We are interested in a particular solution of this equation as the solutions of the homo-
geneous equation can be absorbed into zeroth order approximation u0. Due to linearity,
a particular solution will be sum of particular solutions to all individual terms on the right–
hand side. The first three terms consist of slowly varying functions of r multiplied by
derivatives of Airy functions. The corresponding particular solutions will be thus given by
the Airy functions multiplied by x/2. This will cause non–uniformity in our expansion at
x = O(1/δ), when the first order approximation u1 becomes equally important as the zeroth
order one u0. Our strategy is therefore to introduce suitably varying functions A(r), B(r)
and Φ0(r) in order to kill these terms and avoid the non–uniformity of the final expansion.
This leads us to require A(r), B(r) and Φ0(r) to vary as ∝ ψ(r)−1,

A(r) =
a
ψ(r)

, B(r) =
b
ψ(r)

, Φ0(r) =
ψLΦL

ψ(r)
, (38)

where a and b are constants that must be determined from boundary conditions and the
index ‘L’ denotes evaluation of the corresponding quantity at rL. Note that

ψLΦL =

 √rΣ

κ


L

(
ω̃ϕ′ −

2mΩ

r
ϕ

)
L
. (39)

Equation (38) describes slow (secular) evolution of the amplitudes of individual Airy func-
tions with changing radius. At this point, it is also obvious why we imposed the decompo-
sition (22) on the potential function Φ(r). Keeping it in its original form in the zeroth–order
equations would lead to appearance of the unavoidable secular term ∝ xΦ(r)Gi(x) in the
first–order approximation and would result in the non–uniform expansion.

The particular solution of equation (36) after elimination of the secular terms using (38)
reads

u1(r, x) = −iΦ1(r) = −
i

χ(r)

[
Φ(r) −

ψLΦL

ψ(r)

]
. (40)
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3.3 Uniform approximation

Putting equations (30), (38), (28) and (40) together, we find the final solution valid up to
the first order in the perturbation parameter δ,

û(r, x) =
ω̃√
rΣq

χ1/4 [
aAi(x) + bBi(x) − iπψLΦLGi(x)

]
−

iδ
χ(r)

[
Φ(r) −

ψLΦL

ψ(r)

]
.

(41)

The expression (41) represents an uniform approximation of the waveform of perturbation
that is valid in the whole disk as far as a single Lindblad resonance is present. The case of
several Lindblad resonances will be treated in the section 4.3. The constants a and b can
be chosen freely according to the boundary conditions imposed on the perturbation at disk
boundaries. In the following sections 4.1 and 4.2 we give two specific examples.

4 APPLICATIONS

4.1 Frequencies of trapped p–modes in relativistic disks

In thin relativistic disks, the acoustic waves can be trapped between the inner edge of the
disk and the inner Lindblad resonance establishing the standing wave patterns, so called p–
modes. The frequencies of these modes take discrete values ωn that are given by physical
conditions of the flow at the disk inner edge located at the marginally stable orbit rms (Kato
and Fukue, 1980; Nowak and Wagoner, 1991; Wagoner, 1999). Thus measuring their val-
ues may serve as another important probe into physical properties of the accreted matter
in the very vicinity of relativistic objects. The frequencies of the lowest order p–modes
(i.e. those with low number of nodes in the radial direction) are always close to mΩ(rms)
and their propagation regions are rather narrow. On the other hand they occupy portions of
a disk from which most of the radiation emerges and thus they may still be observed. More-
over, if the underlying compact object is a neutron star, these modes may likely strongly
modulate accretion rate of a falling matter and therefore contribute significantly to the vari-
ability of the emission from its surface (Paczynski, 1987; Horák, 2005; Abramowicz et al.,
2007).

Here we derive an approximate formula for the discrete frequency spectra of both, ax-
isymmetric and nonaxisymmetric p–modes. For simplicity, we assume that the disk is
terminated at rms and fix the inner boundary condition to be u(rms) = 0. As we consider
free oscillations, we put Φ(r) = 0 and ΦL = 0 in equation (41). Because the solution has to
be bounded, we also cut off its divergent part proportional to Bi(x) by putting b = 0. The
waveform (eigenfunction) of the p–mode is thus roughly described by

û(r, x) =
aω̃√
rΣq

χ1/4Ai(x), (42)

where a is now an arbitrary normalization constant and x is given by equations (6) and (28).
The inner Lindblad resonance corresponds to x = 0, while x = xms corresponds to the

disk inner boundary. The value of xms depends on the frequencyω of the oscillations, hence
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xms = xms(ω). Because we demand vanishing velocity perturbation at the inner edge, the
discrete modes have to correspond to the points xn, where the Airy function vanishes. Thus

xms(ωn) = xn, Ai(xn) = 0. (43)

From the theory of Airy functions, it follows that

xn ≈ −

[
3π
8

(4n + 3)
]2/3

, n = 0, 1, 2, . . . . (44)

Therefore, our task is to evaluate the function xms(ω). As we expect ω close to mΩms, we
put

ω = mΩms + δαω1, (45)

where α > 0 will be specified later on. Close to rms the orbital and epicyclic frequencies
can be approximated as

Ω(r) ≈ Ωms + Ω1 (r − rms) , κ2(r) ≈ κ2
1 (r − rms) , (46)

where

Ω1 ≡

(
dΩ

dr

)
ms
, κ2

1 ≡

(
dκ2

dr

)
ms
. (47)

Introducing a scaled variable ρ using r = rms + δβρ, we obtain

D = κ2 − ω̃2 = δβκ2
1ρ − δ

2αω2
1 − 2δα+βmΩ1ω1ρ − δ

2βmΩ2
1ρ

2. (48)

The last two terms are obviously sub–dominant with respect to the first one and will be
neglected further on. At the Lindblad resonance D = 0. This can be achieved only by
balancing the first two terms giving β = 2α. In terms of ρ the position of the resonance
corresponds to

ρL =
ω2

1

κ2
1

. (49)

The integral in equation (28) may be therefore evaluated as∫ rms

r0

√
D

cs
dr′ = −

δ3β/2

cs

∫ ρL

0

√
κ2

1ρ
′ − ω2

1 dρ′ = −δ3β/2 2iω3
1

3csκ
2
1

. (50)

Therefore,

xms(ω) = −
ω2

1(
csκ

2
1

)2/3 , (51)
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Figure 1. The spectrum of the lowest–order trapped axisymmetric p–modes in a relativistic thin disk
surrounding the Schwarzschild black hole according to formula (52). The left and right panel shows
the case of the axisymmetric and non–axisymmetric (m = 1) modes, respectively. The oscillations
are trapped between the disk inner edge at r = rms = 6M and the inner Lindblad resonance located at
positions, where the Doppler–shifted oscillation frequency |ω̃| matches the local epicyclic frequency
κ(r) (shown by solid lines). The approximate positions of the inner Lindblad resonance used in the
calculations are shown by the dashed lines. The frequencies of the four discrete modes are calculated
for the sound speed cs = 10−3(rΩ)ms.

where we have set β = 1, in order to obtain xms of the order of unity. Finally, from the
conditions (43) and (44) and using (45) we get,

ω = mΩms ± ε
1/3
d

[
3π
8

(4n + 3)
(
csκ

2
1

)]1/3

. (52)

The eigenfrequencies and eigenfunctions calculated using (52) and (42) for the lowest–
order axisymmetric modes (n ≤ 4) are shown in Fig. 1. For the epicylic frequency, we
have used κ(r) = (1 − rms/r)1/2Ω(r) with rms = 6M suitable for the Schwarzschild black
hole. The dashed line shows positions of the inner Lindblad resonance based on our ap-
proximation of κ(r) using the square–root function (see eq. (46)). The formula describes
the eigenfrequencies well the lowest–order modes with small propagation regions, as the
trapping cavity opens up, our simple approximation of the epicyclic frequency ceases to
describe its real profile and the formula (52) fails. However, a higher precision could be
achieved by considering additional terms in the expansions of κ(r) and Ω(r).

4.2 Excitation of waves in infinite disks

Another application concerns excitation of waves in the infinite disk by a time and az-
imuthally dependent tidal field (for example due to orbital motion of a secondary star). The
solution is described by equation (41) with ϕ(r) corresponding to a Fourier component of
the tidal potential that changes as exp(mφ − ωt). In the case of a secondary orbiting on the
strictly circular orbit ω = mΩ∗ with Ω∗ being the orbital period. The constants a and b in
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the equation (41) has to be fixed by boundary condition. For this, it is useful to explore
asymptotic behavior of the solution far from the resonance. Suppose for the moment that
wave is excited at the inner Lindblad resonance. The waves may propagate only at smaller
radii where D is negative. Far from the resonance, at r � rL, the solution behaves as

û(r, x) ∼ δ1/4 ω̃
√

4πrΣk

{[
a − πψLΦL − ib

]
exp

[
−

i
εd

(∫ rL

r
k dr′ +

π

4

)]
+

[
a + πψLΦL + ib

]
exp

[
i
εd

(∫ rL

r
k dr′ −

π

4

)]}
+
δ

D

(
ω̃ϕ′ −

2mΩ

r
ϕ

)
,

(53)

where k = −iq =
√
−D/cs. The solution has three components. The first two terms in the

brace bracket describe ingoing and outgoing waves with respect to the Lindblad resonance.
The energy tcarried by the waves is transported with group velocity cg = dω/dk = (k/ω̃)c2

s .
The sign of cg determines whether the wave is ingoing or outgoing with respect to the res-
onance. In our case of the inner Lindblad resonance and ω > 0, the first term corresponds
to the ougoing wave and the second one to the ingoing wave (compare to Zhang and Lai,
2006). The last third term represents a non–resonant non–wave response of the disk (‘de-
formation’) due to the tidal field. On the other side of the resonance, we have for r � rL,

û(r, x) ∼ δ1/4 ω̃√
πrΣq

[
a
2

exp
(
−

1
εd

∫ r

rL

q dr′
)

+ b exp
(

1
εd

∫ r

rL

q dr′
)]

+
δ

D

(
ω̃ϕ′ −

2mΩ

r
ϕ

)
,

(54)

The solution comprises of two exponentials and the non–wave response that has the same
form as in the other region.

A natural step is to put b = 0, what kills the divergent part of the solution (54) in the
wave–evanescent region. Other constraint that fixes the constant a is imposed in wave–
propagation region on (53). A traditional approach is to assume that the excited wave
can propagate freely toward smaller radii, where it is either absorbed or damped by other
physical processes like viscosity or turbulence. Then one requires the ingoing–wave part
of the solution (53) to vanish what gives a = πψLΦL. The uniform approximation of the
wave part of the solution then becomes

ûwave(r, x) =
πω̃√
rΣq

ψLΦLχ
1/4 [Ai(x) − iGi(x)] . (55)

In a more general case when the waves can be partially reflected back towards the reso-
nance, let us introduce the complex reflectivity as a ratio of the ingoing and outgoing (i.e.
outgoing and ingoing with respect to a reflector) wave amplitudes,

R ≡
a − πψLΦL

a + πψLΦL
. (56)
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Then

a =
1 + R
1 − R

πψLΦL (57)

and

ûwave(r, x) =
πω̃√
rΣq

ψLΦLχ
1/4

[
1 + R
1 − R

Ai(x) − iGi(x)
]
. (58)

We observe that in absence of the forcing (ΦL = 0), the solution (58) is trivial, ûwave(r, x) =

0, unless R = 1. The case R = 1 corresponds to the situation when there exists a free
oscillation mode whose eigenfrequency equals the frequency of the forcing and has to be
treated in a different way.

4.3 Asymptotic matching

Finally, few words on the possibility of using our approach in the cases when there are
more than one Lindblad resonance in the disk. This is typically the case of relativistic
disks, where the axisymmetric p–mode oscillations with frequencies close to the maximum
of the epicylic frequency can penetrate the potential barrier and carry some energy out from
the trapping region. Clearly, the solution (41) cannot be applied to these situations, because
the variable x does not know about the presence of the other resonances. Several attempts of
the author to use non–monotonic functions instead of the always increasing or decreasing
function χ(r) have not provided a reasonably simple way of calculations yet. Hence, so far
the only way how to treat these situations is asymptotic matching of individual expressions
(41) far from the resonances.

In order to demonstrate this procedure, let us consider a particular case of two Lindblad
resonaces (inner and outer) located at radii r1 and r2 (r1 < r2). The wave–evanescent region
corresponds to the interval (r1, r2), the regions corresponding to r < r1 and r > r2 allows
waves to propagate freely. The solution (41) describing a single Lindblad resonance can be
applied on both the inner and outer resonance. Denote û1 the solution corresponding to the
inner resonance and û2 the solution corresponding to the outer one. The inner solution û1
is valid for r < r2; close to r2, û1 breaks down because of presence of the outer resonance.
Similarly the solution û2 is valid for r > r1. The evanescent region is the overlap, where
both solutions are valid. Let us consider a radius r from the evanescent region, not too close
to its boundaries. At this radius, the wave part of the solution û1 behaves as

û1,wave(r, x) ∼
δ1/4ω̃√
πrΣq

[
a1

2
exp

(
−

1
εd

∫ r

r1

q dr′
)

+ b1 exp
(

1
εd

∫ r

r1

q dr′
)]

(59)

and similarly

û2,wave(r, x) ∼
δ1/4ω̃√
πrΣq

[
a2

2
exp

(
−

1
εd

∫ r2

r
q dr′

)
+ b2 exp

(
1
εd

∫ r2

r
q dr′

)]
. (60)

By putting û1,wave = û2,wave, we obtain a relation between the constants a1, b1 and a2, b2,

a2 = 2Ψ12b1, b2 =
1
2

Ψ−1
12 a1, Ψ12 ≡ exp

(
1
εd

∫ r2

r1

q dr′
)
. (61)
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Figure 2. Example of matching the single–resonance solutions (41) in the case when two Lindblad
resonances are present. The inner and outer Linblad resonance are located at r1 = 2 and r2 = 3,
respectivelly (the radii are in arbitrary units r∗). For simplicity, we have assumed that D = −(r −
r1)(r − r2), rΣ = const and cs to be 5% of the orbital velocity at r1. Left panel shows the individual
phase functions χ1(r) and χ2(r) calculated according to equation (28). The right panel shows the
solutions û1(r, x) and û2(r, x) for a1 = 2, b1 = 0.001 and a2 and b2 calculated using equation (61).
Well inside the evanscent region between the resonances, these two solutions coincide and one may
switch from the one to another.

The relation between the functions χ1(r) and χ2(r) is

χ2 =

(
3
2

ln Ψ12 − χ
3/2
1

)2/3

. (62)

An example of the matching procedure is shown in Fig. 2. In practice, one builds up the
solution û1(r, x) and û2(r, x) independently using (41) and (28). Then constants a and b are
fixed so that they satisfy relations (61). And finally the solutions û1(r, x) and û2(r, x) are
connected at an arbitrary radius rm, well inside the evanescent region. The response of the
disk is thus given by a piecewise function,

û(r, x; a, b) =

û1(r, x; a, b), r < rm,

û2

(
r, x; 2Ψ12b, 1

2 Ψ−1
12 a

)
, r ≥ rm.

(63)

The relation (62) is satisfied authomatically.

5 CONCLUSION

In this note, we have introduced an alternative approach to calculations of wave excita-
tion in thin disks. Our approach is based on the method of multiple scales and should
be understood as an alternative to traditional and rather tedious calculations based on the
method of matched asymptotic expansions. The main advantage of this method is in ob-
taining global solutions, what is especially useful in cases when one is interested in global
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properties of the excited waves rather than in the process of excitation itself. The main
applications of this method therefore include properties of trapped or partially trapped os-
cillations (modes). Another interesting feature of our global solution is that it clearly sep-
arates short–scale changes characteristic for waves behavior and the long–scale changes
of wave overall properties such as their amplitudes and phases, as each of them occurs on
a different variable. Finally, it has also immediately revealed a non–resonant response of
the disk.

We have also presented two particular examples of using the method. In section 4.1, we
have studied a discrete spectra of p–mode oscillations trapped close to inner edge in rela-
tivistic disks and derived an approximative general formula for their frequencies. Although
this formula describes well only fundamental modes and first few overtones due to rather
crude approximations we have made, extending its applicability by including higher order
therms in description of profiles of orbital and epicyclic frequency is rather straightforward.

In section 4.2, we have revisited a textbook example of a disk response to the time and
azimuthally dependent tidal field. Also in this case our method may be useful, especially in
the cases when the excited waves maybe trapped or it may interact with other perturbations
of the disk. Among possible applications are tidally driven eccentric instabilities during
superhump events in dwarf novae (Lubow, 1991) or non–linear excitation of trapped g–
modes in warped disks (Kato, 2004; Ferreira and Ogilvie, 2008). In the latter case however,
it is necessary to extend our calculations to g–mode oscillations. We plan to revisit these
problems in near future.
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