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ABSTRACT
We study epicyclic oscillations of thick relativistic tori with constant specific angular
momentum distribution using the finite element numerical method. We have com-
pared frequencies of the axisymmetric and non-axisymmetric modes with the ana-
lytic formulae obtained by Straub and Šrámková (2009) and Fragile et al. (2016). We
have found excellent agreement in the case of axisymmetric radial epicyclic modes.
In the case of the axisymmetric vertical epicyclic modes and non-axisymmetric
modes in general, the analytic approximation agrees with numerical results only for
tori of moderate thicknesses. Our analysis also revealed an instability of the thick
constant angular momentum tori with respect to the radial epicyclic oscillations.
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1 INTRODUCTION

A short-period variability of accreting neutron stars and black holes has motivated many
studies of oscillation properties of relativistic flows. Because a detailed geometry of ac-
cretion is not yet well understood, the most works concentrate either on oscillations of
Keplerian razor-thin disk-like flows or on geometrically thick toroidal flows of toroidal
shape, whose angular momentum profiles differ significantly from the Keplerian distribu-
tion. Although simple models of thick tori are known to be dynamically unstable to global
non-axisymmetric perturbation (Papaloizou and Pringle, 1984) and perhaps also locally
unstable, due to the magneto-rotational instability (Wielgus et al., 2015), they are often
used as first approximations of hot thick parts of accretion flows. In the truncated disk
scenario (Done et al., 2007), the outer thin disk is truncated at larger radii and the inner
part of the accretion flow has a form of geometrically thick flow. Numerical simulations of
the radiatively inefficient flow also often produce flow of substantial geometrical thickness
and significantly sub-Keplerian specific angular momentum distributions. These features
point to a significant pressure support, just as in the case of simple thick disk models and
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perhaps also oscillations of these flows share many properties. In this context, the oscilla-
tions of thick disks still remains an active field of research. For example, Rezzolla et al.
(2003) and Montero et al. (2004) studied radial axisymmetric oscillations in vertically in-
tegrated thick disks. Abramowicz et al. (2006) pointed out the existence of global epicyclic
modes in relativistic slender tori. Their work was followed by Blaes et al. (2006), who
presented a complete analysis of slender tori modes. Straub and Šrámková (2009) studied
properties of the epicyclic modes in thicker tori using the perturbation expansion in the
torus thickness around the slender torus limit. Recently, minor errors in their analysis were
corrected subsequently by Fragile et al. (2016), who used their results to understand both a
high-frequency and low-frequency variability of accreting black-hole GRO J1655-40.

In this note, we show that these considerations should be taken with some care. Our main
finding is that tori of sufficient thickness are unstable with respect to the non-axisymmetric
radial epicyclic oscillations. We also compare the analytical results of Fragile et al. (2016)
with direct numerical solutions of the torus-oscillation problem. The plan of the paper is as
follows. In section 2, we summarize the most relevant aspects of the theory of relativistic
stationary thick disks relevant to our work. Section 3 contain a brief introduction the prob-
lem of thick disk oscillations, including some relevant mathematical results. Our numeri-
cal method is introduced in section 4. The results for axisymmetric and non-axisymmetric
epicyclic modes are presented in sections 5 and 6, respectively. The section 7 discuss the
mechanism of the instability and finally, section 8 is devoted to our conclusions.

2 EQUILIBRIUM

The equilibrium disk model corresponds to a relativistic torus orbiting a compact object
in a stationary axially-symmetric spacetime. The complete analytic description of these
solutions has been given by Abramowicz et al. (1978), (see also Kozlowski et al., 1978).
The symmetries of the spacetime are described by two Killing vectors, tµ (corresponding
to stationarity) and φν (corresponding to axial symmetry).

The matter forming the torus is described by the stress-energy tensor of ideal fluid,

Tα
β = (e + p)uαuβ + pδαβ , (1)

where e and p are the total energy density (including both, the rest-mass density and the
internal energy) and pressure measured in the rest frame of the fluid. In the equilibrium,
the four-velocity of the flow uµ corresponds to a pure rotation,

uµ = A (tµ + Ωφµ) , (2)

where Ω = dφ/dt is the angular velocity of the flow measured at infinity and A is the red-
shift factor, a normalization constant following from the condition uνuν = −1. As already
mentioned, we consider only tori with constant specific angular momentum `. Therefore,
we have

Ω =
gφt − `gφφ

gtt − `gtφ , ` ≡ −
(uνφν)
(uνtν)

= const, (3)

where gµν denote contravariant components of the metric tensor.
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The dynamics of the flow follows from the relativistic conservation laws; the Euler equa-
tion and the continuity equation,

∇α (ρuα) = 0, ∇αTα
β = 0 (4)

with ρ being the rest-mass density (e.g. particle number density multiplied by mass of a
single particle). In our case, the continuity equation is satisfied trivially by the assumed
symmetries of the flow and the nontrivial component of the Euler euqation gives

(e + p)a + ∇p = 0, a = ∇ ln E (5)

with a being a poloidal part of the four-acceleration and

E ≡ −uνtν = (−gtt + 2`gtφ − `2gφφ)−1/2 (6)

being a sum of the kinetic and gravitational energies. In the case of adiabatic flows, p =

p(e) and Ω = Ω(`), the equation (5) can be integrated to

Eh = const, h ≡
e + p
ρ

, (7)

where h is the enthalpy. We restrict ourselves to the polytropic equation of state,

e = ρ + np, p = Kρ1+1/n, (8)

where K and n are the polytropic constant and index. Surfaces of constant density and pres-
sure coincide with surfaces of constant E (‘equipotential’ surfaces). As can be seen from
equation (5), the equatorial circle r = const ≡ r0 of the maximal pressure (‘main circle’
or the ‘center’ of the torus, r being the circumferential radius) corresponds to the geodesic.
The flow rotates with Keplerian angular momentum at this radius. Inside/outside this ra-
dius, the motion is accelerated by the pressure gradient leading to super-/sub-Keplerian
rotation. The location of the torus boundary (the equipotential with p = 0) depends on the
parameter β, first introduced by Abramowicz et al. (2006),

β ≡

√
2ncs0

A0r0Ω0
, 0 < β < βmax, (9)

where cs0 is the local sound speed and the subscript ‘0’ denotes an evaluation of the cor-
responding quantity at the torus center. This parameter roughly describes a ratio of the
radial extend of the torus to the main-circle radius r0 and will be further referred to as the
thickness parameter. The lower limit β → 0 corresponds to slender tori with small extend
whose equipotential have elliptical cross-sections (Abramowicz et al., 2006). The upper
bound βmax is determined by the maximal closed equipotential surrounding the main cir-
cle. This euipotential corresponds either to the self-crossing surface (in that case, the torus
has a finite extend and terminates by the cusp at its inner edge) or to an open surface of
the quasi-parabolic shape (in that case the torus outer edge is at infinity). The first case
occurs in tori with centers located close to the compact object, the latter limits the torus
sizes farther away. Fig. 1 shows few examples of these maximal configurations in Kerr
spacetimes.
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Figure 1. .Left: The upper bound on the torus thickness parameter βmax as a function of its main-
circle radius r0 for different black-hole spins (the curves from the right to left correspond to a =

0, 0.1, 0.2, .., 0.9 and 1). The polytropic index of the fluid is n = 3. The size of the torus is limited
either by self-crossing equipotential surface or by first quasi-parabolical surface that opens to infinity.
The first case corresponds to the initial steeper part of the βmax(r0)-curves closer to the black hole, the
second case corresponds to the subsequent moderate growth farther away. Middle and right panels
show examples of the two maximal configurations: torus terminated by the cusp for a = 0, r0 = 8M
(middle) and an infinite torus for a = 0, r0 = 12M (right).

3 PERTURBATIONS

Due to the symmetries of the stationary configuration, a general linear perturbation of the
torus can be decomposed into normal modes, whose dependence on time and azimuth is
of the form of exp[i(mφ − ωt)] with m being an integer azimuthal wavenumber and ω is
the oscillation frequency (eigenfrequency) of the mode as measured by a distant observer.
Papaloizou and Pringle (1984) introduced a perturbation variable W to describe the spa-
tial shape of the perturbations. Later on, its relativistic version has been introduced by
Abramowicz et al. (2006) (see also Blaes et al., 2006)

W ≡ −
δh
ω̃
, (10)

where ω̃ = A(ω − mΩ) is the frequency of oscillations measured in the comoving frame of
the fluid. Perturbations of other quantities follow from W using

δu =
i
h
∇W, δut =

m̃A
Ωh

W, δuφ = −
m̃A
h

W, δp = −ρω̃W, (11)

where m̃ = E(m − `ω) and, again, boldface letters denote components of four-vectors in
the poloidal plane t = const, φ = const. The variable W is governed by the relativistic
Papaloizou-Pringle equation

h
ρR
∇ ·

(
ρR
h
∇W

)
+

[
ω̃2

c2
s
−

m̃2

R2

]
W = 0, (12)

where R ≡ [(tνφν)2 − (tνtν)(φνφν)]1/2 = (g2
tφ − gttgφφ)1/2. The equation (12), apart of some

errors, has been first derived by Abramowicz et al. (2006). The boundary condition is that
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of the free surface (i.e. vanishing Lagrangian pressure variation at the torus boundary). In
terms of W, it is enough to demand W to be finite at the torus boundary.

Mathematically, the equation (12) represents a quadratic eigenvalue problem. To see it
more explicitly, we can rewrite it as

L̂W + (ω − mΩ1) (ω − mΩ2) W = 0, (13)

where

L̂ ≡
h

ρRB
∇ ·

(
ρR
h
∇

)
, B ≡

A2

c2
s
−

E2`2

R2 , Ω1,2 ≡
ARΩ ± csE
AR ± csE`

. (14)

Both, Ω1 and Ω2 tend to the rotational frequency Ω in the limit of vanishing sound speed.
For a given value of the azimuthal wavenumber m, there is a set of discrete frequencies and
eigenfunctions {ωn,Wn(x)} that satisfy equation (13) with the boundary condition describ-
ing various modes of torus oscillations.

Consider now two functions U and V defined on the torus poloidal cross-section S and
finite at its boundary ∂S . One may show that the operator L̂ is self-adjoint with respect to
the scalar product

〈U |V〉 ≡
∫

S
U(x)V(x)w(x)dS , w(x) =

ρRB
h

. (15)

In the limit of slender tori, β → 0, Ω1 ≈ Ω2 ≈ Ω0, the equation (13) becomes a linear
self-adjoint eigenvalue problem with σ2 = (ω − mΩ0)2 being the eigenvalue. Because the
operator L̂ is self-adjoint, it follows that its eigenvalues σ2 are real and the corresponding
eigenfunctions Wn(x) form a complete orthogonal set.

Blaes et al. (2006) obtained analytic formulae describing lowest-order oscillation modes
of relativistic slender tori. They also realized that due to a convenient structure of the
operator L̂ in this limit, the eigenfunctions are given by polynomials of finite order in the
poloidal coordinates. In particular, the linear eigenfunctions correspond to the epicyclic
modes. Later on, Straub and Šrámková (2009) studied the epicyclic modes in thicker tori
(described by small but finite β) using perturbation expansion in the thickness parameter
β. They expanded the eigenfunctions of a thicker torus in the basis of eigenfunctions of
slender torus and found corrections due to a finite torus thickness to be

ωr = ω(0)
r + β2ω(2)

r + O(β3), Wr = W (0)
r + βW (1)

r + O(β2) (16)

and

ωv = ω(0)
v + β2ω(2)

v + O(β3), Wv = W (0)
v + βW (1)

v + O(β2). (17)

The leading-order correction ω(2)
i and W (1)

i (x) are of the second order in the eigenfrequen-
cies and of the first order in the eigenfunctions. They are given by the location of the
pressure maximum r0 and polytropic index n. The zeroth-order eigenfrequencies read
ω(0)

r = ωr + mΩ0 and ω(0)
v = ωθ + mΩ0, where ωr and ωθ are just radial and vertical

geodesic epicyclic frequency, respectively. The Straub and Šrámková (2009) solution de-
scribes well a qualitative behavior of the epicyclic modes, nevertheless it was based on the
Abramowicz et al. (2006) form of the Papaloizou-Pringle equation that contained few er-
rors. The problem has been recently revisited by Fragile et al. (2016), who used a correct
form of the Papaloizou-Pringle equation, and whose analytical results are used here.
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N=0 N=2 N=4

Figure 2. Quadrilateral triangulations covering the upper half of the torus cross-section used in the
calculations. The initial (N = 0) triangulation is shown on the left, triangulations after N = 2 and
N = 4 global refinements are shown in the middle and on the right, respectively. The number of the
quadrilaterals after N global refinements is 4N+1. The dashed line denotes the surface of the torus.

4 NUMERICAL CALCULATIONS

In this note, we use the finite elements method (FEM) to solve equation (13). By introduc-
ing an additional solution variable W̃ ≡ (ω − mΩ1)W, the quadratic eigenvalue problem is
reduced to the linear one for a two-component solution vector [W(x), W̃(x)]. We then find
a weak form of the problem that is further discretized by expanding the solution in a finite
set of suitable chosen shape functions (finite elements). This way the problem is finally
reduced to an eigenvalue problem of a large sparse matrix.

Our implementation of FEM is based on the C++ library deal.II (Arndt et al., 2017). It
uses a quadrilateral solution mesh (‘quadrilateral triangulation’). We take advance of the
equatorial plane symmetry of the stationary flow and solve the Papaloizou-Pringle equation
in the upper half of the torus only. In the equatorial plane we impose additional boundary
condition W = 0 or n·∇W = 0 (n is a normal vector to the equatorial plane) according to the
parity of the modes. Initially, we start with the triangulation consisting of 4 quadrilateral
cells roughly resembling overall shape of the torus cross-section. The initial mesh is then
N-times refined globally. In each refinement step, every cell is divided into four smaller
cells, so the total number of quadrilaterals after N refinements is 4N+1 (see Fig. 2). We use
standard scalar Lagrange finite elements Qp for both W and W̃ components. This yields a
solution in terms of piecewise polynomials of the order of p. In this note we the simplest
elements corresponding to p = 1. Indeed, using higher values of p would reduce a total
number of cells needed to obtain the same accuracy of approximations, however at the same
time it would increase the number of degree of freedoms per cell. The matrix eigenvalue
problem is solved with the aid of the numerical library ARPACK. When the solution is
obtained, its error is estimated by taking one more refinement step and comparing the
new eigenfrequency with the previous one. We have tested this procedure on the case of
very slender torus, where the eigenfunctions and eigenfrequencies are given by analytic
expressions Blaes et al. (2006). Generally, we have found that the mashes of the order of
N = 2 or 3 are sufficient for determination of eigenfrequencies of the epicylic modes with
precision better then 1%.

When examining the oscillation modes in thick tori, we assume that their eigenfrequen-
cies and eigenfunctions are continuous functions of torus thickness. We trace the eigen-
functions of epicyclic modes in thick tori by starting at given radius with a slender torus and
searching for a modes whose eigenfrequency is closest to the local epicyclic frequencies.
We also check whether the corresponding eigenfunctions agree with Blaes et al. (2006) an-
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alytic formula. We then gradually increase the thickness parameter β of the torus by steps
∆β. In the (i+1)-th step we first select few (10) closest eigenfrequencies to the one obtained
in the previous step (ωi). For these modes, we map the corresponding eigenfunctions to the
cross-section of the torus dealt with in the previous (i-th) step and calculate its correlation
with the eigenfunction found in the i-th step. Finally, we chose the mode with the highest
correlation. If no candidate mode gives acceptable correlation, we reduce the step size ∆β
and repeat the procedure. Practically, we set the lower limit of acceptable correlation to
0.99. A typical step-size corresponding to this limit is ∆β = 0.01. We trace the epicyclic
modes over full range of 0 < β < βmax at various radii. This way we build up a grid cov-
ering all possible radii and thicknesses. The eigenfrequencies corresponding to a torus of a
given r0 and β are then found by an interpolation over this grid.

Although our numerical calculation is suitable for a general axisymmetric spacetime, in
this note, we further restrict ourselves to relativistic tori around Kerr black holes. We also
set the polytropic index to n = 3, what corresponds to radiation-pressure dominated flows.

5 AXISYMMETRIC EPICYCLIC MODES

Figure 3 shows behavior of the eigenfrequencies of the radial and vertical axisymmetric
(m = 0) epicyclic modes with changing thickness parameter β. Each line corresponds to a
given spin of the black hole and position of the torus center r0 and traces the eigenfrequency
over a full range of the thickness parameter. Therefore their endpoints thus correspond
either to infinite tori or to finite tori with cusps at their inner edges. In the latter case, the
eigenfrequencies vanishes as β→ βmax, because a torus center of the mass gradually moves
to large radii. The analytic approximation based on Fragile et al. (2016) calculations are
shown by dashed lines for comparison. In the case of the radial axisymmetric epicyclic
mode, the second-order analytic predictions and the numerical calculations are in excellent
agreement. On the other hand, use the analytic approximation for the vertical mode is
rather limited to β . 0.1.

Figure 4 shows poloidal velocity fields corresponding to the two epicyclic modes in the
cusp tori around Schwarzschild black hole, whose center is located at r0 = 9M. We plot
the contravariant components of the four-velocity in the Boyer-Lindquist coordinates cal-
culated using equation (11). As can be seen from these relations, the four-velocity has also
very small azimuthal component of purely relativistic origin, because m̃ does not vanish
even for axisymmetric modes. The velocity patterns corresponding to epicyclic oscilla-
tions of thick tori differ substantially from uniform velocity fields found in slender tori.
The oscillations take place mostly in outermost parts of the torus, while close to the cusp,
the matter is practically unaffected.

6 NON-AXISYMMETRIC MODES

To explore properties of non-axisymmetric epicyclic modes, we concentrate on the m = 1
case. Since the equation (13) remains unchanged under the transformation ω → −ω, m →
−m, all the results presented in this section can be applied to the case m = −1 as well. In
slender tori, the eigenfrequencies of the non-axisymmetric oscillation modes are given by
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Figure 3. Eigenfrequencies of the radial (left) and vertical (right) epicyclic modes in relativistic tori
surrounding Kerr black hole. The dashed lines show the analytical approximation of Fragile et al.
(2016). The solid lines denote the numerical solutions of the equation (13). Each line corresponds
to a sequence of tori with constant main-circle radius r0 and changing thickness parameter β in a
full range, 0 < β < βmax. The polytropic index is set to n = 3. The lines terminating at nonzero
frequencies correspond to sequences terminating with a cusp torus. The circle indicates the solutions
shown in Fig. 4.

Figure 4. Eigenfunctions of the radial (left) and vertical (right) epicyclic modes of relativistic tori
with cusp surrounding Schwarzschild black hole. The arrows show contravariant Boyer-Lindquist
components of the local velocity δvi calculated using equation (11). The parameters of the torus are
r0 = 9M, β = 0.452 and n = 3 in both cases and correposond to the solutions indicated in Fig. 3 by
the circle.
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Figure 5. Eigenfrequencies of the non-axisymmetric (m = 1) radial and vertical epicyclic modes in
relativistic tori surrounding Schwarzschild black hole at r0 = 8M, 9M and 15M. Meaning of the lines
is the same as in Fig. 3. In the case of radial modes (left), we show both, the r+ and r− modes. If
the torus is located sufficiently far away from the black hole (here the case of r0 = 9M and 15M),
the two radial epicyclic modes merge and create a couple of an overstable and damped mode. In the
case of vertical modes (right), we show only the ω+

v -mode, as ω−v vanishes identically due to spherical
symmetry. The circles denote the solutions, whose eigenfunctions are shown in Fig. 6.

Figure 6. Eigenfunctions of the radial (left) and vertical (right) non-axisymmetric epicyclic oscil-
lations of relativistic tori with cusp surrounding Schwarzschild black hole. In the case of the ra-
dial epicyclic mode, we show the eigenfunction of the unstable mode corresponding to merged ω±r
branches. The eigenfunction is complex, the real and imaginary part of the velocity perturbation is
shown by black and gray arrows, respectively. In the case of the vertical oscillations, we show the
eigenfunction corresponding to v+-mode. The parameters of the torus are r0 = 9M, β = βmax = 0.452
and n = 3 in both cases and correspond to the circles in Fig. 5.
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Figure 7. Eigenfunction of the nonaxisymmetric (m = 1) v−-mode of tori surrounding Schwarzschild
black hole may serve as an independent check of the accuracy of the numerical procedure. From the
symmetry reasons, the eigenfunctions of this mode has to be W−

v = C cot θ, independently of the torus
thickness. The solid lines are contours of constant W−

v in the numerical eigenfunction. The dashed
lines corresponds to θ = const. The parameters of the torus are r0 = 9M, β = βmax = 0.452 and n = 3.

ω = mΩ0±σ, where σ is an eigenfrequency of the axisymmetric problem. In particular, for
a given m, there are two radial (denoted as r±) and two vertical (v±) epicyclic modes with
frequencies ω±r = mΩ0 ±ωr and ω±v = mΩ0 ±ωθ. We examine a behavior of all four modes
with increasing torus thickness. We restrict ourselves to tori surrounding Schwarzschild
black hole.

Figure 5 shows behavior of the r±-radial modes and v+-vertical mode with changing
thickness parameter β for three representative radii, r0 = 8M, 9M and 15M. As in the
axisymmetric case, the solid lines represent numerical solution of the equation (13) and
dashed lines correspond to analytical approximations of Fragile et al. (2016). Examples of
the corresponding eigenfunctions are shown in Fig. 6.

In the case of the radial oscillations, the numeric and analytic curves agrees well for
tori of moderate thicknesses, β . 0.3. However, at higher thicknesses we observe qualita-
tively different type of behavior: the two branches corresponding to ω±r merge and develop
a couple of overstable and damped modes. The two new modes oscillate with the same
frequency (given by real parts of their eigenfrequencies), and opposite growth rates (imag-
inary parts). Consequently, their eigenfunctions are complex conjugated. An example of
the overstable mode eigenfunction is shown in left panel of Fig. 6. The mechanism behind
is related to the Papaloizou-Pringle instability and is discussed in more details in section 7.

In the case of the vertical oscillations, the behaivor of the oscillation frequencies and
accuracy of the analytic approximations is similar to the axisymmetric case. We show
only v+ oscillations in Fig. 5 as the eigenfrequencies ω−v vanish identically for the case of
Schwarzschild black hole. This is a consequence of spherical symmetry of the spacetime.
The v− oscillations in the m = 1 case (and by symmetry v+ oscillations in the m = −1 case
as well) can be separated out by introducing a suitably chosen tilt of the equatorial plane.
These oscillations therefore correspond to neutral modes. Nevertheless, these mode may
serve us as a very useful check of the accuracy of the numerical calculations. Being just
a rigid infinitesimal tilt, it is possible to show that their eigenfunctions are simply given
by W−v = C cot θ, where C is a normalization constant and θ is the meridional angle of
the Schwarzschild coordinates (Blaes, 2017, unpublished). In other words, the lines of
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Figure 8. The eigenfunctions of the non-axisymmetric (m = 1) radial epicyclic modes and the mech-
anism of the instability. The left and middle panel show eigenfunctions of the r± modes in the torus
of moderate thickness (β = 0.6βmax = 0.27). The right panel shows the eigenfunction of the unstable
modes developed after ω±r merges and corresponds to β = 0.9βmax = 0.407. The center of the torus is
located at r0 = 9M. The black and gray arrows show real and imaginary parts of the velocity fields.
The black solid line denote corotation radius. The inner and outer sonic radii are shown by gray
curves.

constant W−v on the torus cross-section coincide with those of constant θ. Fig. 7 shows that
the eigenfunctions W−v calculated using our numerical method have this property.

7 PAPALOIZOU-PRINGLE INSTABILITY

Dynamics of the r± non-axisymmetric modes share many common features with those of
a simplified shearing sheet model of Narayan et al. (1987). In this section we apply their
essential results to our problem in order to qualitative understand behavior of the non-
axisymmetric radial epicyclic modes.

The left and middle panels of Fig. 8 show eigenfunctions of the r+ and r− modes for
r0 = 9M and β = 0.6βmax = 0.27. They correspond to two distinct real eigenfrequencies
on separate ω±r branches before the two modes merge (see Fig. 5, left). In each panel we
also plot the lines where the local frequency of the oscillations matches the orbital velocity
of the fluid Ω (‘corotation radius’) and the frequencies Ω1,2 (outer and inner ‘sonic radii’).
An observer moving with the fluid at these radii would measure either zero or sonic pattern
speed of the oscillations. The two eigenfunctions show very different velocity patterns;
while the most of the oscillations is concentrated to the outer parts of the torus in the case
of the r+, in the case of the r− the most variable is the inner part. This behavior can be
understand by exploring conditions for a wave propagation in the torus.A WKBJ analysis
of equation (13) shows that the wave-like disturbances can freely propagate only outside the
region limited by the sonic radii, while there is an wave-evanescent region in between. In
the case of isolated r± modes, the oscillations are trapped in a larger region, either between
the outer sonic radius and the outer boundary of the torus (the case of r+ mode), or between
the inner sonic radius and inner edge of the torus (the case of r− mode).

According to Narayan et al. (1987), waves propagating outside or inside the corotation
radius carry positive or negative conserved wave action, respectively. Therefore, the total
action of the r+ mode is positive and that of r− mode is negative. As the torus thickness
further increase, the corotation and sonic radii gradually move towards the center of the
torus allowing another trapping cavity to appear on the other side of the corotation. As a
consequence, a wave trapped in this cavity reduce the absolute value of the total action of
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the modes. At the moment when the ω±r branches merge, a standing wave pattern on both
sides of the corotation is established and the total action of the mode vanishes, because
the waves trapped in the two cavities carry exactly opposite actions. As time passes, these
actions are further increased by tunneling effect through the evanescent region from one
side of the corotation to another. As a result, an overstable neutral mode develops (see the
right panel of Fig. 8).

8 CONCLUSIONS

This note summarizes some aspects of our ongoing study of oscillation modes of thick
relativistic disks. We concentrated here only on the case of constant specific angular mo-
mentum flows. We reviewed a basic theory of stationary thick disks solutions and briefly
discussed occurrence of the two possible maximal configuration – radially infinite tori and
finite tori terminating by the cusps at their inner edges. We have noted that the cusp tori
can be constructed only in a close vicinity of black holes; with increasing black-hole spin,
a possible region reduces significantly. We also mentioned several mathematical aspects of
the theory of torus oscillations and introduced the finite-element numerical method to solve
the corresponding eigenvalue problem.

The main motivation for our study was to explore range of applicability of the second-
order analytic approximations of Fragile et al. (2016) in terms of a torus thickness param-
eter β. Although Fragile et al. (2016) considered also higher-order modes (X, plus, and
breathing), we have restricted ourselves to the epicyclic modes only. We have found that
analytic approximation can be safely applied to the axisymmetric radial epicyclic mode
almost in a whole range of possible β. Its agreement with the numerical solutions in this
case is astonishing. On the other hand, a comparison of the results in the case of vertical
axisymmetric oscillations is not so impressive. The analytic formula give a reasonable ap-
proximation only for β . 0.1. Behind this limit, the dependence of the eigenfrequencies on
the torus thickness seems to be rather linear, in contrast to the quadratic one proposed by
Fragile et al. (2016).

The situation is more complicated in the case of the non-axisymmetric modes where
the numerical solution revealed an instability of the radial epicyclic modes. We have pro-
vided a qualitative description of the instability mechanism based on the general analysis of
Narayan et al. (1987). As the instability occurs in a limited range of finite torus thicknesses,
it is very unlikely that this behavior could be captured by analytic perturbation calculations
based on an expansion around a slender-torus limit.
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Straub, O. and Šrámková, E. (2009), Epicyclic oscillations of non-slender fluid tori around Kerr black
holes, Classical and Quantum Gravity, 26(5), 055011, arXiv: 0901.1635.

Wielgus, M., Fragile, P. C., Wang, Z. and Wilson, J. (2015), Local stability of strongly magnetized
black hole tori, Mounthly Notices Roy.Astronom.Soc., 447, pp. 3593–3601, arXiv: 1412.4561.

äy ää äy

http://www.arxiv.org/abs/astro-ph/0511375
http://www.arxiv.org/abs/astro-ph/0601379
http://www.arxiv.org/abs/0708.0148
http://www.arxiv.org/abs/1602.08082
http://www.arxiv.org/abs/1602.08082
http://www.arxiv.org/abs/astro-ph/0407642
http://www.arxiv.org/abs/astro-ph/0307488
http://www.arxiv.org/abs/0901.1635
http://www.arxiv.org/abs/1412.4561

	Introduction
	Equilibrium
	Perturbations
	Numerical calculations
	Axisymmetric epicyclic modes
	Non-axisymmetric modes
	Papaloizou-Pringle instability
	Conclusions

