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ABSTRACT
In this work we investigate the motion of free particle in the field of strongly gravi-
tating object which is embedded into dust cosmological background. We use newly
obtained exact solution of Einstein equations in comoving coordinates for the sys-
tem under consideration in case of zero spatial curvature. Observable velocity of the
particle moving relatively to the observer comoving with cosmological expansion is
found from geodesic equations.
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1 INTRODUCTION

The problem of building a model of the black hole that embedded into space which is not
empty but filled with some matter is of great interest in wide set of research directions,
including the thermodynamics of black holes (Giddings, 2012), (Firouzjaee and Mansouri,
2012), (Firouzjaee and Ellis, 2015a), (Firouzjaee and Ellis, 2015b), the black hole horizon
dynamics (Firouzjaee and Mansouri, 2010), studying the influence of cosmological expan-
sion on the evolution of local objects (Moradi et al., 2010), (Faraoni and Jacques, 2009)
etc.

In this work we focus on investigation of the motion of the test particle near the black
hole in a cosmological background. This will help in explaining how the effect of cosmo-
logical expansion could be relevant for local dynamics near the astrophysical black holes
today. Many papers devoted to this problem were appearing over the years (see (Senovilla
et al., 1999), (Krasinski, 1997) for brief reviews) but the problem is steel staying a point
for active discussions. New exact solutions can help to better understand this problem.

Recently a new exact solution describing the black hole embedded into dust matter was
found by means of the mass function method (Korkina and Kopteva, 2012b), (Korkina and
Kopteva, 2012a). Using this solution in particular case of flat space we study the motion of
the test particle in resulting space–time solving the geodesic equations.
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The paper is organized as follows. In section 2 briefly present the idea of the mass
function method and our exact solution. In section 3 we write the geodesic equations and
solve them for pure radial and orbital motion. In conclusions section we summarize the
results.

2 THE SOLUTION

The mass function method is the method for solving the Einstein equations by means of
introducing the mass function (Misner and Sharp, 1964) – (Zannias, 1990)

m(R, t) = r(R, t)(1 + e−ν(R,t)ṙ2 − e−λ(R,t)r′2) (1)

which is one of four algebraic invariants for the spherically symmetric metric

ds2 = eν(R,t)dt2 − eλ(R,t)dR2 − r2(R, t)dσ2. (2)

Using (1) it is possible to rewrite the Einstein equations in much more simple way

m′ = εr2r′; (3)

ṁ = −p‖r2ṙ; (4)

2ṙ′ = ν′ṙ + λ̇r′; (5)

2ṁ′ = m′
ṙ
r′
ν′ + ṁ

r′

ṙ
λ̇ − 4rṙr′p⊥; (6)

Here and further we use the units were c = 1 and 8πG = 1; dot means derivative
with respect to t and prime means derivative with respect to R; ε is energy density, p⊥ is
tangential pressure, and p‖ is radial pressure.

In our consideration we use the comoving coordinates, which are known to become
synchronous for the dust.

Let us take the metric describing dust distribution in Tolman–Bondi form (Tolman, 1969)

ds2 = dt2 −
r′2(R, t)

f 2(R)
dR2 − r2(R, t)dσ2, (7)

were f (R) is arbitrary function having sense of total energy in mc2 units in the shell R.
The Schwarzschild solution as well as Friedman solution are the particular cases of the

Tolman–Bondi solution under certain choice of functions m(R), f (R) and t0(R). Namely
m(R) = rg for the Schwarzschild solution and m(R) = a0R3, f (R) = 1, t0(R) = 0 for the flat
Friedman one.
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The mass function has a meaning of total mass in the shell R, so it is additive function.
And hence the solution for the Schwarzschild–like black hole in the Tolman–Bondi space–
time will be the Tolman–Bondi solution with the mass function

m(R)→ rg + m(R). (8)

Thus the solution for the flat Friedman world together with the Schwarzschild–like black
hole for the case of expansion takes the form

r(R, t) =

[
±

3
2

√
rg + a0R3(t − t0(R))

] 2
3

. (9)

One should notice that this solution does not describe the pure Friedman world but de-
scribes the world of Tolman–Bondi with mass function chosen the same as Friedman one.

The metric (7) has two true singularities under r(R, t) = 0 and r′(R, t) = 0. The energy
density in the resulting space–time can be found from the equation (3) regarding the mass
function

m(R) = (rg + a0R3). (10)

It reads

ε(R, t) =
4a0R2

(a0R2(3t − 5R) − 2rg)(t − R)
(11)

The expansion starts for each shell R at the moment t = R with infinite energy density
and then for each shell the energy density tends to zero with time. The black hole horizon is
absent in comoving coordinates, but there is one more singularity which gives divergence
of the energy density along r′(R, t) = 0. Thus the observer with constant R and ϕ will
always see the overdense region near small R what might be treated as the manifestation of
the black hole.

3 THE EQUATION OF MOTION

In this section we consider the motion of the test particle in obtained model with respect
to observer comoving with the cosmological expansion. We fix θ coordinate θ = π/2, and
chose the arbitrary function t0(R) to be just R to get analogy with Lemaitre solution.

For the solution (9) with mass function (10) and metric

ds2 = dt2 − r′2(R, t)dR2 − r2(R, t)dϕ2 (12)

the geodesic equations gives

d2t
ds2 + ṙ′r′

(dR
ds

)2
+ ṙr

(dϕ
ds

)2
= 0 (13)

d2R
ds2 +

r′′

r′
(dR

ds

)2
−

r
r′

(dϕ
ds

)2
+ 2

ṙ′

r′
dt
ds

dR
ds

= 0 (14)
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d2ϕ

ds2 + 2
r′

r
dR
ds

dϕ
ds

+ 2
ṙ
r

dϕ
ds

dt
ds

= 0 (15)

For the case when the particle starts from rest with respect to comoving coordinates R, ϕ
one has
dR
ds

= 0,
dϕ
ds

= 0,
dt
ds

= 1, (16)

and hence from the system (13)-(15) it follows that

d2t
ds2 = 0,

d2R
ds2 = 0,

d2ϕ

ds2 = 0. (17)

This means that starting from rest the particle is staying in rest respectively to comoving
observer and follows the cosmological expansion as all matter averagely do.

If the particle has arbitrary initial velocity in θ = π/2 plane then integrating (14) and (15)
and using the interval (12) one can obtain the following expressions

ds
dt

= Bu1r′2e−
u3
u1
ϕ (18)

ds
dt

= Aru3 (19)

where A and B are arbitrary constants of integration.(ds
dt

)2
= 1 − (u2

1 + u2
3) = 1 − u2 (20)

where u1 = r′dR/dt is observable velocity of the particle in radial direction, and u3 =

rdϕ/dt is observable orbital velocity.
Let us consider first the pure radial motion. Then putting u3 = 0 in (18) and (20) we

obtain

u1 =
1

√
r′4 + 1

. (21)

For the pure orbital motion one has u1 = 0 and hence

u3 =
1

√
r2 + 1

. (22)

And finally the total velocity reads

u2 = u2
1 + u2

3 =
1

r′4 + 1
+

1
r2 + 1

(23)

Thus we have obtained the observable velocity of the test particle which would be mea-
sured by the observer being in rest in comoving coordinate frame with his usual instru-
ments. From the expressions for the velocity it follows that even if the test particle has
a nonzero initial orbital velocity it will lose its angular momentum with time and moreover
will lose its total velocity and will be involved to the cosmological expansion. Yet another
situation is possible when the particle falls into the black hole with total velocity tending to
the speed of light. The profile of the total velocity in dependence on R and t is represented
at fig.1.
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Figure 1. Total velocity profile of the test particle

4 CONCLUSIONS

To conclude one should say that the model under consideration answers the part of ques-
tions concerning the behaviour of the test particle moving in the space–time generated
by the Schwarzschild–like black hole embedded into the dust matter cosmological back-
ground. On the basis of exact solution of the Einstein equations we have obtained the exact
analytical expressions for the velocity of the particle, and it turned out that the total velocity
of the particle tends to zero with time, that means that the particle will be involved to the
cosmological expansion in case it was not traveling towards the center R = 0, in this case
it would fall into the singularity. The specific character of the coordinate frame makes it
impossible to analyze the questions concerning the black hole horizon. And some other
interesting problems in this issue were also left for our future consideration.
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