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ABSTRACT
Magnetic field generated by circular current loop located in flat spacetime is stud-
ied. Ampere’s law has been solved using two different methods of expansions into
infinite series: multipole expansion and power series expansion. Both infinite se-
ries solutions are compared with full analytic solution and their pros and cons are
discusses.
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1 INTRODUCTION

Gravitation and electromagnetisms are the only two long range forces important in astro-
physics. Gravitational collapsed object - black hole can be well described by Kerr metric
if we will assume electromagnetic field to be weak, i.e. stress-energy tensor for electro-
magnetic field does not contribute to the geometry of background spacetime. Any elec-
tric charge will be discharged quite quick for astrophysical compact object surrounded by
plasma, so only magnetic field will remain in play. The exact shape and intensity of mag-
netic field surrounding the black hole (black hole magnetosphere) is still not yet properly
resolved, but strong connection to the accretion processes is assumed (Meier, 2012). In
this article we will focus on magnetic field generated by circular current loop, located in
equatorial plane, as a model of toroidal current floating inside the accretion disks. We will
focus on flat spacetime in this preliminary study only, but full relativistic approach will be
used.

Our search for proper shape of black hole magnetosphere is motivated by our study of
charged particle motion in vicinity of magnetized black hole (Kološ et al., 2015; Stuchlı́k
and Kološ, 2016) where we have been using simple model of uniform magnetic field only,
and now we are looking for more realistic magnetic field solution. It is known, that even
weak magnetic field can have significant influence on the charged particles motion - all
depend on test particle specific charge (particle charge to mass ratio). The ”charged par-
ticle” can represent matter ranging from electron to some charged inhomogeneity orbiting
in the innermost region of the accretion disk surrounding the black hole. To have a smooth
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charged particle trajectory, the spacetime metric and tensor of electromagnetic field must
be sufficiently smooth in the region where the motion of particle occur. As we will see fur-
ther, some magnetic field solutions are composed of two branches matched at some radii
and hence does not meet smoothness criteria.

2 MAXWELL’S EQUATIONS

Gravity will not be included at this stage and the spacetime is flat with line element

ds2 = −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dφ2. (1)

Cartesian coordinates x, y, z can be obtained by the coordinate transformations

x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ. (2)

Vectors and tensors can be expressed in local frame of reference using relations

Aµ̂ =
∂xµ̂

∂xµ
Aµ, F µ̂̂ν =

∂xµ̂

∂xµ
∂x̂ν

∂xν
Fµν, (3)

where the local observer coordinates are

d̂t = dt, d̂r = dr, d̂θ = r dθ, dφ̂ = r sin θ dφ. (4)

The metric gµ̂̂ν constructed by local observer coordinates has very simple form gµ̂̂ν =

diag(−1, 1, 1, 1) and vectors has Aµ̂ = Aµ̂ for all µ ∈ {r, θ, φ}.
Ampere’s law from classical Maxwell’s equations can be written as (Jackson, 1998)

∇ × B = µ0J, (B = ∇ × A), (5)

where B is vector of magnetic field, J is vector of the current density and A is vector
potential. Using Coulomb gauge ∇ · A = 0, the Ampere’s law can be rewritten

∇2A = µ0J, (∇ × (∇ × A) = ∇ · (∇ · A) − ∇2A = µ0J). (6)

In SI units we are using vacuum permeability µ0, in Gaussian units one must substitute µ0
with 4π/c.

Relativistic formulation of Maxwell’s equations in flat spacetime is

∂αFµν + ∂νFαµ + ∂µFνα = 0, ∂αFαβ = µ0Jβ. (7)

where Jβ is electric current four-vector. Electromagnetic tensor Fµν is given by

Fµν = ∂µAν − ∂νAµ, (8)

where Aµ is electromagnetic four-vector. Assuming axial symmetry and absence of electric
field, the only non-zero component of Aµ will be Aφ

Aµ = (0, 0, 0, Aφ), Aφ = Aφ(r, θ), Aφ = Aφ r2 sin2 θ = Aφ̂ r sin θ. (9)
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Figure 1. Shape of magnetic field lines around current loop with radius a = 6 in flat spacetime.
Dipole approximation (left) and full analytic solution (right) are plotted.

The first of Maxwell’s equations (7) is satisfied identically, while the second is giving the
equation which we will be solving in this proceeding

r2 ∂

∂r

(
∂

∂r
Aφ

)
+ sin θ

∂

∂θ

(
1

sin θ
∂

∂θ
Aφ

)
= −µ0Jφ r4 sin2 θ. (10)

We will call this equation Ampere’s law, but it can be also wield as special case of Grad—
Shafranov equation well known from MHD (Meier, 2012).

Magnetic field three-vector B = (B̂r, Bθ̂, Bφ̂) can be related to four-vector Aφ

B̂r =
Aφ,θ

r2 sin θ
, Bθ̂ = −

Aφ,r

r sin θ
, Bθ̂ = 0. (11)

Circular current loop with radius a is located in x-y plane (equatorial plane θ = π/2).
Although the current is created by moving charge, the loop itself is considered to be neutral.
The current loop is given by current density Jµ, but due to symmetry, only Jφ component
will be non-zero

Jφ(r, θ) =
I
r2 δ(r − a) δ(θ − π/2),

∫
Jφ̂ dr̂ dθ̂ =

∫
Jφr2 sin θ dr dθ = I. (12)

where δ is Dirac delta function and the total current through r-θ plane (x-z plane) is nor-
malized to I. Since the current density is given by delta functions δ(r − a) and δ(θ − π), it
is zero except for one point r = a in equatorial plane. We will be looking for the solution
of eq. (10) with the right side equal to zero, and the current existence will be important as
boundary condition only.
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3 SOLUTIONS OF MAXWELL’S EQUATIONS

In classical electromagnetism we could express the Ampere’s law in integral form. The
analytic solution for vector potential A can be found using

A(x) =
µ0

4π

∫
J(x̃)
|x − x̃|

d3 x̃. (13)

The exact solution for circular current loop can be found using complete elliptic integral of
the first K(m) and second E(m) kind (Jackson, 1998)

Aφ̂(r, θ) = µ0Ia
(2 − k2)K(k2) − 2E(k2)

πk2
√

a2 + 2ar sin θ + r2
, k2 =

4ar sin θ
a2 + r2 + 2ar sin θ

. (14)

Far away from the current loop r >> a (x ≈ x̃) simpler expression can be found

Aφ̂(r, θ) =
µ0Ia2r sin θ

4r3 , A =
µ0

4πr2

m × r
r

, (15)

where m current loop magnetic dipole moment m = πIa2z, z is unit base vector in z
direction and 4πr2 is the surface of a sphere with radius r.

Assuming the current Jφ to be completely zero (no current loop), there exist another very
simple solution to the Ampere’s law (10)

Aφ̂(r, θ) =
B
2

r sin θ =
B
2

x, B̂r = B cos θ, Bθ̂ = −B sin θ. (16)

This form of vector potential Aφ̂ represent uniform magnetic field with strength B oriented
perpendicularly to the equatorial plane (Wald, 1974)

Magnetic field B is fully specified by electromagnetic four-potential Aµ, see eq (11).
We can provide the exact form of magnetic field B, but it is more elegant to work with
electromagnetic potential Aµ instead. Shape of magnetic field B can be easily plotted using
contour lines of electromagnetic potential

Aφ̂(r, θ) = const. (17)

For example for uniform magnetic field (16), equally spaced straight lines parallel to z axis
can be obtained. For compassion the full analytic solution of vector potential (14) and its
dipole approximation (15) are plotted in Fig. 1.

3.1 Multipole expansion

Using substitution Aφ = R(r) ·Θ(θ) for the electromagnetic four-potential Aφ, the Ampere’s
law (10) can be separated in two second order linear ordinary differential equations. The
solution can be written as multipole expansion into spherical harmonics (Jackson, 1998)

Aφ = µ0J
∞∑

n=0,2

√
π sin θ P1

n+1(0) Y1
n+1(θ, 0)

√
(n + 1)(n + 2)(2n + 3)

·

 rn+2 a−n−1 for r ∈ (0, a)
an+2 r−n−1 for r ∈ (a,∞)

(18)
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Figure 2. Current loop magnetic field shape for different orders of multipole expansion.

where Y1
n (θ, 0) are Laplace’s spherical harmonics (contains trigonometric functions) and

P1
n(0) are associated Legendre polynomial (number coefficients). The same solution can be

also expressed in different infinite series form (Petterson, 1974)

Aφ =
−µ0J
√
π

∞∑
l=0,2

M(l) · sin2 θ · C
3
2
l (cos θ) ·

 a−2l−3rl+2 for r ∈ (0, a)
r−l−1 for r ∈ (a,∞)

(19)

where C3/2
l (cos θ) are Gegenbauer polynomials (special case of the Jacobi polynomials),

Γ(n) is Euler gamma function and the coefficients M(l) are given by

M(l) = (−1)
l+2
2

(
l + 3

2

)
Γ
(

1
2 l + 1

2

)
(l + 2)

(
l
2

)
! (2l + 3)

al+2. (20)

Multipole expansion of Aφ consist of two parts: inner r < a and outer r > a; only even
terms will contribute to the sum while all odd terms are zero. While every each term of the
infinite sum (18) is solution of (10) equation, the matching of inner and outer solution is not
smooth for individual terms. Only if the total sum is taken into account, the discontinuity
at sphere with radii r = a will disappear. Magnetic fields for different terms of multipole
expansions (18) are plotted in Fig. 2, where we clearly see how the discontinuity at r = a
radii disappear with increasing order of expansion and finally reaching the full analytic
shape from Fig. 1.
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Figure 3. Current loop magnetic field shape for different orders of power series expansion.

Fist terms of the (18) and (19) series are

r ∈ (0, a) Aφ̂ =
µ0Jr sin θ

4a
+ . . . r ∈ (a,∞) Aφ̂ =

µ0Ja2 sin θ
4r2 + . . . (21)

As we can see, the first term stands for uniform magnetic field (B = µ0J/2a) in the case of
inner solution r < a, while dipole field in the case of outer solution r > a.

3.2 Power series expansion

An alternative expansion was mentioned in (Jackson, 1998). Using powers series expan-
sion, the solution to the (10) equation can be written as

Aφ(n)(r, θ) =
µ0J
2

n∑
l=1,2

π
[
(−1)n+1 + 1

]
(2n)!

(n!)2 Γ
(
− n

2

)2
Γ(n + 2)

·
(ar sin θ)n+1(
a2 + r2)n+ 1

2

(22)

where Γ(n) is Euler gamma function and n → ∞. All even terms are zero and only odd
terms will contribute to the sum. Fist terms of the (22) expansions are

Aφ̂(r, θ) =
µ0Ja2r sin θ

4
(
a2 + r2)3/2 +

15µ0Ja4r3 sin3 θ

32
(
a2 + r2)7/2 +

315µ0Ja6r5 sin5 θ

256
(
a2 + r2)11/2 + . . . (23)
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Figure 4. Different modes of current density Jφ
∗(n)(r, θ) for power series expansion (22).

While any individual term of (22) expansion are smooth function of r and θ coordinates,
only the total sum Aφ is solution of (10) equation with current (12). Individual terms of
(22) expansion are solutions of (12) equation with current Jφ not in thin steep delta function
shape, but given by

Jφ̂(n)(r, θ) =
2a3I
√
π

Γ
(
n + 5

2

)
Γ
(

n+1
2

)
Γ
(

n+3
2

) (ar sin θ)n(
a2 + r2)n+ 5

2

. (24)

The current distribution Jφ
∗(n) has been already summed up. The maximum of the current

distribution function Jφ
∗(n)(r, θ), for individual term n of power expansion (22), is located in

equatorial plane and below the actual current loop position a

rmax(n) = a
√

n/
√

n + 5, θmax(n) = π/2. (25)

Also maximum of the electromagnetic four-potential Aφ(r, θ) is shifted below the actual
position of the current loop and its peak value is level down.

Magnetic field shape for different terms in power series expansion (22) is plotted in
Fig. 3. As we can see, even the first term of power series expansion (22) is in very good
agreement with the full analytic solution (14), if you are not close to position of the current
loop. Contrary to the multipole expansion (18), the terms of power expansion are smooth
and suitable for charged particle trajectory calculation.
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4 CONCLUSIONS

The physics is the art of neglecting and hence in many physical models only the most
relevant first terms of expansion are taken into account. Let assume, that the black hole
magnetosphere has been generated by toroidal currents inside the accretion disk. With
multipole expansion (18) we could use uniform magnetic field when we study charged
particle motion below (inside) the current loop, while dipole magnetic field when studying
particle moving above (outside) the loop.

Simple model of relativistic jet as a stream of charged particles escaping the inner parts
of accretion disk along uniform magnetic filed lines has been studied in (Stuchlı́k and
Kološ, 2016). More realistic black hole magnetosphere then simple uniform one should
be considered, for example magnetosphere generated by toroidal current at radius a. But
in multipole expansion the charged particle escaping from inner region of accretion disk
(below the current loop) to infinity (above the current loop) will feel the discontinuity at
sphere r = a. On the contrary, the power series expansion (22) is smooth everywhere and
hence much more suitable for this charged particle jet model.

Multiple expansion of magnetic filed generated by current loop in black hole background
has been already studied in literature, see summary in (Pejcha, 2014). This contribution has
been done for flat spacetime only, focusing on power series expansion (22) and descriptive
figures. In flat spacetime the full analytic solution si known and hence we can easily draw
a comparisons of both multipole and power expansions with full analytic solution. We are
now working on the magnetic field power series expansion, but in the Schwarzschild black
hole spacetime.
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