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ABSTRACT
This study deals with the structure of a thin accretion disc under the influence of
radiation pressure and Poynting–Roberson effect. The disc is approximated by inho-
mogeneous dust consisting of point–like particles in vicinity of a point–like source
of radiation. We have developed code PR Trajectories which computes trajectories
of millions of particles forming an accretion disc and provides a lot of informations
about the accretion disc.
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1 INTRODUCTION

In the Low–Mass X–ray binaries (LMXBs) with neutron star or black hole, the luminosity
of the central object can have a significant influence on the structure of the accretion disc
surrounding the compact object. Despite the radiation pressure we also take into considera-
tion the Poynting–Robertson effect which causes changes of angular momentum of a small
particle on an orbit of radiating compact body. The accretion disc approximated by inho-
mogeneous dust consist of point–like particles is exposed to radiation and we can study the
changes of its structure, density and time development. The central body is approximated
as a point–like source of radiation and we take into account only the photons emitted in
equatorial plane. The influence of the radiation to the motion of particles around a com-
pact object is a well-known problem. Abramowicz et al. (1990) found the stress-energy
tensor for a three-dimensional sphere in spherically-symmetric spacetime, the Poynting-
Robertson effect has been studied in Stahl et al. (2012). Cases with non-stable luminosity
were studied in Stahl et al. (2013) and there are many works on accretion on a luminous
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star (Miller and Lamb, 2016; Miller et al., 1996). Our work is based on a work of Bini et al.
(2011). In the first section we introduce the geometry of studied settings, the equations of
motion and problem of the critical radius. In the next section the motion of single parti-
cles under influence of the PR effect is presented. Then we are describing used numerical
approach for the dust accretion disc. Finally the results are presented as a set of images of
stable solution.

2 POYNTING–ROBERTSON EFFECT IN STRONG GRAVITY

The general relativistic description of Poynting–Robertson effect was published in (Bini
et al., 2011) involving non–zero photon momentum. The equations of motion are con-
structed on the background of Kerr metric defined by space–time element parametrized by
the specific angular momentum (spin) a in Boyer–Lindquist coordinates

ds2 = −

(
1 −

2r
Σ

)
dt2 −

4ra
Σ

sin2 θ dt dϕ +
Σ

∆
dr2+ (1)

+ Σ dθ2 +

(
r2 + a2 +

2ra2 sin2 θ

Σ

)
sin2 θ dϕ2,

using geometrized units (c = G = M = 1), where Σ ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2r + a2.
We consider the motion of particles only in equatorial plane where θ = π

2 .
The Kerr metric describing the final state of the gravitational collapse of a massive ro-

tating star into a black hole can also be applied to describe the spacetime in the vicinity of
a massive, fast rotating neutron star (Török et al., 2012).

2.1 Radiation field

The central body is approximated by a point-like source of photons. We consider only
photons emitted in equatorial plane, the photons angular momentum b is one of the free
parameters. (Bini et al., 2011).

The strength of the radiation is represented by constant A which corresponds to the lu-
minosity of central object measured by observer in infinity to the Eddington limit

A =
Lin f

LEdd
. (2)

The parameters are connected by relation

cos β =
bE

√gφφE(n)
, (3)

where E is a energy of photons and β is azimuthal angle of the photon 4–momentum mea-
sured in the local frame related to ZAMO (Zero Angular Momentum Observer) on given
radius.
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2.2 Equations of motion

We have rewritten the equations of motion published in (Bini et al., 2011) explicitly for the
case of the Kerr spacetime as the set of four first–order differential equations. The first pair
of equations describes test particle motion in the ZAMO frame by the local spatial velocity
ν and its azimuthal angle α. The second pair transforms these ZAMO quantities into the
radial velocity vr and the angular velocity ω measured by the static observer at infinity.

dν
dt

= −

√
∆

gφφ
γ−2 sinα

(
ar̂ + 2ν cosαθr̂

φ̂

)
+ Ψ

[
cos(α − β) − ν

] [
1 − ν cos(α − β)

]
,

dα
dt

= −

√
∆

gφφ
ν−1 cosα

(
ar̂ + 2ν cosαθr̂

φ̂ + ν2kr̂
(lie)

)
+ Ψ

[
ν−1 − cos(α − β)

]
sin(α − β),

dr
dt

=vr =

√
Σ

gφφ
ν sinα,

dφ
dt

= ω =

√
∆

gφφ
ν cosα + ΩZAMO,

Ψ =
λL

γ
√gθθ gφφ cos β| sin β|

. (4)

where we use quantities expressed with related to free test particle and measured with
respect to ZAMO frame (Bini et al., 2011), the Lorentz factor γ corresponds to

γ =
1

√
1 − ν2

, (5)

the radial component of free test particle 4–acceleration ar̂, the radial component of shear
vector Θφ̂ and the radial component of associated Lie relative curvature vector kr̂

(lie) are

ar̂ =

(
r2 + a2

)2
− 4a2r

r3
√

∆gφφ
, (6)

Θφ̂ = −
a
(
3r2 + a2

)
r3gφφ

, (7)

kr̂
(lie) = −

∆−1/2(r3 − a2)
r3gφφ

. (8)
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2.3 Critical radius

Even from non–relativistic description follows that small particle under influence of Poynting–
Robertson effect cannot stay on stable circular orbit and has to either reach the surface of
the radiating body or escape to infinity. However, for Schwarzschildcase one can find a ra-
dial distance rcrit where the radiation pressure and gravitational pull is balanced and particle
ends its motion on this critical radius rcrit with νcrit = 0.

However, only in Schwarzschild spacetime (with a = 0) one can find the implicitly given
value of the rcrit (Bini et al., 2009):

A
MN

= sgn(sin β0)
1 − b2

Mrcrit

(
1 − 2M

rcrit

)2

[
1 − b2

r2
crit

(
1 − 2M

rcrit

)] 3
2

. (9)

In other settings the rcrit can be easily found numerically.
The critical radius goes to infinity with A = 1, with low values of A it is very close to

the event horizon. In very rare situations there can exist more than one critical radius, for
example when the luminosity parameter extends value A = 0.647 and the impact parameter
b > 2. The stability of such state is discussed in (Bini et al., 2009).

3 MOTION OF TEST PARTICLE

The motion of one test particle under the influence of Poynting–Robertson effect has unex-
pected properties. The particle is spiraling to the inner edge, however the radial component
of its 4–velocity has remarkable profile with loops (figure 2). In some cases the radial
component of 4–velocity can change the sign during the motion so particles are moving
alternately inwards and outwards. At the radii corresponding to loops the particles spends
more time. With high value of luminosity the trajectories can be significantly excentric
as the radiation pressure pushes the particle far from the central body, yet due to loss of
angular momentum the particle falls back.

In the structure of an accretion disc consisting of millions of such particles there are
visible peaks of density at radii corresponding to loops in radial component of 4–velocity
(figure 1). The structure of the disc is significantly different from structure of accretion disc
consisting of particles on almost Keplerian orbits.

4 NUMERICAL IMPLEMENTATION

The numerical model approximates a thin accretion disc by non–interacting particles whose
motion is driven by equations 4. The viscosity and scattering of radiation in the disc ma-
terial are neglected. The inner edge rinner of the disc is set to event horizon, the initial
radial coordinate of particles r0 is one of free parameters. The particles have initial veloc-
ity ν0 corresponding to Keplerian circular orbit without influence of radiation νkep which
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expressed in ZAMO frame is equal (Bini et al., 2009)

νkep =
a2 ∓ 2a

√
Mr + r2

√
∆

(
a ± r

√ r
M

) . (10)

In some cases we are also simulating small randomization of initial parameters r0 and ν0
which are linked by ∆ν0

ν0
= 1

2
∆r0
r0

.
Because the time scale of one particle falling to the inner edge is very short, the code

needs to simulate constant inflow of particles. In every integration step is added a particle
on the outer edge of area of interest.

For integration of motion the code using Runge–Kutta method of 8th order. The code
is highly parallelised using OpenMP library, nevertheless the accretion disc consisting of
hundreds thousands particles requires a considerable computational power.
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Figure 1. Structure of accretion disc consisting of particles driven by PR effect in comparation with
radial component of 4–velocity of single particle. The peaks in density corresponds to the loops in
4–velocity. (A/M = 0.01, a/M = 0.0, b/M = 0.0,R0 = 20 M)
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Figure 2. Examples of trajectories of single particle with different initial state and the evolution of
it’s radial component of 4–velocity. The initial radial coordinate is always r0 = 20 M, the inner edge
is on innermost stable circular orbit.
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5 RESULTS

For study of behaviour of thin accretion disc the simulating code computes trajectories of
many particles and in certain times printing their positions in Boyer–Lindquist coordinates.
Due to the presence of radiation, distinctive pattern occurs in the structure of the accretion
disc. On certain radii is the density of the disc matter is higher causing dark rings to appear.
These structure in the disc reflex the changes in radial component of 4–velocity.The number
and positions of this rings are very sensitive to initial state of the simulation.

With constant value of luminosity and with constant accretion inflow the disc reaches
quasi–stable state although the particles are still rapidly falling to the central body. The
distribution of matter in disc is henceforward unchanged.

The structure of the accretion disc depends significantly on the initial condition. Follow-
ing figures shows selection of simulations result with different values of luminosity A, spin
a, radiation field angular momentum b or with slightly scattered initial radial coordinate r0
or velocity ν0.

6 CONCLUSION

The results of the simulations shows us significant influence of Poynting–Robertson effect
on thin accretion discs. The radiation pressure causes inhomogeneous distribution of matter
with significant peaks on certain radii, however the structure strongly depends on the initial
parameters of simulation.

In further work we would like to also work on the influence of fast changes of luminosity
on the structure of dust accretion disc, e.g. during the thermonuclear X-ray bursting on the
surface neutron star.
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Figure 3. Different luminosities: Left A/M = 0.01 , a = 0.0, b = 0.0, r0 = 20 M, ν0 = νkep. Right
A/M = 0.1, a = 0.0, b = 0.0, r0 = 50 M, ν0 = νkep
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Figure 4. Randomization of initial parameters: A/M = 0.01, a = 0.0, b = 0.0,r0 = 20 M, top left
ν0 = νkep ± 5 %, top right ν0 = νkep ± 1 %, bottom ν0 = νkep ± 1 %, r0 = 20 M ± 0.5 %
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Figure 5. Non–zero spin: A/M = 0.01, b = 0.0, r0 = 20 M, ν0 = νkep, left a = 0.2, right a = 0.6
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Figure 6. Non–zero radiation field angular momentum: A/M = 0.01, a = 0.0, r0 = 20 M, ν0 =

νkep, left b = 1.0, right b = 2.0
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