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Propagation of waves in polytropic disks

Jiřı́ Horák
Astronomical Institute, Academy of Sciences, Bočnı́ II 141 31 Prague, Czech Republic

ABSTRACT
We derive an analytic dispersion relation for waves in three-dimensional polytropic
disks. The problem can be separated to two one-dimensional problems of radial and
vertical wave propagation. For the vertical problem, we use and generalize first-
order perturbation method for waves near the vertical resonance introduced previ-
ously by several authors. Based on comparison of the analytical solutions with nu-
merical integration, we find a surprisingly large region of validity of our dispersion
relation including both p-mode and g-mode oscillations.
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1 INTRODUCTION

One of the most prominent observation features of galactic black-hole candidates is a rapid
and strong X-ray variability. Apart from the chaotic fluctuations, the signal occasionally
also contains relatively coherent discrete features known as the quasi-periodic oscillations
(QPOs) superimposed on a broad-band noise continuum in the power density spectra. In
addition to the most prominent QPOs observed at low frequencies (from 0.1Hz to 30Hz),
the accreting objects also occasionally show a variability at frequencies of few hundreds
Hz that correponds to dynamical timescales of the flow in the vicinity of the central black
hole.

Perhaps the most advanced theoretical models of high-frequency QPOs are based on the
relativistic diskoseismology that deals with oscillation modes and wave propagation in ge-
ometrically thin accretion flows (Kato, 2001; Kato et al., 2008; Wagoner, 2008). Different
types of oscillation modes are most easily discussed with the aid of the local dispersion
relation for vertically isothermal accretion disks (Okazaki et al., 1987),

ω̃2c2
s k2

r −
(
ω̃2 − κ2

) (
ω̃2 − jΩ2

⊥

)
= 0. (1)

Here, the background flow has sound speed cs and orbital velocity Ω, a particular mode is
described by its oscillation frequency ω, azimuthal wavenumber m and vertical quantum
number j, the oscillation frequency with respect to the flow is given by ω̃ = ω − mΩ, and
finally κ and Ω⊥ are the radial and vertical epicyclic frequencies determined by the gravity
of the central object. For given values of ω, m and j, the dispersion relation (1) gives
value of the squared radial wavevector k2

r . The oscillations can radially propagate as free
waves when k2

r > 0. The case k2
r < 0 corresponds to evanescent waves. It is obvious from
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40 J. Horák

equation (1) that for j ≥ 1 there exist two types of freely propagating waves: g-modes for
which ω̃2 < κ2 and p-modes with ω̃2 > jΩ2

⊥. For j = 0, there exists only p-modes with
ω̃2 > 0. The terminology is derived from the nature of the main restoring forces: in the case
of p-modes, it is pressure gradient, and therefore they are essentially acoustic waves, in the
case of g-modes it is mostly gravity and inertial forces. The dispersion relation also reveals
three important resonances where kr either vanish, or is infinite. The Lindblad resonance
correspond to radii where ω̃ = ±κ. In the case of the vertical resonances ω̃ = ±

√
jΩ⊥.

Finally, the corotation resonance occurs at the radius where oscillation frequency matches
the local orbital frequency, and thus ω̃ = 0.

In this note, we will derive a dispersion relation similar to equation (1) describing the
waves propagating in polytropic disks. This subject has been touched by several authors
already. Korycansky and Pringle (1995) studied propagation of axisymmetric waves in
polytropic disks with vertical stratification of the entropy. The authors derive numerical
dispersion relation. Ortega-Rodrı́guez et al. (2002) investigated p-modes in relativistic
disks and introduced the perturbation method that is used here. The same method was
also used by Kato (2010) to study nearly vertical m = 2 disk oscillations.

The plan of the paper is as follows. In section 2 we introduce the separation to the radial
and vertical problems. Section 3 deals with the vertical problem and its solution in some
special cases. The main results of this work are in section 4 that deals with the approximate
solution of the vertical problem for a general polytropic index. The last section 5 is devoted
to conclusions.

2 RADIAL AND VERTICAL WAVE PROPAGATION

The problem of adiabatic linear oscillations of a purely rotating inviscid flows leads to a
single linear partial differential equation for the enthalpy perturbations h,

∂

∂r

(
rρ
D
∂h
∂r

)
−

r
ω̃2

∂

∂z

(
ρ
∂h
∂z

)
−

[
rρ
c2

s
+

m2ρ

rD
+

2m
ω̃

∂

∂r

(
ρΩ

D

)]
h = 0. (2)

Here the cylindrical coordinates {r, φ, z} are employed and the equilibrium state of the disk
is described by the density ρ(r, z), the sound speed cs(r, z) and the angular velocity Ω(r).
The perturbation is assumed to depend on the time and azimuthal angle through the factor
exp[i(mφ − ωt)], where m is the azimuthal wave number and ω is the angular frequency of
the perturbation with respect to static observers. The angular frequency with respect to the
flow is Doppler-shifted to the value ω̃ = ω − mΩ and D = κ2 − ω̃2 is the determinant of
the rφ block of the Euler equations with κ being the radial epicyclic frequency. Equation
(2) is valid for arbitrary angular momentum distribution. In the case of geometrically thick
(toroidal) flows, the substitution W = h/ω̃ leads to the well-known Papaloizou-Pringe
equation (Papaloizou and Pringle, 1984).

In the case of cold geometrically thin Keplerian disks, the radial pressure gradient is
negligible with respect to inertial forces. Consequently, the equilibrium structure of the
flow varies slowly in the radial direction while it changes quickly in the vertical one. The
ratio of the horizontal to vertical pressure gradients are typically of the order of r/H, where
r is the radial coordinate and H ∼ cs0/Ω � r is the vertical scale-high of the disk and cs0
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is the equatorial value of the sound speed. On the other hand, a typical wavelength of the
perturbation is of the order of cs0/Ω and therefore it is comparable with the scale-height H.
Under these circumstances, the equation (2) is nearly separable and the problem is tractable
using a radial WKBJ approximation.

To outline this procedure, in the following we adopt the two-scale approach. In addition
to the ‘slow’ radial coordinate r, we introduce ‘fast’ radial scale θ(r) (WKBJ ‘phase’) de-
scribing the fast radial variations of the perturbation on the scale ∼ H. While the quantities
describing the unperturbed disk depend solely on slow scale r, the enthalpy perturbation is
allowed to vary on both of them, h = h(θ, r). Consequently, we rewrite the radial derivative
as
∂h
∂r
→

dθ
dr
∂h
∂θ

+
∂h
∂r
. (3)

A particular functional dependence θ = θ(r) will be fixed later, here we just assume that
∂h/∂θ ∼ r(∂h/∂r) and therefore the strong radial gradient of the perturbation is transferred
to gradient of the variable θ. The approximation works as long as the two scales are well
separated, that is rθ′ � 1. The equation (2) becomes

θ′2
∂2h
∂θ2︸ ︷︷ ︸

O(hθ′2)

+

√
Dθ′

rρ
∂

∂r

√ rρθ′

D
∂h
∂θ

︸                        ︷︷                        ︸
O(hθ′/r)

+
D
rρ

∂

∂r

(
rρ
D
∂h
∂r

)
︸           ︷︷           ︸

O(h/r2)

−
2mΩ

rω̃
∂

∂r

(
ln
ρΩ

D

)
h︸                 ︷︷                 ︸

O(h/r2)

−
m2

r2 h︸︷︷︸
O(h/r2)

−
Dh
c2

s︸︷︷︸
O(h/H2)

−
D

ρH2ω̃2

∂

∂y

(
ρ
∂h
∂y

)
︸                ︷︷                ︸

O(h/H2)

= 0, (4)

where y ≡ z/H. In this work, we assume that ω̃ ∼ Ω and D ∼ Ω2 what corresponds
to radii sufficiently far away from the corotation and Lindblad resonances. Magnitudes
of individual terms in this case are indicated in equation (4). Clearly, the last two terms
dominate the preceding three because H � r. Similarly, the first term dominates the
second one because rθ′ � 1. Therefore we demand θ′ to be of the order of 1/H. Then the
leading order terms (the first and the last two) are of the order of O(h/H2), the second term
is by factor of ∼ H/r smaller and the rest is smaller by factor of ∼ (H/r)2. We will look for
the solution in the form of successive approximations,

h(θ, r) = h(0)(θ, r) + h(1)(θ, r) + h(2)(θ, r) + . . . , (5)

where similarly h(n) = O[(H/r)n]. The leading and first-order approximation are governed
by

θ′2
∂2h(0)

∂θ2 −
Dh(0)

c2
s
−

D
ρH2ω̃2

∂

∂y

(
ρ
∂h(0)

∂y

)
= 0, (6)

θ′2
∂2h(1)

∂θ2 −
Dh(1)

c2
s
−

D
ρH2ω̃2

∂

∂y

(
ρ
∂h(1)

∂y

)
= −

√
Dθ′

rρ
∂

∂r

√ rρθ′

D
∂h(0)

∂θ

 . (7)
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The equation (6) is separable in the variables θ and y because the quantities describing the
stationary disk (ρ and cs) are functions of r and y only. Hence, putting

h(0)(θ, y, r) = f (0)(θ, r)g(y, r), (8)

we find
θ′2

f (0)

∂2 f (0)

∂θ2 =
D
c2

s
−

D
H2ω̃2ρg

∂

∂y

(
ρ
∂g
∂y

)
≡ k2

r (r), (9)

where k2
r (r) is a slowly changing separation variable. Equation (9) introduces radial and

vertical problem. The radial part f (0) is governed by

θ′2
∂2 f (0)

∂θ2 − k2
r f (0) = 0. (10)

This equation has a particularly simple solution when we fix the variation of the function
θ(r) so that θ′ = kr. Then we get

f (0)(θ, r) = a0(r)e−iθ + b0(r)eiθ, θ =

∫ r

kr(r)dr (11)

with a0 and b0 being yet undetermined functions of r only. This result shows physical
meaning of the functions θ(r) and kr: θ(r) is a quickly changing WKBJ phase and kr(r)
is the local radial wavevector of the perturbations. The case k2

r > 0 corresponds to freely
radially propagating waves. When k2

r < 0, the solution consists of growing and decaying
exponentials describing evanescent waves. Actual value of kr for given frequency of oscil-
lations arises as an eigenvalue of the vertical problem. Before determining it, we discuss
the solution of the first-order equation (7).

Substituting solution (11) into equation (7), we find

k2
r
∂2h(1)

∂θ2 −
Dh(1)

c2
s
−

D
ρH2ω̃2

∂

∂y

(
ρ
∂h(1)

∂y

)
=

= i

√
Dkr

rρ

 ∂∂r

a0

√
rρkr

D

 e−iθ −
∂

∂r

b0

√
rρkr

D

 eiθ

 g(y, r). (12)

Making the ansatzs

h(1)(θ, y, r) = f (1)(θ, r)g(y, r), ρ(r, y) = Σ(r)ρy(y), (13)

where Σ(r) is the column density and ρy(y) describes the vertical density profile. We find
that the vertical part g(y, r) can be factorized out and we are left with

∂2 f (1)

∂θ2 − f (1) = i

√
Dkr

rΣ

 ∂∂r

a0

√
rΣkr

D

 e−iθ −
∂

∂r

b0

√
rΣkr

D

 eiθ

 . (14)

Since the right-hand side contains terms varying as e±iθ, the solution would vary as θe±iθ

causing non-uniformity of the expansion (5) when θ ∼ (r/H). Nevertheless, these terms
can be eliminated by putting

a0

√
rΣkr

D
= const ≡ a, b0

√
rΣkr

D
= const ≡ b. (15)
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This way the functions a0(r) and b0(r) in the zero-th order approximation are determined
and we also find that f (1)(θ, r) = 0. Hence, the zeroth order approximation

f (0)(θ, r) =

√
D

rΣkr

[
ae−iθ + beiθ

]
(16)

solves the problem even up to the first order in H/r.

3 VERTICAL PROBLEM AND DISPERSION RELATIONS

As follows from equation (9), the vertical part g of the perturbation is governed by

1
ρ

∂

∂y

(
ρ
∂g
∂y

)
+
ω̃2H2

c2
s

(
1 +

c2
s k2

r

D

)
g = 0. (17)

The equation (17) should be supplied with appropriate boundary conditions at the surface
of the disk. Typically, we require the Lagrangian pressure variations ∆p to vanish at the
surface of the flow (a free surface boundary),

∆p = 0 as p→ 0. (18)

For fixed r and ω̃, the equation (17) represents the eigenvalue problem for distinct values
of kr. The algebraic relation φ(ω̃, kr, r) = 0 is the dispersion relation.

3.1 Isothermal case

In the simplest case of a vertically isothermal accretion disk the sound speed does not vary
with height cs(r, y) = cs0(r) and the density profile is Gaussian, ρ(r, y) = ρ0(r) exp(−y2/2).
The vertical thickness of the disk is given by H ≡ cs0/Ω⊥, where Ω⊥ is the vertical epicyclic
frequency. The equation (17) takes the form of Hermite differential equation

∂2g
∂y2 − y

∂g
∂y

+ Cg = 0, C ≡
ω̃2

Ω2
⊥

(
1 +

c2
s k2

r

D

)
(19)

and the boundary condition (18) translates to(
g −

ω̃2

Ω2
⊥

y
∂g
∂y

)
e−y2/2 → 0 as y→ ±∞. (20)

When |y| → ∞, a general solution of equation (19) behaves as g(y) ∼ ayC + bey2/2 with
a and b being constants. The boundary condition is satisfied when b = 0 on both sides.
This happen only for particular values of C, given by non-negative integer values, C ≡
j = 0, 1, 2, . . . . We therefore recover the dispersion relation (1). The eigenfunctions are
Hermite polynomials, g(y) = He j(y).
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3.2 Incompresible case

In the incompressible limit, the density is constant ρ(r, y) = ρ0(r) for |y| ≤ 1, pressure
varies as p(r, y) = p0(r)(1 − y2) and sound speed is infinite. The vertical thickness H is a
free parameter of the model. The equation (17) takes a remarkably simple form,

∂2g
∂y2 + k2

z g = 0, k2
z ≡

ω̃2k2
r

D
, (21)

where kz is the vertical wavenumber. A general solution when k2
z > 0 reads

g(y) = a cos (kzy) + b sin (kzy) (22)

and the boundary condition (18) becomes

g ∓
ω̃2

Ω2
⊥

∂g
∂y

= 0 at y = ±1. (23)

Both boundary conditions are satisfied when(
ω̃2

Ω2
⊥

kz − ctgkz

) (
ω̃2

Ω2
⊥

kz − tgkz

)
= 0, (24)

what, after substituting for kz from equation (21), becomes the dispersion relation. The first
term and second term in equation (24) corresponds to even and odd modes, respectively. In
the case k2

z < 0, the equation (21) with boundary conditions (23) gives only trivial solutions.
Consequently, p-modes for which D < 0 are absent in the incompressible flows and only
modes with D > 0 (g-modes) may exist.

3.3 General polytropic case

Both isothermal and incompresible flows are special (and singular) cases of more general
flows made by polytropic gas governed by equation of state of the form p ∝ ρ1+1/n, where
n is the polytropic index. The isothermal case corresponds to the limit n → ∞, while
incompresible flow corresponds to n = 0. In the case of a general polytropic index, the
density and sound speed vary as ρ(r, y) = ρ0(r)

(
1 − y2

)n
and c2

s (r, y) = c2
s0(r)(1 − y2). The

half-thickness of the disk is H =
√

2ncs0/Ω⊥. The equation (17) becomes(
1 − y2

) ∂2g
∂y2 − 2ny

∂g
∂y

+
[
A + B

(
1 − y2

)]
g = 0 (25)

with

A ≡
2nω̃2

Ω2
⊥

, B ≡
c2

s k2
r

D
A (26)

and the boundary condition (18) reads(
1 − y2

)n
(
g −

A
2n

∂g
∂y

)
→ 0 as y→ ±1. (27)

äy ää äy åå ? o n 6



Waves in polytropic disks 45

The behavior of a general solution of equation (25) close to singularities at y = ±1 is
g(y) ∼ a + b(y ∓ 1)1−n. The boundary condition (27) therefore selects the solutions with
b = 0. This can be done on both sides only for particular values of the parameter A.
Unfortunately, for nonzero values of B, the equation (25) does not represent any well known
type of eigenvalue problem, for which solution is known in a closed form. However, we
will attempt to find its approximate solution in the next section.

4 APPROXIMATE SOLUTION

4.1 Qualitative discussion based on WKBJ approximation

Because the parameters A and B are connected to the oscillation frequency ω̃ and radial
wavevector kr through definitions (26), it is good to remind that for real-valued ω̃, A cannot
be negative. The limiting case A = 0 corresponds to the corrotation resonance where ω̃ = 0.
At Lindblad resonances we have D = κ2 − ω̃2 = 0 corresponding to A = 2nκ2/Ω2

⊥. Finally,
the vertical resonances occurs when B = 0. The waves can propagate freely in the radial
direction when the squared radial wavevector k2

r is positive, i.e. when B and D have the
same signs. The case B < 0, A > 2nκ/Ω⊥ correponds to p-modes, while B > 0 and
A < 2nκ/Ω⊥ for g-modes. In the remaining regions the waves are evanescent.

In the equation (25), the first-derivative term can be eliminated by a substitution

g(y) = (1 − y2)−n/2g̃(y). (28)

Then the equation (25) becomes suitable for WKBJ approximation,

∂2g̃
∂y2 + k2

z (y)g̃ = 0, k2
z (y) = −

n(n − 2)
(1 − y2)2 +

A + n(n − 1)
1 − y2 + B. (29)

Here k2
z is the squared vertical wavevector. The perturbation can propagate as a wave in the

vertical direction when k2
z > 0, when k2

z < 0 the perturbation is evanescent. Depending on
the values of the parameters A and B and polytropic index, one of five possible situations
occurs (see Figure 1).

For n < 2, the singularity at the surface of the disk (y = 1) is in the wave-propagation
region. The function k2

z (y) is monotonic in the range 0 ≤ y < 1. In the mid-plane (y = 0)
we have k2

z (0) = A + B + n. Therefore, when B < −A− n the mid-plane is in the evanescent
region and there is a turning point at

yt1 =
[
1 + x +

√
x2 + n(n − 2)/B

]1/2
, x ≡

A + n(n − 1)
2B

. (30)

This case will be further referred as the case 1O. When B < −A−n the waves can propagate
in entire domain corresponding to the case 2O. Because A > 0 (being a product of positive
quantities), case 1O corresponds to oscillations with B < 0 and therefore D < 0. Therefore,
the case 1O describes p-modes. Their oscillations are concentrated mostly close to the
surface of the disk. On the other hand, g-modes with D > 0 and B > 0 correspond to
the case 2O and one may expect variability in the whole vertical range of the disk. The
parameter space for n > 2 is shown in the upper-right panel in Figure 1 using gray color.
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B
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1

4

1 5

3

2

3 4 5

Figure 1. Five possible cases of vertical propagation of perturbations in a disk with general poly-
tropic index n. The first and second row corresponds to n < 2 and n > 2, respectively. Each panel
shows the squared vertical WKBJ wavevector k2

z (y) by purple line. Due to the mid-plane symmetry,
only range 0 ≤ y < 1 is shown. The wave-propagation regions, where k2

z (y) is positive are indicated
by blue wavy lines. The locations of the turning points are given by equations (30) and (31) (see text).
The upper-right panel shows domains of each case in the (A, B)-plane. The gray and blue symbols
correspond to n < 2 and n > 2, respectively. The separating curves are given by B = −A − n (gray)
and B = −[A + n(n − 1)]2/[4n(n − 2)] (blue). The vertical dotted line corresponds to B = 0.

The situation is more complex for n > 2. In that case, the surface of the disk is in
the wave-evanescent region. The mid-plane is in the wave-propagation region when B >
−A − n. In addition, when A > n(n − 3), the function k2

z (y) has a local maximum between
y = 0 and 1. Therefore, the function k2

z (y) may in principle change sign in zero, one or two
points in each half of the disk, depending on the actual values of the parameters A, B and
n.

When B > −A−n, the function k2
z (y) has a single root in the range 0 ≤ y < 1 correspond-

ing to a single turning point separating wave-propagating and wave-evanescent regions.
This is the case 3O that describes mostly all g-modes and also p-modes near the vertical
resonances. The location of the turning point is given by

yt2 =
[
1 + x −

√
x2 + n(n − 2)/B

]1/2
, (31)

where x is defined in equation (30). The oscillations can freely propagate around the mid-
plane being evanescent in the vicinity of the disk surface. Because the radiation emerging
from the disk has to pass through the evanescent region, this fact could have some impact
on the observability of the oscillations in this case.
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When −[A + n(n − 1)]2/[4n(n − 2)] < B < −A − n, function k2
z (y) has two roots in

the range 0 ≤ y < 1 corresponding to the case 4O. This corresponds to limited ranges of
free wave propagation, surrounded by evansescent regions around the mid-plane and the
surface. Locations of the turning points are given by equations (30) and (31). This case is
relevant for p-modes with high negative B (i.e. for those far from the vertical resonances).

Finally, when B < −[A + n(n − 1)]2/[4n(n − 2)], the function k2
z (y) has no root in the

range 0 ≤ y < 1 and whole disk is in the wave-evanescent region corresponding to the case
5O. Consequently, no oscillation modes exist.

Although the local WKBJ approximations is very helpful to get a qualitative insight
in the vertical propagation of oscillations, it does not give any quantitative results. In
particular, it does not provide the dispersion relation φ(A, B) = 0, from which allowed
values of the radial wave-vector arises. To find them, one needs to solve global vertical
problem (25) together with boundary conditions (27). One way would be to use global
WKBJ approximation as Perez et al. (1997) did. This approach needs a special treatment at
the singularity at the surface of the disk and turning points. Another way is to use the exact
solution of the equation (25) for B = 0 expressible in terms of the Gegenbauer polynomials,
and extend it for non-zero values of B perturbatively. This approach has been adopted by
Ortega-Rodrı́guez et al. (2002) and later by Kato (2010) for the lowest order modes. In the
following section, we will adopt the latter way and generalize it to modes of arbitrary order.

4.2 Approximation using Gegenbauer polynomials

The equation (25) can be written in the form

L̂g +
(
Ã − By2

)
g = 0, L̂ ≡

(
1 − y2

) d2

dy2 − 2ny
d
dy
, Ã = A + B. (32)

The operator L̂ is self-adjoint with respect to the scalar product

〈g1|g2〉 ≡

∫ 1

−1
g1g2

(
1 − y2

)n−1
dy. (33)

for any smooth functions that obey boundary conditions (27). When B = 0, equation (32)
coincides with the Gegenbauer differential equation, L̂g + Ãg = 0, for which solutions
satisfying boundary conditions (27) are known to be

Ã j ≡ Ã(0)
j = j( j + 2n − 1), g j(y) ≡ g(0)

j (y) = a jC
(n−1/2)
j (y). (34)

Here j is non-negative integer labeling the modes (vertical quantum numbers), C(λ)
j are the

Gegenbauer polynomials and a j are normalization constants such that 〈g(0)
j |g

(0)
k 〉 = δ jk,

a j =
2n−1Γ(n − 1/2)

√
π

[
j!( j + n − 1/2)
Γ( j + 2n − 1)

]1/2

. (35)

The vertical quantum number describes number of nodes (‘zeros’) of the eigenfunctions in
the vertical direction.

äy ää äy åå ? o n 6



48 J. Horák

In the following, we apply a standard perturbation technique to the equation (32) with pa-
rameter B being a small expansion parameter as outlined bellow. We look for the solutions
(Ã j, g j) in terms of power series

Ã j = Ã(0)
j + BÃ(1)

j + B2Ã(2)
j + . . . , (36)

g j = g(0)
j + Bg(1)

j + B2g(2)
j + . . . . (37)

By substituting these expansions to equation (32) and comparing the coefficients of the
same powers of B, we obtain a sequence of equations governing the s-th approximations
A(s)

j and g(s)
j

L̂g(s)
j + Ã(0)

j h(s)
j = −

s∑
i=1

Ã(i)
j g(s−i)

j + y2g(s−1)
j . (38)

Next, we expand the s-th approximation in the basis of the zeroth-order eigenfunctions as

g(s)
j =

∑
k

α(s)
jk h(0)

k , (39)

with α(s)
jk being the coordinates of the s-th approximation of the eigenfunction of the j-

th oscillation mode with respect to the basis {g(0)
k }. The result is further projected on the

eigenfunctions g(0)
m . This way we find an algebraic equation determining the successive

approximations A(s)
j , α(s)

jm,

(
Ã(0)

j − Ã(0)
m

)
α(s)

jm = −

s∑
i=1

Ã(i)
j α

(s−i)
jm +

∑
k

α(s−1)
jk

〈
g(0)

m |y
2g(0)

k

〉
. (40)

The scalar product in the second term on the right-hand side can be found using well-known
recurrence relations for the Gegenbauer polynomials Thompson (2011),〈
g(0)

m |y
2g(0)

k

〉
= qkδmk−2 + dkδmk + qk+2δmk+2, (41)

where

q j ≡ 〈h
(0)
j−2|y

2h(0)
j 〉 =

[
j( j − 1)( j + 2n − 2)( j + 2n − 3)

(2 j + 2n − 1)(2 j + 2n − 3)2(2 j + 2n − 5)

]1/2

, (42)

d j ≡ 〈h
(0)
j |y

2h(0)
j 〉 =

2 j( j + 2n − 1) + 2n − 3
4 j( j + 2n − 1) + (2n + 1)(2n − 3)

. (43)

The equation (40) then reduces to algebraic equation for A(s)
j and h(s)

j ,

(
Ã(0)

j − Ã(0)
m

)
α(s)

jm = −

s∑
i=1

Ã(i)
j α

(s−i)
jm + qmα

(s−1)
jm−2 + dmα

(s−1)
jm + qm+2α

(s−1)
jm+2. (44)

Putting s = 1 and remembering that α(0)
jm = δ jm, the equation (44) becomes(

Ã(0)
j − Ã(0)

m

)
α(1)

jm = −
(
Ã(1)

j − dm

)
δ jm + qmδ jm−2 + qm+2δ jm+2. (45)
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When m = j we find the first-order correction to the eigenvalues, A(1)
j = d j, while for m , j,

we obtain the correction to the eigenfunctions,

α(1)
jm =

q j

Ã(0)
j − Ã(0)

j−2

δm j−2 −
q j+2

Ã(0)
j+2 − Ã(0)

j

δm j+2. (46)

The coefficient α(1)
j j remains undetermined, however it affects only normalization of the

eigenfunction of the perturbed problem. Consequently, we may put α(1)
j j = 0 without lose

of generality. In principle, one may continue this procedure to higher orders, however
already the first-order correction provides very good results as will be demonstrated in the
next section.

4.3 First-order dispersion relation

The first-order solution of the eigenvalue problem reads

A j = A(0)
j +

(
d j − 1

)
B. (47)

Figure 2 shows the analytic relations (47) for four lowest-order modes along with the so-
lutions obtained by direct numerical integration of equation (25) combined with a simple
shooting method to find the eigenvalues A j. The value of the polytropic index is n = 3
what corresponds to a radiative pressure dominated flow. Positions of resonances sepa-
rating the regions of evanescent and freely propagating waves are shown by dashed lines.
Not surprisingly, our analytic formula (47) (shown by dotted line) gives exact values A j at
the vertical resonances where B = 0. However, we find also a very good agreement for
g-modes trapped between two Lindbblad resonances and even for p-modes not too far from
the vertical resonances.

Using relations (26), (32) and (34), the dispersion relation (47) can be written in a more
familiar form,

β j

(
ω̃2 − κ2

) [
ω̃2 −

j ( j + 2n − 1)
2n

Ω2
⊥

]
= ω̃2c2

s0k2
r (48)

with

β j =
4 j( j + 2n − 1) + (2n + 1)(2n − 3)

2 j( j + 2n − 1) + 2n(2n − 3)
. (49)

Coefficient β j is positive for j ≥ 0 and n ≥ 0. For fixed j and n → ∞, the coefficient
β j → 1 and the dispersion relation coincides with the one for the isothermal case. The
waves propagate freely when k2

r > 0, what corresponds to either

mΩ − κ ≤ ω ≤ mΩ + κ, (50)

for g-modes with j ≥ 1, or

ω ≤ mΩ −

[
j ( j + 2n − 1)

2n

]1/2

Ω⊥ or ω ≥ mΩ +

[
j ( j + 2n − 1)

2n

]1/2

Ω⊥ (51)
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Figure 2. Dependence of the eigenvalues A j on the parameter B for four lowest order modes with j =

0, 1, 2 and 3 (from left to right) for a polytropic disk with n = 3. Analytic first-order approximations
are shown by dotted lines, numerical solutions correspond to solid lines. Domains of p-mode and
g-modes are separated from regions where the waves are evanescent by Lindblad (‘LR’) and vertical
(‘VR’) resonances. The Lindblad resonances occur for A = 2nκ/Ω⊥. Here we put κ = Ω⊥ what
corresponds to Newtonian disks. In the case of relativistic disks, Lindblad resonances are shifted to
A < 1 because κ < Ω⊥. The line A = 0 denotes the corrotation (‘CR’) resonance. The analytic
approximations provides very good results in entire g-mode domain and for p-modes of not too high
frequencies.

for p-modes with j ≥ 1, or

ω ≤ mΩ − κ or ω ≥ mΩ + κ, (52)

for p-modes with j = 0.

4.4 Vertical eigenfunctions

The eigenfunctions are labeled by the vertical number j giving number of the nodes of
g j(y) in full range −1 < y < 1. According to equations (37), (39) and (46), the first-order
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Figure 3. Vertical enthalpy perturbations g(y) for different values of parameters B and n and vertical
mode number j. In each panel, the result of numerical calculations is shown by the solid line, the
analytic first-order approximation is shown by the dashed line. Each column corresponds to a differ-
ent case according to classification introduced in Sec. 4.1, particular case is indicated. The first two
columns correspond to the value of the polytropic index n = 3/2, the latter two are for n = 3. The
first, second and the third raw are for j = 0, 1 and 2. Positions of the turning points are indicated by
vertical dotted lines.

eigenfunctions can be expressed as

g j = g(0)
j +

1
2

B


[

j( j − 1)( j + 2n − 2)( j + 2n − 3)
(2 j + 2n − 1)(2 j + 2n − 3)4(2 j + 2n − 5)

]1/2

g(0)
j−2

−

[
( j + 2)( j + 1)( j + 2n)( j + 2n − 1)

(2 j + 2n + 3)(2 j + 2n + 1)4(2 j + 2n − 1)

]1/2

g(0)
j+2

 (53)

In particular, the eigenfunctions of the fundamental ( j = 0) mode and the first overtone
( j = 1) are

g0 = a0

[
1 +

1 − (2n + 1)y2

2(2n + 1)2 B
]
, g1 = a1(2n − 1)y

[
1 +

3 − (2n + 3)y2

2(2n + 3)2 B
]
. (54)

In figure 3 the first-order vertical eigenfunctions g j(y) are compared with those obtained
by direct numerical integration for j = 0, 1, 2. First two columns correspond to the gas-
pressure dominated disk with n = 3/2, the latter two are for radiation-pressure dominated
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disk with n = 3. In each panel, the parameter B has been chosen so that the eigenfunctions
correspond to particular cases according to classification introduced in Sec. 4.1. Its highest
value B = −70 corresponds to the case 4O of the j = 2 mode. Interestingly, the first-
order approximation gives acceptable results even for such high value of the parameter B.
Generally, the accuracy of the approximation improves with increasing n and j.

5 DISCUSSION AND CONCLUSIONS

In this work, we have reviewed the problem of wave propagations in polytropic disks. We
have concentrated on cold geometrically-thin Keplerian disks, where significant difference
between radial and vertical scales on which properties of the flow vary allows to find the
solution in the separable form. The separation has been done using the method of two
scales. The radial problem can be treated with aid of the WKBJ approximation because the
perturbation typically vary on much shorter scales than the equilibrium flow. The vertical
problem resembles the Sturm-Liouville eigenvalue problem from which the squared radial
wave-vector k2

r arises as the eigenvalue and the shape of the enthalpy perturbarion in the
vertical direction as the eigenfunction.

We have discussed basic characteristics of the vertical propagation of the enthalpy per-
turbations using local WKBJ approximation. We have identified 5 possible types based on
occurence of the wave-propagation and evanescent regions. We have also generalized the
analytic perturbation method used by Ortega-Rodrı́guez et al. (2002) and Kato (2010) to
arbitrary order of the mode j. This allowed us to construct a general dispersion relation
(48) describing propagation of waves of arbitrary vertical number j in three-dimensional
polytropic disks.
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