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ABSTRACT
In this article, we summarize two agnostic approaches in the framework of spa-
tially curved Friedmann-Robertson-Walker (FRW) cosmologies discussed in detail
in (Kerachian et al., 2020, 2019). The first case concerns the dynamics of a fluid
with an unspecified barotropic equation of state (EoS), for which the only assump-
tion made is the non-negativity of the fluid’s energy density. The second case con-
cerns the dynamics of a non-minimally coupled real scalar field with unspecified
positive potential. For each of these models, we define a new set of dimensionless
variables and a new evolution parameter. In the framework of these agnostic setups,
we are able to identify several general features, like symmetries, invariant subsets
and critical points, and provide their cosmological interpretation.

Keywords: Gravitation – cosmology – dynamical systems

1 INTRODUCTION

The dynamical system analysis is a powerful tool that has broad applications in different
fields of science. Dynamics itself was introduced by Newton through his laws of motion
and gravitation. These laws enabled Newton to tackle the two-body problem of the Earth’s
motion around the Sun. Later on, when scientists tried to address the three-body problem
of the Earth, the Moon and the Sun, they found it was too complicated to tackle it quanti-
tatively. In the late 19th century, Henry Poincaré suggested that celestial mechanics could
be studied by considering qualitative features of a system rather than quantitative founding
in this way the branch of dynamical systems (Strogatz, 2018). In the context of cosmology
dynamical systems analysis allows us to view the global evolution of a model, from its start
near the initial singularity to its late-time evolution (Wainwright and Lim, 2005).
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The observations indicate that the universe is homogeneous and isotropic (Aghanim
et al., 2018), which makes the Friedmann-Robertson-Walker (FRW) spacetime the relevant
metric to model its evolution. Even if the universe appears to be spatially flat, considering a
non-zero spatial curvature is still observationally viable and might help in alleviating some
cosmological tensions (Ryan et al., 2019; Di Valentino et al., 2020). Therefore, in our work
we used spatially curved FRW metrics.

According to Planck Collaboration et al. (2020), the total energy density of the universe
consist of ∼ 68.5% dark energy, ∼ 26.5% cold dark matter, and ∼ 5% baryonic matter.
There are three main approaches in order to understand the physics behind the dominant
substance of the universe, i.e. the dark energy: the constant vacuum energy or cosmological
constant, non-constant vacuum energy or scalar fields, and modified gravities. The cosmo-
logical constant scenario, expressed by the ΛCDM model, is considered as the standard
model for describing dark energy, but since it suffers from several issues (Carroll, 2001;
Bahamonde et al., 2018) there are plenty of models that compete with it. In this work, we
explore the dynamics of two such models in a rather general framework.

The first type of models we analyse concerns the dynamics of barotropic fluids with
ε ≥ 0 in spatially curved FRW without specifying the EoS (Kerachian et al., 2020). We
allow the pressure P of the fluid to attain negative values in order to be able to describe
cosmological models with accelerated expansion. In these models the speed of sound of
the fluid is not necessarily less than the speed of light, which implies exotic EoS.

The second type of models we analyse concerns a curved FRW geometry non-minimally
coupled to a scalar field with generic positive potential (Kerachian et al., 2019). A similar
analysis has been performed by Hrycyna and Szydłowski (2010) in the presence of matter
for flat FRW. Our formulation allows for several improvements in the aforementioned anal-
ysis by considering a generic spatially curved FRW model and a more general scalar field
potential.

2 THE DYNAMICAL SYSTEM FOR BAROTROPIC FLUIDS

The Friedmann and the Raychaudhuri equations for a FRW cosmology with only one fluid
component are given by

H2 +
k
a2 =

ε

3
, 2 Ḣ + 3 H2 +

k
a2 = −P , (1)

respectively and the continuity equation for the energy density reads

ε̇ + 3 H(P + ε) = 0 . (2)

In these equations, ε is the energy density, P is the pressure of the barotropic fluid, k is the
spatial curvature, a is the scale factor, H = ȧ

a is the Hubble expansion rate and ˙ denotes
derivative with respect to the coordinate time.

By introducing the normalization D2 = H2 + |k|/a2, we are able to present well-defined
dimensionless variables, i.e. the variables which are valid for k > 0 and k ≤ 0. These new
dimensionless variables are

Ωε =
ε

3 D2 , ΩH =
H
D
, ΩP =

P
D2 , Ω∂P =

∂P
∂ε
, Γ =

∂2P
∂ε2 ε. (3)
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In order to investigate the evolution of the dimensionless variables. we define a new
evolution parameter τ as dτ = Ddt. This new evolution parameter is well-defined during
the whole cosmic evolution. Taking the derivative of the dimensionless variables with
respect to τ provides the autonomous system

Ω′ε = −ΩH

[
Ωp + Ωε

(
3 + 2

(
Ḣ
D2 + Ω2

H − 1
))]

, (4)

Ω′H =
(
1 −Ω2

H

) (
Ḣ
D2 + Ω2

H

)
, (5)

Ω′P = −ΩH

[
3Ω∂P (ΩP + 3Ωε) + 2ΩP

(
Ḣ
D2 + Ω2

H − 1
)]
, (6)

Ω′∂P = −ΩH

(
ΩP

Ωε
+ 3

)
Γ . (7)

2.0.0.1 Positive curvature: For positive curvature k > 0, in terms of the new variables
the Friedmann and Raychaudhuri equations (1) become respectively

Ωε = 1,
Ḣ
D2 = −

1
2

(ΩP + 1) −Ω2
H . (8)

2.0.0.2 Non-positive curvature: For the non-positive spatial curvature k ≤ 0, in terms
of the new variables the Friedmann and Raychaudhuri equations (1) become respectively

Ωε = 2 Ω2
H − 1,

Ḣ
D2 = −

1
2

(ΩP + 1) +
(
1 − 2Ω2

H

)
. (9)

From the definition of ΩH we have Ω2
H ≤ 1 and from the assumption ε ≥ 0, we get that

0 ≤ Ωε ≤ 1 and 1
2 ≤ Ω2

H ≤ 1.

2.1 Critical points and their interpretation

The next step is to investigate the critical points ( i.e. those points for which Ω′ = 0) of the
autonomous system (4)- (7) and their stabilities. Once the critical points are determined, we
can look for their cosmological interpretation. To do that a useful tool is the deceleration
parameter

q = −1 −
Ḣ
H2 = −1 −Ω−2

H
Ḣ
D2 , (10)

in which we used the definition of ΩH .

2.1.0.1 Two de Sitter critical lines: There are two critical lines with a de Sitter behavior
located at {Ωε ,ΩH ,ΩP,Ω∂P} = {1,±1,−3,∀}. The critical line with ΩH = 1 (called A+) has
the typical cosmological constant behaviour (q = −1) and its eigenvalues are

{λA+

i } = {−2, 0,−3 (1 + Ω∂P)}, (11)
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while the critical line with ΩH = −1 (called A−) describes an exponentially shrinking
universe (q = −1) and its eigenvalues are

{λA−
i } = {2, 0, 3 (1 + Ω∂P)}. (12)

Eq. (11) and Eq. (12) imply that for Ω∂P < −1 the critical points along the lines A±
are saddle points. However, for Ω∂P ≥ −1 the stability of the points along A± can not
be determined even by the center manifold theorem. To discuss their stability numerical
examples for specific Γ have to be employed.

2.1.0.2 Static universe critical line: For positive spatial curvature, there is a critical line
(called B) located at {Ωε ,ΩH ,ΩP,Ω∂P} = {1, 0,−1,∀}. This critical line describes a static
universe, i.e a = const. and its eigenvalues are

{λB
i } = {0,−

√
1 + 3Ω∂P,

√
1 + 3Ω∂P}. (13)

Eq. (13) implies that for 1+3Ω∂P > 0, the critical points along the line B are saddle; for 1+

3Ω∂P < 0 these points are center; for Ω∂P = −1/3 the corresponding points are degenerate
and all eigenvalues are zero. Since the center manifold theory cannot be employed, we rely
on a numerical inspection which shows that this point is marginally unstable.

For negative curvature, there is another critical line (called B̄) corresponding to a static
universe located at {Ωε ,ΩH ,ΩP,Ω∂P} = {−1, 0, 1,∀}, but as discussed in Sec. 2.0.0.2, Ωε <
0 cases are not part of our study.

2.2 General features of Γ: invariant subsets and critical points

In this section let us assume that the function Γ has roots Ω̃∂P: this allows invariant subsets
lying on {ΩH ,ΩP} planes. For each root of Γ, we get a pair of critical points C± located
at {ΩH ,ΩP} = {±1, 3 Ω̃∂P}. Note that, for any new invariant subset {ΩH ,ΩP} there might
be an intersection with the critical lines A± and B; for simplicity we denote these resulting
critical points with the same name as the respective critical lines.

The scale factor for the critical point C+ grows as a ∼ (t− t0)
2

3 (Ω̃∂P+1) , while for the critical
point C− it decreases as a ∼ (t0 − t)

2
3 (Ω̃∂P+1) . At these points the deceleration parameter

reduces to q = 1
2 (3 Ω̃∂P + 1). C± according to q represent an accelerated universe when

Ω̃∂P < −
1
3 and a decelerated one when Ω̃∂P > −

1
3 .

The points C± have eigenvalues

{λC±
i } = {±3 (1 + Ω̃∂P),±(1 + 3 Ω̃∂P)}. (14)

Based on these eigenvalues on the invariant subset {ΩH ,ΩP} and one can see that for − 1
3 <

Ω̃∂P point C+ (C−) is a source (sink). For the case −1 < Ω̃∂P < −
1
3 instead C± are saddle.

Finally, for Ω̃∂P < −1 point C+ (C−) is a sink (source). These points can be seen in the
examples shown in Figs. 1 and 2.

Since the stability of the critical points (A±, B, and C±) of the system depends on the
value of Ω̃∂P, we split our analysis into the following three ranges

−
1
3
< Ω̃∂P, −1 < Ω̃∂P < −

1
3
, Ω̃∂P < −1. (15)
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and we are going to depict the invariant subset {ΩH ,ΩP} in these ranges. In Figs. 1, 2 we
choose one representative value of Ω̃∂P for each range, since the topology of the trajectories
is independent of the specific value inside each range. For simplicity we assume that the
function Γ has only one root.

In order to be able to investigate the asymptotic behaviour of ΩP, i.e. ΩP = ±∞, in
Figs. 1 and 2 we used the transformation

XP =
ζΩP√

1 + ζ2Ω2
P

∈ [−1, 1], (16)

where ζ > 0 is just a constant rescaling parameter. The evolution equation for this variable
for positive curvature becomes

X′P =
ΩH

ζ

√
1 − X2

P

(
XP + 3 ζ

√
1 − X2

P

) (
XP − 3 ζ Ω∂P

√
1 − X2

P

)
, (17)

while for the non-positive curvature becomes

X′P =
ΩH

ζ

√
1 − X2

P

(
9 ζ2 Ω∂P

(
1 − 2 Ω2

H

) (
1 − X2

P

)
+

+ζ XP

√
1 − X2

P

(
1 − 3 Ω∂P + 2 Ω2

H

)
+ X2

P

)
, (18)

which along with the Eq. (5) define the compactified systems.
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(b) Ω̃∂P = −0.6
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(c) Ω̃∂P = −1.4
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Figure 1. Invariant subsets for positive spatial curvature and ζ = 0.3 plotted for three representative
values of Ω̃∂P in the ranges given in Sec. 2.2.0.1. The orange thick lines are the separatrices of
the system and the green shaded regions denote the part of the variable space where the universe is
accelerating.

2.2.0.1 Positive curvature: Fig. 1 shows the invariant subsets {ΩH , XP} for the positive
curvature, on which two additional invariant subsets are located at ΩP = −3 and ΩP =

3 Ω̃∂P.
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2.2.0.2 Non-positive curvature For the non-positive curvature there are additional criti-
cal points once we consider the roots Γ(Ω̃∂P) = 0. The locations of these critical points are
{ΩH ,ΩP} = {± 1

√
2
, 0} and they represent a Milne universe, since the deceleration parameter

q = 0 and the scale factor evolves as a = ± | k | (t + c1) for ΩH = ± 1
√

2
.
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(b) Ω̃∂P = −0.6
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(c) Ω̃∂P = −1.4
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Figure 2. Invariant subsets for negative spatial curvature and ζ = 0.3 plotted for three representative
values of Ω̃∂P in the ranges given in Sec. 2.2.0.2. The orange thick lines are the separatrices. The
blue shaded areas are the regions excluded by our assumption that Ωε > 0. The green shaded region
are the part of the variable space where we have accelerating universe.

The critical point with ΩH = 1
√

2
denoted as D+ has eigenvalues

{
λD+

i

}
=

√2,−

√
2

2

(
1 + 3 Ω̃∂P

) , (19)

in the invariant subset {ΩH ,ΩP}, whiles the critical point denoted as D− has eigenvalues

{
λD−

i

}
=

−√2,

√
2

2

(
1 + 3 Ω̃∂P

) . (20)

Eqs. (19) and (20) show that for − 1
3 < Ω̃∂P the critical points D± are saddles, while for

− 1
3 > Ω̃∂P, D+ is a source and D− is a sink.

3 THE DYNAMICAL SYSTEM FOR NON-MINIMALLY COUPLED SCALAR
FIELD

The action of a scalar field non-minimally coupled to gravity reads

S =

∫
d4x
√
−g

(R
2

+Lψ

)
, (21)

where Lψ is the Lagrangian for the scalar field ψ:

Lψ = −
1
2

(
gµν ∂µψ∂νψ + ξRψ2

)
− V(ψ), (22)
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and V(ψ) is a scalar field potential.
By variation of the action (21) with respect to gµν, we arrive to the Einstein field equa-

tions

Rµν −
1
2

R gµν = Tψ
µν. (23)

where the stress-energy tensor Tψ
µν for the non-minimally coupled scalar field reads

Tψ
µν = (1 − 2 ξ)∇µψ∇νψ +

(
2 ξ −

1
2

)
gµν∇αψ∇αψ − V(ψ) gµν

+ ξ

(
Rµν −

1
2

gµνR
)
ψ2 + 2 ξψ

(
gµν ∇α ∇α − ∇µ ∇ν

)
ψ. (24)

By variation of the action with respect to the scalar field ψ we get the Klein-Gordon equa-
tion

∇µ ∇
µ ψ − ξRψ −

∂V(ψ)
∂ψ

= 0. (25)

The Friedmann and the Raychaudhuri equations for the non-minimally coupled scalar
field in the FRW background read

3
(
H2 +

k
a2

)
= εψ,

(
2 Ḣ + 3 H2 +

k
a2

)
= −Pψ, (26)

respectively, while the Klein-Gordon equation reads

ψ̈ + 3 H ψ̇ + ∂ψV + 6 ξ ψ
(
Ḣ + 2 H2 +

k
a2

)
= 0. (27)

Here the εψ and Pψ are defined as

εψ =
1
2
ψ̇2 + V(ψ) + 3 ξ ψ

(
2 H ψ̇ + ψ

(
H2 +

k
a2

))
, (28)

Pψ = (1 − 4 ξ)
1
2
ψ̇2 − V(ψ) − ξ

(
4 H ψ ψ̇ + 2ψ ψ̈ + ψ2

(
2 Ḣ + 3 H2 +

k
a2

))
. (29)

We define a set of dimensionless variables which are well-defined for positive and non-
positive curvatures:

Ω =
ψ√

1 + ξ ψ2
, ΩH =

H
D
, Ωψ =

ψ̇
√

6 D
, (30)

ΩV =

√
V

√
3 D

, Ω∂V =
∂ψV
V

, Γ =
V · ∂2

ψV

(∂ψV)2 (31)
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where D2 = H2 +
|k|
a2 . Similarly as for the dynamical system in Sec. 2, for these dimension-

less variables the evolution parameter τ is defined as dτ = Ddt. By taking derivatives of
the dimensionless variables with respect to the evolution parameter we get

Ω′ =
√

6 Ωψ

(
1 − ξΩ2

)3/2
(32)

Ω′H =
(
1 −Ω2

H

) (
Ḣ
D2 + Ω2

H

)
(33)

Ω′ψ =
ψ̈
√

6 D2
−Ωψ ΩH

(
Ḣ
D2 + Ω2

H − 1
)

(34)

Ω′V = ΩV


√

3
2

Ω∂V Ωψ −ΩH

(
Ḣ
D2 + Ω2

H − 1
) (35)

Ω′∂V =
√

6 Ω2
∂V Ωψ (Γ − 1) , (36)

where Γ = V · ∂2
ψV/

(
∂ψV

)2
which is the so-called tracker parameter. This autonomous

system of equations differs only in the ψ̈
√

6 D2 and Ḣ
D2 terms for k > 0 and k ≤ 0. Namely for

positive curvature we get from Klein-Gordon and Raychaudhuri equations

ψ̈
√

6 D2
= −3 ΩH Ωψ −

√
3
2

Ω∂V Ω2
V −

√
6 ξ Ω√

1 − ξ Ω2

(
Ḣ
D2 + Ω2

H + 1
)
,

Ḣ
D2 + Ω2

H + 1 = −
1

1 − 2 ξ (1 − 3 ξ) Ω2

{
−

1
2

(
1 − 2 ξΩ2

)
+ ξΩ

√
1 − ξΩ2

(√
6 ΩH Ωψ + 3 Ω∂V Ω2

V

)
+

3
2

(
1 − ξΩ2

) [
(1 − 4 ξ) Ω2

ψ −Ω2
V

]}
,

while for non-positive curvature these equations read

ψ̈
√

6 D2
= −3 ΩH Ωψ −

√
3
2

Ω∂V Ω2
V +

√
6 ξ Ω√

1 − ξ Ω2

(
1 −

Ḣ
D2 − 3 Ω2

H

)
,

Ḣ
D2 + Ω2

H =
1
2
−Ω2

H +
1

1 − 2 ξ (1 − 3 ξ) Ω2

{
3 ξ2 Ω2

(
1 − 2 Ω2

H

)
− ξΩ

√
1 − ξΩ2

(√
6 ΩH Ωψ + 3 Ω∂V Ω2

V

)
−

3
2

(
1 − ξΩ2

) [
(1 − 4 ξ) Ω2

ψ −Ω2
V

]}
.

The respective Friedmann equations differ as well, i.e. for k > 0

1 = 2 ξΩ2
(
1 −Ω2

H

)
+ 3 ξ

√2
3

ΩH Ω + Ωψ

√
1 − ξΩ2

2

+ (1 − 3 ξ) Ω2
ψ

(
1 − ξΩ2

)
+ Ω2

V

(
1 − ξΩ2

)
, (37)
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while for k ≤ 0

1 = 2
(
1 − ξΩ2

) (
1 −Ω2

H

)
+ 3 ξ

√2
3

ΩH Ω + Ωψ

√
1 − ξΩ2

2

+ (1 − 3 ξ) Ω2
ψ

(
1 − ξΩ2

)
+ Ω2

V

(
1 − ξΩ2

)
. (38)

3.1 General features of the system

3.1.0.1 Symmetries. The dynamical system (32)-(36) remains invariant under the simul-
taneous transformation

{Ω,ΩH ,Ωψ,ΩV ,Ω∂V } → {−Ω,ΩH ,−Ωψ,ΩV ,−Ω∂V } . (39)

This symmetry, physically, is equivalent to the invariance under the transformation ψ →
−ψ. Since ΩV is not affected by this transformation (39), then it must hold that V(ψ) =

V(−ψ) > 0.

3.1.0.2 Singularities. In this system there are singular points arising from the decou-
pling of Raychaudhuri and Klein-Gordon equations, i.e. where the determinant of their
Jacobian vanishes. These singular points, in terms of dimensionless variables, correspond
to the vanishing of

Ω = ±
1√

2ξ(1 − 3ξ)
. (40)

By substituting the former relation into the Friedmann constraints and solving for Ωψ one
gets

Ωψ =

√
6ξΩH +

√
(Ω2

H ∓Ω2
V − 1)6ξ ±Ω2

V√
1 − 6ξ

, (41)

where the upper/lower sign corresponds to negative/positive curvature. In the range ξ ∈
(0, 1/6), in both of these cases the coordinates

(
Ω,Ωψ

)
of the singularity remain finite . For

ξ > 1/6, Ωψ is complex. In the case of a flat spacetime ΩH = ±1 we call these singularities
S± respectively.

3.1.0.3 Invariant subsets. For the dynamical system. (32)-(36), one can identify some
invariant subsets of the system. These invariant subsets are ΩH = ±1 (flat spacetime) and
ΩV = 0 (free scalar field).

3.1.0.4 Critical points. Critical points and their physical interpretations of this system
are summarized in the table 1.
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Table 1. The critical elements of the system and their stability in the range 0 ≤ ξ ≤ 1/6.

Ωψ ΩH Ω ΩV Ω∂V Curvature q we stability

A+ 0 1 0 1 0 flat -1 -1 sink
A− 0 −1 0 1 0 flat -1 -1 source

B+ 0 1 0 < Ω2 < 1
2ξ

√
1−2ξΩ2

1−ξΩ2 −
4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 sink

B− 0 −1 0 < Ω2 < 1
2ξ

√
1−2ξΩ2

1−ξΩ2 −
4ξΩ
√

1−ξΩ2

1−2ξΩ2 flat -1 -1 source
C± 0 ±1 ± 1√

2ξ
0 ∀ flat 1 1

3 saddle

D± 0 ± 1
√

2
∀ 0 ∀ negative 0 - saddle

4 CONCLUSIONS

This work introduces general frameworks to analyze dynamical systems of:

• barotropic fluids with non-negative energy density and generic EoS,
• non-minimally coupled real scalar fields with generic potential in the absence of regular
matter,

both cases are treated in spatially curved FRW spacetimes without cosmological constant.
In both cases we have employed a general Γ function, which when specified reduces our
general frameworks to specific models. We were able to identify critical elements and basic
features of the systems for unknown Γ functions.
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