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ABSTRACT
Using general relativistic magnetohydrodynamics simulations we study evolution
of accretion torus around black hole endowed with five different initial magnetic
field configurations: contour, loop, parabolic, monopole, uniform. Due to accretion
of material onto black hole, parabolic magnetic field will develop in accretion torus
funnel around vertical axis, while turbulent and chaotic magnetic field inside
accretion torus will redistribute angular momentum inside torus and create corona
around it.
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1 INTRODUCTION

There are two long range forces in physics: gravity and electromagnetism (EM) and both
of these forces are crucial for proper description of high energetic processes around black
holes (BHs). In realistic astrophysical situations the EM field around a BH is not strong
enough (< 1018 Gs) to really contribute to spacetime curvature and rotating BH can be
fully described by standard Kerr metric spacetime. Hence the EM field and matter orbiting
around central BH can be considered just as test fields in axially symmetric Kerr spacetime
background. While the distribution of matter around central BH can be well described by
thin Keplerian accretion disk or thick accretion torus, the exact shape of EM field around
BH, i.e. BH magnetosphere is more complicated. In the case of rotating neutron star
(pulsar) inclined rotating dipole field is used - such magnetosphere is generated by currents
flowing on the star surface. In the case of BHs one can assume the magnetosphere will be
generated by currents flowing around BH inside accretion disk or torus.

Historically, the question of BH magnetosphere has been solved as vacuum solution of
Maxwell equations in curved background. The solution of uniform magnetic field in Kerr
metric has been found by Wald (Wald, 1974), and can serve as zero approximation to
some more realistic BH magnetosphere. In elegant Wald uniform solution one can study
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combined effect of gravitational and Lorentz force acting on charged mass element.
Unfortunately such electrovacuum stationary test field BH magnetosphere has limited
astrophysical relevance - material orbiting around BH in the form of plasma should be
included. Plasma effect on BH force-free magnetosphere has been included in the
well-known work of Blandford & Znajek (Blandford and Znajek, 1977), where also the
electromagnetic mechanism of BH rotational energy extraction has been introduced.

Several numerical techniques has been also employed, but the exact shape and intensity
of BH magnetosphere, is still not yet properly resolved, although strong connection to the
accretion processes is evident (Punsly, 2009; Meier, 2012). Simple and elegant solution of
uniform magnetic field (Wald, 1974) could be used as first linear approximation to real
BH magnetosphere model, but from GRMHD simulations of accretion processes one can
expect the BH magnetosphere has more complicated structure and also changes in time
(Tchekhovskoy, 2015; Janiuk et al., 2018). At small scales the turbulent magnetic field
inside accretion disk is very important, since it enables the angular momentum transport
inside the accretion disk due to the magnetorotational instability (MRI) (Balbus and
Hawley, 1991; Sapountzis and Janiuk, 2019). At large scales one should use some analytic
approximation to real turbulent large scale BH magnetosphere outside the accretion disk.
The GRMHD simulations of magnetic field around BH (Nakamura et al., 2018; Porth
et al., 2019; Lančová et al., 2019) can provide motivation for heuristic analytic solution
for BH magnetosphere. Such analytic BH magnetosphere solution smooth out all small
scale and fast time discrepancies and can represent real magnetic field around BH on long
times and long scales. Inside this analytic BH magnetosphere one can then study fast
physical processes like charged particle jet acceleration (Stuchlı́k and Kološ, 2016;
Kopáček and Karas, 2018; Kopáček and Karas, 2020) which could be used as model for
Ultra-High-Energy Cosmic Rays (UHECR) (Tursunov et al., 2020; Stuchlı́k et al., 2020).

2 NUMERICAL SIMULATION OF ACCRETION ONTO BH

In this technical section we will introduce equations for our model of accretion torus around
BH. The equations will be given geometric units (G = c = 1) and as compared to the
standard Gauss cgs system, the factor 1/

√
4π is absorbed in the definition of the magnetic

field. Greek indices run through [0, 1, 2, 3] while Roman indices span [1, 2, 3].

2.1 Equations of ideal GRMHD in curved spacetime

In our simulations for this proceeding, black hole spin has been neglected, and
Schwarzschild geometry has been used for description of central compact object. In the
standard coordinates and in the geometric units Schwarzschild metrics takes form

ds2 = − f (r) dt2 + f (r) dr2 + r2(dθ2 + sin2 θ dφ2), f (r) = 1 −
2M

r
, (1)

where M gravitational mass of the central compact object. In the following, we put M = 1,
i.e., we use dimensionless radial coordinate r and dimensionless time coordinate t. In the
present paper we restrict our attention to the black hole spacetime region located above the
outer event horizon at rh = 2.
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The plasma orbiting around central Schwarzschild BH will be modeled using ideal
GRMHD equations, where electric resistivity, self-gravitational, radiative and all
non-equilibrium effects are neglected. The continuity, the four-momentum-energy
conservation and induction equations within GRMHD framework are:

(ρuµ);µ = 0, (T µ
ν);µ = 0, (uνbµ − uνbν);µ = 0, (2)

The stress-energy tensor T µν is composed of gas and electromagnetic part

T µν
gas = (ρ + ũ + p)uµuν + pgµν, T µν

EM = b2uµuν +
1
2

b2gµν − bµbν, (3)

T µν = T µν
gas + T µν

EM = (ρ + ũ + p + b2)uµuν +
(
p + b2/2

)
gµν − bµbν. (4)

Variables in Eqs. (2-4) are: uµ is gas four-velocity, ũ is internal gas energy density, ρ is
gas rest-mass density, p denotes gas pressure, and bµ is the magnetic four-vector. Magnetic
four-vector bµ is related to magnetic field three-vector Bi

bt = Biuµgiµ, bi = (Bi + btui)/ut. (5)

Strength of the magnetic field in the fluid-frame is given by b2 = bαbα, we can also define
magnetization σ = b2/ρ and the plasma-β parameter β = 2p/b2.

The equation of state (EOS) will be used in the form of ideal gas p = (γ̂ − 1)ũ, where γ̂
is the adiabatic index (Gammie et al., 2003); for simulations with non-adiabatic EOS see
(Janiuk, 2017).

2.2 Initial distribution of matter and EM field around central BH

Initial conditions in our simulation we will be toroidal perfect fluid configurations of
neutral matter around central BH in the form of Polish donut model (Kozlowski et al.,
1978; Abramowicz et al., 1978), while for magnetic field we will test various different
configurations. The time evolution and relaxation of accretion torus magnetized matter
and magnetic field into more realistic configuration will be studied using GRMHD
simulation.

Due to stationarity and axial symmetry of our problem Eq. (1) we will assume ∂tX = 0
and ∂ϕX = 0, with X being a generic spacetime tensor. In the equations for neutral matter
distribution Eq. (2), the continuity equation is identically satisfied and the fluid dynamics
is governed by the Euler equation only

(p + %)uα∇αuγ + hβγ∇βp = 0, (6)

where ∇αgβγ = 0, hαβ = gαβ + uαuβ is the projection tensor.
Polytropic equation of state is assumed in this work, and the matter is in orbital motion

only uθ = 0 and ur = 0. The Euler equation (6) can be written as an equation for the
pressure p(%) as follows (Fishbone and Moncrief, 1976)

∂µp
% + p

= −∂µW +
Ω∂µl

1 −Ω`
, W ≡ − ln

(
−gtt − gφφΩ2

)
+ l∗Ω, (7)
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where l∗ = l/(1 − Ωl) is constant through the accretion torus and Ω = uφ/ut is the fluid
relativistic angular frequency related to distant observers. The fluid equilibrium is regulated
by the balance of the gravitational and pressure terms versus centrifugal factors arising due
to the fluid rotation and gravitational effects of the BH background.

Relativistic formulation of Maxwell’s equations in curved spacetime is

∂αFµν + ∂νFαµ + ∂µFνα = 0, ∂αFαβ = µ0Jβ. (8)

where Jβ is electric current four-vector and electromagnetic tensor Fµν is given by

Fµν = ∂µAν − ∂νAµ, (9)

where Aµ is electromagnetic four-vector. Assuming axial symmetry and absence of electric
field, the only non-zero component of Aµ will be Aφ, and we can write Aµ = (0, 0, 0, Aφ).
The first of Maxwell’s equations (8) is satisfied identically, while the second is giving the
equation

r2 ∂

∂r

[(
1 −

2
r

)
∂

∂r
Aφ

]
+ sin θ

∂

∂θ

(
1

sin θ
∂

∂θ
Aφ

)
= −µ0Jφ r4 sin2 θ. (10)

This equation is Ampere’s law, but it can be also wield as special case of Grad—Shafranov
equation well known in MHD (Meier, 2012). Magnetic field three-vector B = (B̂r, Bθ̂, Bφ̂)
can be related to four-vector component Aφ using

B̂r =
1
√
−g

Aφ,θ Bθ̂ = −

(
1 −

2
r

)1/2 1
r sin θ

Aφ,r, Bφ̂ = 0. (11)

Magnetic field B is fully specified by electromagnetic four-potential Aµ, see Eq. (11). While
the GRMHD HARM code is using magnetic field B in the simulations, it is sometimes
more elegant to work with electromagnetic potential Aµ instead, for example visualization
of magnetic field B can be easily plotted using contour lines of electromagnetic potential

Aφ(r, θ) = const. (12)

2.3 HARM numerical code

HARM (High Accuracy Relativistic Magneto-hydrodynamics) is a conservative shock
capturing scheme, for evolving the equations of GRMHD, developed by C. Gammie et al.
(Gammie et al., 2003) and later improved and parallelized and released as HARM COOL
code by A. Janiuk and her team at CFT PAS in Warsaw (Janiuk et al., 2018; Palit et al.,
2019; Sapountzis and Janiuk, 2019).

Because stationary and spherically symmetric Schwarzschild BH metric (1) is not
changing during whole GRMHD simulation, we can divide the whole space into fixed
numerical grid. Moreover for our problem we restrict ourselves to two dimensional (r, θ)
subspace. In this proceeding we use simulation domain r ∈ [0.98 rh, 100], θ ∈ [0, π] with
resolutions 128 × 128 cells in nonlinear fixed grid.
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Figure 1. Stages of numerical GRMHD simulation of accretion torus in magnetic field following by
matter density contours. Initial, middle and final stage of numerical GRMHD simulation of accretion
torus in uniform magnetic field. Only 2D sections of full axially symmetric accretion torus are
plotted, with x on horizontal axis and z (axis of BH rotation) on vertical axis. Black curves represent
magnetic field lines, black circle at the origin of coordinates represent BH horizon. Different shades
of blue color represents logarithmic density of matter from accretion torus - the region with 99% of
maximal density (accretion torus itself) is bounded by thick red dashed curve. Time of the simulations
in the unis of M is given in the right up corner.

3 RESULTS OF GRMHD SIMULATIONS

In this short contribution we will try to examine magnetic field structure around accreting
BH using GRMHD simulations in HARM COOL code. As initial conditions for our
simulations we will use accretion torus in hydrodynamic equilibrium which will be
immersed into five different test magnetic field configurations.

Standard setting used in GRMHD simulations are: thick accretion torus around central
rotating Kerr BH with dimensionless spin parameter a = 0.9375; torus inner radius at
rin = 6 and the torus density maximum at rmax = 12 (Gammie et al., 2003; Porth et al.,
2019). Angular momentum distribution inside the torus is prescribed by Eq. (7) (Fishbone
and Moncrief, 1976). In this proceeding we would like to simulate accretion torus around
nonrotating Schwarzschild BH, but with similar central density as in Kerr BH case, hence
for our simulation we use accretion torus with inner radius at rin = 8 and density maximum
at rmax = 16.

As seed for torus inhomogeneities, we perturb thermal pressure inside torus by p∗ =

p (1 + Xp) function, where Xp is a uniformly distributed random variable between −0.02
and 0.02. We use ideal gas equation of state with an adiabatic index of γ̂ = 4/3. We will
run the simulations till final time t = 104, which is around 30 orbits around black hole
for matter from accretion torus. Since the accretion torus is in differential rotation we will
relate torus orbital period to torus density maximum - one free test particle circular orbit
around BH at r = 16 take t ∼ 363 time in geometric units used in our simulation.

Different magnetic field configurations will be tested as initial EM field in which the
accretion torus will be immersed. Some of them are solution of vacuum Maxwell equation
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Figure 2. Stages of numerical GRMHD simulation of accretion torus in magnetic field given by
current loop.

Figure 3. Stages of GRMHD simulation of accretion torus in split parabolic mag. field.

Figure 4. Stages of GRMHD simulation of accretion torus in split monopole mag. field.
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Figure 5. Stages of numerical GRMHD simulation of accretion torus in uniform magnetic field.
Some problematic behavior is observed for uniform magnetic field configuration. Contrary to the
previous four cases, the uniform magnetic field will disturb the accretion torus so much, that he
will be quickly swallowed by BH. After ten orbits (middle subfigure) only strongly destroyed torus
structure can be visible in the model.

in curved spacetime Eq. (10), some of them are just heuristic approximation. We will
start with standard initial setting for HARM torus simulation with poloidal magnetic field
following the contours of matter (Gammie et al., 2003; Porth et al., 2019), given by

Aφ =
ρ(r, θ)
ρmax

− 0.2. (13)

The magnetic field lines are closed curves focused around center at maximal torus density
radius, see Fig. 1. Magnetic field strength has been normalized to β = 2pmax/b2

max = 100,
where pmax is gas pressure at torus density center (r = 16, θ = π/2) and b2

max is maximal
magnetic field magnitude located at point r � 12, θ � 1.72.

Another magnetic field configuration with closed magnetic field lines is magnetic field
generated by current loop located in equatorial plane at given radii r = R (Petterson, 1974),
see Fig. 2. We will use simplified formula (1st leading term in expansion) for this Petterson
current loop magnetic field (Kološ, 2017)

Aφ = B
R3r sin θ(

R2 + r2)3/2 , (14)

where B = 0.01726 is constant specifying magnetic field magnitude and R = 16.
GRMHD simulations of accretion processes around central BH (Nakamura et al., 2018;

Porth et al., 2019) are giving parabolic magnetic field as configuration inside the accretion
torus funnel. Analytic formula for split parabolic magnetic field is given by

Aφ = B rk (1 − | cos θ|), (15)

where we use coefficient k = 0.75 and constant B = 0.14347. Parabolic magnetic field with
its open field-lines is plotted in Fig. 3.
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Figure 6. Radial profiles of magnetic field strength b2 for all five magnetic field initial configurations.
Left figure is section through whole (r, θ) simulation domain in equatorial plane (θ � 1.57), while
right figure is section for θ � 1.72.

Well know split monopole magnetic field, already studied using test particle dynamic
approach in (Blandford and Znajek, 1977; Kološ et al., 2019), is given by

Aφ = B (1 − | cos θ|), (16)

where we use B = 1.09014. The magnetic field lines are straight radial lines pointing from
the BH above equatorial plane, while to the BH below eq. plane, see Fig. 4. This magnetic
configuration is solution of Maxwell equations (10), but current sheet in equatorial plane is
needed.

Classical Wald uniform magnetic solution (Wald, 1974) is given by

Aφ = B r2 sin2 θ, (17)

where B = 0.00398. The magnetic field lines are straight lines parallel with z-axis, see
Fig. 5. This magnetic field configuration is solution of vacuum Maxwell equation (10), and
has been extensively studied using test particle dynamic approach, see for example (Kološ
et al., 2015) and reference there.

The initial matter configuration (accretion torus) is the same in all five studied magnetic
field configurations and hence the plasma β = 2p/b2 can be derived from magnetic strength
b2. Magnetic field strength in contour configuration, Eq. (13), has been normalized and
plasma β-parameter has been set to β = 100. Maximal magnetic field strength b2

max =

5.0272 × 10−5 can be found at point r � 12, θ � 1.7. Uniform, monopole, parabolic and
loop magnetic fields Eqs. (14-17) have been normalized so they all will have magnetic
field strength b2 = 5.0272 × 10−5 at point r � 12, θ � 1.7. From radial profiles of magnetic
field strength b2 plotted in Fig. 6 we can see that b2 maximum for monopole, parabolic and
loop magnetic fields is located at BH horizon. Uniform magnetic field strength b2 is almost
constant, having maximum at outer edge of simulation domain r = 100.

Magnetic field strength b2 (magnetic field pressure) is closely related to magnetic field
energy density. While the contour magnetic field has been defined in the accretion torus
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Figure 7. Mass accretion rate onto magnetized BH with different initial magnetic field configurations
- see timeframes plotted at Figs. 1-5.

only, uniform/monopole/parabolic/loop magnetic fields exists through whole simulation
domain. Monopole, parabolic and loop magnetic fields are strong close to the BH horizon,
but they are decreasing in strength for larger r. On the another hand, the uniform magnetic
field energy density is approximately constant. One can assume that there is much more
energy located in uniform magnetic field configurations, then in another four studied cases.

As it could be seen from simulation results, presented in Figs. 1-5, from the beginning
of the simulation till circa fifteen orbital periods (t ∼ 5000) the accretion torus experience
turbulent regime, when our tested magnetic field configurations are trying to reach some
relaxed state. Contrary to the heuristic initial magnetic field configuration, the final relaxed
state will be solution of full set of ideal MHD equations (2), and hence can represent proper
realistic BH magnetosphere model. From twenty orbits (t ∼ 7500) till the end of the
simulation (t = 104) the accretion flow onto BH is stable and the accretion torus with
magnetic field is not changing dramatically for contour/loop/parabolic/monopole magnetic
field, see Fig. 7.

The evolution of uniform magnetic field configuration is different from another four
studied cases and torus configuration gets destroyed by accretion and excretion. In Fig. 7
we can see slightly increased accretion rate at the beginning but only till t ∼ 7000 after
which the accretion process will stop and only little bit of torus mass remains in the
simulation domain. Although the plasma β parameter is similar for all five studied
magnetic field configuration, the amount of magnetic field energy hidden in uniform
magnetic field is much bigger then in the another configurations.

The axially symmetric GRMHD simulations for our five different magnetic field
configurations shows similar time evolution. After fifteen orbits they will all evolved into
the more or less similar state with chaotic and turbulent magnetic field inside accretion
torus and regular parabolic magnetic field in accretion torus funnel. Only for uniform
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magnetic field initial configuration we can see different evolution. In this case the
accretion torus structure is quickly destroyed and only some low density corona will
remain around central BH.

In all tested cases the initial magnetic field configuration is quickly erased. After some
time, one can distinguish in relaxed state solution new formed regions which can be
classified according to the magnetic field shape and matter distribution.

Torus - Where the matter density in high ρ ∼ ρc and matter dominate over the magnetic
field. Magnetic field inside torus is turbulent and chaotic and contributes to the accretion
disk viscosity through magnetorotational instability.

Corona - Where the matter density is much lower ρ ≤ ρc, but matter still dominate over
the still turbulent magnetic field.

Jet funnel - Where the matter component is missing ρ ≤ 10−6ρc and regular magnetic
field with parabolic shape dominate the region.

Matter from corona low density region can be easily ionized at the jet funnel/corona
boundary and description of collisionsless charged test particle dynamic in given magnetic
field can be well applied in this jet funnel region. Funnel region with parabolic magnetic
field will be important for charged particles acceleration to ultra-relativistic velocities
(Stuchlı́k and Kološ, 2016; Kopáček and Karas, 2020).

4 CONCLUSIONS

In this short text we examined five different magnetic field configuration and tested their
evolution during matter accretion process. Simple asymmetric torus orbiting around
central BH has been penetrated by made up magnetic field configurations and using
GRMHD numerical simulations we studied matter accretion onto BH and tested magnetic
field evolution. Due to accretion of material onto BH, regular magnetic field with
parabolic shape has develop in accretion torus funnel around vertical axis. Turbulent and
chaotic magnetic field inside torus will redistribute angular momentum inside torus, create
corona around the torus and will initiate BH accretion process.

In future work we would like to use GRMHD numerical simulations not only to calculate
exact shape of BH magnetosphere but also to provide the distribution of different types of
elementary particles and their velocities inside accretion torus (Janiuk et al., 2018). At the
corona/jet funnel boundary, charged particles from the quasi-neutral accretion torus will no
longer feel the pressure forces, and they can start to move under the combined influence of
gravity and electromagnetic force. Hence charged particles can be accelerated and they can
escape with ultrarelativistic velocities along magnetic field lines toward infinity (Tursunov
et al., 2020; Stuchlı́k et al., 2020). Knowing the charged particles radiation losses over
their full path to Earth atmosphere (Tursunov et al., 2018), one could be able to calculate
the distribution of UHECR particles in the shower hitting Earth surface.
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