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ABSTRACT
We present the definition of metric bundles (MBs) in axially symmetric geometries
and give explicit examples for solutions of Einstein equations. These structures
have been introduced in Pugliese and Quevedo (2019) to explain some properties of
black holes (BHs) and naked singularities (NSs), investigated through the analysis
of the limiting frequencies of stationary observers, which are at the base of a Killing
horizon definition for these black hole spacetimes. In Pugliese and Quevedo (2019),
we introduced the concept of NS Killing throats and bottlenecks associated to, and
explained by, the MBs. In particular, we proved that the horizon frequency can
point out a connection between BHs and NSs. We detail this definition in general
and review some essential MBs properties as seen in different frames and exact
solutions.
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1 INTRODUCTION

The aim of this work is to discuss the main properties of the metric bundles (MBs) for
axially symmetric spacetimes, concentrating on some exact solutions. In this particular
case, MB is a family of spacetimes defined by one characteristic photon (circular) orbital
frequency ω and characterized by a particular relation between the metric parameters. This
concept is used to establish a relation between black holes (BHs) and naked singularities
(NSs) spacetimes. In Pugliese and Quevedo (2019), we performed an analysis of the MBs
corresponding to the equatorial plane of the Kerr, Reissner-Nordström and Kerr-Newman
geometries. The off-equatorial case of the Kerr spacetime is considered in detail in Pugliese
and Quevedo (2019a).

A MB is represented by a curve on the so-called extended plane (Pugliese and Quevedo,
2019), which is the entire collection of a parameterized family of solutions. For concrete-
ness, we now consider the family of Kerr spacetimes. All the MBs are tangent to the
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234 D. Pugliese, H. Quevedo

horizon curve as represented on the extended plane. Then, the horizon curve emerges as
the envelope surface of the set of MBs. It turns out that WNSs (weak naked singulari-
ties), for which the spin-mass ratio is close to the value of the extreme BH, are related to
a portion of the inner horizon, whereas strong naked singularities (SNSs) with a > 2M
are related to the outer horizon. In addition, WNSs are characterized by the presence of
Killing bottlenecks, which are defined as “restrictions” of the Killing throats that appear
in WNSs. Killing throats or tunnels, in turn, emerge through the analysis of the radii
r±s (ω, a) of light surfaces, which depend on the frequency of the stationary observers ω and
the spin parameter a (Pugliese and Quevedo, 2018, 2019). In the case of NS geometries,
a Killing throat is a connected region in the r − ω plane, which is bounded by the radii
r±s (ω, a) and contains all the stationary observers allowed within the limiting frequencies
[ω−, ω+]. In the case of BHs, a Killing throat is either a disconnected region in the Kerr
spacetime or a region bounded by non-regular surfaces in the extreme Kerr BH spacetime.
The limiting case of a Killing bottleneck occurs in the extreme Kerr spacetime, as seen
in the Boyer-Lindquist frame, where the narrowing actually closes on the BH horizons.
Killing throats and bottlenecks were grouped in Tanatarov and Zaslavskii (2017) in struc-
tures named “whale diagrams” of the Kerr and Kerr-Newman spacetimes–see also Mukher-
jee and Nayak (2018); Zaslavskii (2018). Moreover, Killing bottlenecks, interpreted in
Pugliese and Quevedo (2019) as “horizons remnants” and related to MBs in Pugliese and
Quevedo (2019); Pugliese and Quevedo (2019a), appear also connected with the concept
of pre-horizon regime introduced in de Felice (1991); de Felice and Usseglio-Tomasset
(1991). The pre-horizon was analyzed in de Felice and Usseglio-Tomasset (1991). It was
concluded that a gyroscope would conserve a memory of the static or stationary initial
state, leading to the gravitational collapse of a mass distribution (de Felice and Usseglio-
Tomasset, 1992; de Felice and Yunqiang, 1993; de Felice and Sigalotti, 1992; Chakraborty
et al., 2017).

More in general, MBs have interesting properties that allow us to explore in an alter-
native way some aspects of the geometries that define the bundle, providing an alternative
interpretation of Killing horizons (in terms of a set of solutions–the extended plane) and
establishing a connection between NSs and BHs, based on the fact that each bundle is tan-
gent to the horizon curve. Moreover, as we shall see below, metric bundles highlight some
properties of the horizons that could influence the exterior properties of BH geometries by
means of characteristic frequencies. The MBs concept can have significant repercussions
in the study of BH physics, in the interpretation of NSs solutions and in the horizons and
BH thermodynamics.

In this work, we present the MBs definition and discuss their properties in the context of
BH thermodynamics. We analyze the Kerr, Kerr-Newman and Reissner-Nordström metric
bundles. The explicit expressions for metric bundles in the Kerr-de Sitter spacetime are
also given. Finally, we present some concluding remarks.
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2 METRIC BUNDLES

We start by considering the case of the Kerr spacetime. The Kerr metric, in Boyer-Lindquist
(BL) coordinates, can be expressed as

ds2 = −
∆ − a2 sin2 θ

ρ2 dt2 +
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ
((

a2 + r2
)2
− a2∆ sin2 θ

)
ρ2 dφ2

− 2
aM sin2(θ)

(
a2 − ∆ + r2

)
ρ2 dφdt , (1)

∆ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2 + a2 cos2 θ . (2)

It describes an axisymmetric, stationary, asymptotically flat spacetime. The parameter
M ≥ 0 is interpreted as the mass of the gravitational source, while the rotation parameter
a ≡ J/M (spin) is the specific angular momentum, and J is the total angular momentum of
the source. This is a stationary and axisymmetric geometry with Killing fields ξt = ∂t and
ξφ = ∂φ, respectively.

In this work, we will consider also the Kerr-Newman (KN) geometry which corresponds
to an electrovacuum axisymmetric solution with a net electric charge Q, described by met-
ric (1) with ∆KN ≡ r2 + a2 + Q2 − 2Mr. The solution a = 0 and Q , 0 constitutes the
static case of the spherically symmetric and charged Reissner-Nordström spacetime. The
horizons and the outer and inner static limits for the KN geometry are, respectively,

r∓ = M ∓
√

M2 − (a2 + Q2), r∓ε = M ∓
√

M2 − a2 cos2 θ − Q2 , (3)

which for a = 0, Q = 0, and a = Q = 0 leads to (r±, r±ε ) in the Reissner-Nordström,
Kerr and Schwarzschild geometries, respectively. Note that the KN horizons r± can be re-
parameterized for the total charge QT and its variation with respect to the parameter QT is
exactly the same as for the corresponding radii r± in the RN or Kerr solution. This aspect
will be significant in the study of the MBs dependence from the two charges (a,Q).

On the BHs horizons
For the analysis of some properties of the horizons, we focus for simplicity on the case

Q = 0. Then, for the Kerr BH geometry the horizons and ergospheres radii are given by
r± = M ±

√
M2 − a2 and r±ε = M ±

√
M2 − a2 cos2 θ, respectively.

Metric bundles are defined as the set of metrics that satisfy the conditionLN ≡ L·L = 0,
where L is the Killing vector L ≡ ∂t + ω∂φ. Solutions could be either BHs or NSs. The
quantity ω will be called the frequency or the MBs angular velocity. In BH spacetimes,
this Killing vector defines also the thermodynamic variables and the Killing horizons.

On the Killing vector L and the condition LN = 0
The event horizons of a spinning BH are Killing horizons with respect to the Killing field

LH ≡ ∂t+ωH∂φ, whereωH is the angular velocity of the horizons, representing the BH rigid
rotation (the event horizon of a stationary asymptotically flat solution with matter satisfying
suitable hyperbolic equations is a Killing horizon). The Kerr horizons are, therefore, null
surfaces, S0, whose null generators coincide with the orbits of an one-parameter group of
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isometries, i.e., in general, there exists a Killing field L, which is normal to S0. In general,
a Killing horizon is a lightlike hypersurface (generated by the flow of a Killing vector),
where the norm of a Killing vector is null. In the limiting case of the static Schwarzschild
spacetime (a = 0, Q = 0) or the Reissner Nordström spacetime (a = 0, Q , 0), the event
horizons are Killing horizons with respect to the Killing vector ∂t. More precisely, for static
(and spherically symmetric) BH spacetimes, the event, apparent, and Killing horizons with
respect to the Killing field ξt coincide.

The BH event horizon of stationary solutions have constant surface gravity (which is the
content of the zeroth BH law-area theorem– the surface gravity is constant on the hori-
zon of stationary black holes (Chrusciel et al., 2012; Wald, 1999)). The BH surface area
is non-decreasing (second BH law establishing the impossibility to achieve by a physical
process a BH state with zero surface gravity.) Moreover, the BH surface gravity, which
is a conformal invariant of the metric, may be defined as the rate at which the norm LN
of the Killing vector L vanishes from outside (r > r+). (For a Kerr spacetime, this is
SGKerr = (r+ − r−)/2(r2

+ + a2) and, however, the surface gravity re-scales with the confor-
mal Killing vector, i.e. it is not the same on all generators but, because of the symmetries,
it is constant along one specific generator). In the extreme case, where r± = M, the sur-
face gravity is zero and, consequently, the temperature is TH = 0, but its entropy (and
therefore the BH area) is not null (Chrusciel et al., 2012; Wald, 1999, 2001). This fact has
consequences also with respect to the stability against Hawking radiation (a non-extremal
BH cannot reach an extremal case in a finite number of steps–third BH law). The varia-
tion of the BH mass, horizon area and angular momentum, including the surface gravity
and angular velocity on the horizon, are related by the first law of BH thermodynamics:
δM = (1/8π)κδA + ωHδJ. In here, the term dependent on the BH angular velocity repre-
sents the “work term” of the first law, while the fact that the surface gravity is constant on
the BH horizon, together with other considerations, allows us to associate it with the con-
cept of temperature. More precisely, we can formalize this relation by writing explicitly
the Hawking temperature as TH = ~cκ/2πkB, where kB, is the Boltzmann constant and κ is
the surface gravity. Temperature T = κ/(2π); entropy S = A/(4~G), where A is the area
of the horizon A = 8πmr+; pressure p = −ωh; volume V = GJ/c2 (J = amc3/G); internal
energy U= GM (M = c2m/G= mass), where m is the mass.

Here we study MBs which are defined by the condition LN = 0; therefore, it is con-
venient to re-express some of the concepts of BH thermodynamics mentioned before in
terms of LN . Firstly, the norm LN ≡ LαLα is constant on the BH horizon. Secondly, the
constant κ : ∇αLN = −2κLα, evaluated on the outer horizon r+, defines the BH surface
gravity, i.e., κ =constant on the orbits of L (equivalently, it is valid that Lβ∇αLβ = −κLα
and LLκ = 0, where LL is the Lie derivative–a non affine geodesic equation).

Stationary observers and causal structure
The condition LN = 0 is also related to the definition of stationary observers. Stationary

observers are characterized by a four-velocity of the form uα = γLα (Lα ≡ ξαt +ωξαφ ); thus,
γ−2 ≡ −κ̄LN , where γ is a normalization factor. The spacetime causal structure of the Kerr
geometry can be then studied by considering also stationary observers (Malament, 1977):
timelike stationary particles have limiting orbital frequencies, which are the photon orbital
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On the metric bundles of axially symmetric spacetimes 237

frequencies ω±, i.e., solutions to the condition LN = 0:

ω± ≡ ωZ ±

√
ω2

Z − ω
2
∗, ω2

∗ ≡
gtt

gφφ
=

gtt

gφφ
, ωZ ≡ −

gφt

gφφ
. (4)

Therefore, timelike stationary observers have orbital frequencies (from now on simply
called frequencies) in the interval ω ∈ [ω−, ω+]. Thus, frequencies ω± evaluated on r±
provide the frequencies ω±H of the Killing horizons.

For completeness, we also derive the frequenciesωH of the horizons in the Kerr-Newman
case,

ω−H =
aM

(
2M

√
M2 − (a2 + Q2) − Q2 + 2M2

)
4M2a2 + Q4 , (5)

ω+
H =

aM

2M
√

M2 − (a2 + Q2) − Q2 + 2M2
. (6)

The limiting Reissner-Nordström and Kerr cases can be obtained by imposing the condi-
tions a = 0 and Q = 0, respectively.

Metric bundles: definition, structure and characteristic frequencies
Metric bundles are a set of metric tensors that can include only BHs or BHs and NSs,

such that each geometry of the set has, at a certain radius r, equal limiting photon fre-
quency ωb ∈ {ω+, ω−}, which is called characteristic bundle frequency. Therefore, MBs
are solution of the zero-norm condition LN (ωb) = 0.

It can be proved that all the MBs are tangent to the horizon curve in the extended plane1–
see Fig. (1). Then, the horizon curve emerges as the envelope surface of the set of MBs. As
a consequence, in Pugliese and Quevedo (2019) we introduced the concept of weak naked
singularities (WNSs) as those metrics related to a portion of the inner horizon, whereas
strong naked singularities (SNSs) are related to the outer horizon in the extended plane.

It can be proved that all the frequencies ω±, in any point of a BH or NS geometry, are
horizon frequencies in the extended plane or, in other words, since the MBs are tangent to
the horizon curve, each characteristic frequency of the bundle ωb is a horizon frequency
ωb = ωx

H , where ωx
H ∈ {ω

−
H , ω

+
H}.

For seek of clarity, first we formalize this definition for the Kerr case as a one-parameter
family of solutions parameterized with the spin a (or a/M). The generalization to the case
of several parameters is straightforward as, for example, in KN and RN geometries. These
cases will be also addressed explicitly below. Particularly, the frequency ωb of the bundle
is the inner or outer horizon frequencies of the spacetime, which is tangent to the horizon
at a radius rg and a spin ag (bundle tangent spin). In addition, the bundle is characterized
by the frequency ω0 of the bundle origin, i.e., the point r = 0 and a = a0 in the extended
plane. Thus, the MBs are all characterized by a frequency ωb = ωx

H(ag), where ag is the

1 An extended plane π+ is the set of points (a/M,Q), where Q is any quantity that characterizes the spacetime
and depends on a. In general, the extended plane is an (n + 1)-dimensional surface, where n is the number of
independent parameters that enter Q (Pugliese and Quevedo, 2019).
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bundle tangent spin, and the frequency ω0 at r = 0, where a = a0. The relation between
a0, ag, rg, and ωb, significant for the bundle characterization, is particularly simple in the
case of a spherically symmetric geometry or on the equatorial plane of an axisymmetric
geometry. However, in general, the relation, involving also the MB origin a0, depends on
the plane σ ≡ sin2 θ (Pugliese and Quevedo, 2019a).

MBs can be closed on the horizon. In Pugliese and Quevedo (2019), this property has
been shown to be due to the rotation of the singularity: the curves, which define the BH
horizons for the static RN case, can be are open; the analysis of the KN case represented
in Pugliese and Quevedo (2019) shows the influence of the spin in the bending and sepa-
ration into two families of curves on the equatorial plane. On the other hand, in Pugliese
and Quevedo (2019a) we proved that, on planes with σ < 1, there can be open Kerr bun-
dles. Then, MBs of axisymmetric spacetimes have a non-trivial extension corresponding
to negative bundle frequencies ωb < 0. These MBs extensions, associated to characteris-
tic frequencies ωb = −ω±H equal in magnitude to the horizon frequencies, clearly are not
tangent to the horizon curve in the negative frequencies extension of the extended plane.
However, these MBs branches are tangent to the horizon curve in the plane with positive
frequencies −ωb > 0.

Horizon relations for Kerr geometries on the equatorial plane σ = 1

Horizons relations I:
origin frequencies: ω−1

0 ≡ a±0 /M =
2r±(ag)

ag
≡ ω−1

H (ag);
horizons frequencies: ω+

H(rg, ag) = ω0 = Ma−1
0 , ω−H(r′g, ag) = ω′0 = M/a′0, where r′g ∈ r−

(r+ = rg, r− = r′g).
Horizons relations II:
There is ω′0 = 1

4ω0
, ω+

Hω
−
H = 1

4 and (a+
0 (ag)a−0 (ag) = 4M2), a±0 /M =

2r±(ag)
ag

–see Pugliese
and Quevedo (2019).

In the Kerr MBs, the Killing vector LN is a function of r, a and σ ≡ sin2 θ. The
equatorial plane is a notable case, showing in many aspects similarities with the case of
static limiting geometries, where LN is a function of r and a, only.

Explicit form of the metric bundles
Here, we present explicit expressions for the KN MBs and their limits:
Kerr geometries-equatorial plane σ = 1:

a±ω(r, ω; M) ≡
2M2ω ±

√
r2ω2 [

M2 − r(r + 2M)ω2]
(r + 2M)ω2 , (7)

KN geometries-equatorial plane σ = 1:

a∓ω =
∓

√
r4ω2 {

ω2 [
Q2 − r(r + 2M)

]
+ M2} + ωM(Q2 − 2rM)

ω2 [
Q2 − r(r + 2M)

] , (8)

or
(
Q±ω

)2
≡

r
{
ω2

[
a2(r + 2M) + r3

]
− 4aM2ω − rM2 + 2M3

}
(aω − M)2 , (9)
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RN geometries:

(
Q±ω

)2
= r

(
r3

M2ω
2 − r + 2M

)
. (10)

In the RN geometries, the limiting frequencies are ω± = ±
M
√

Q2+(r−2M)r
r2 . The KN fre-

quencies ω± do not depend explicitly on QT ; this means that the electric and rotational
parameters of the geometry play a different role in the solutions ω±=constant.

Explicitly, if we consider a surface ag(a0; Q) of the tangent MBs spins in the case a0 , 0,
where Q is a parameter, we obtain

KN bundle origin spin-equatorial plane:

a0 =
2M2 − Q2 ∓ 2M

√
M2 − (a2 + Q2)

a
(r∓), (11)

KN bundle tangent spin:

a∓g (a0) =
a0

(
2M2 − Q2

)
∓ 2M

√
a2

0
(
M2 − Q2) − Q4

a2
0 + 4M2

(12)

where a0 > aL(Q) ≡

√
−

Q4

Q2 − M2 with Q2 ∈ [0,M2].

These functions are very important to derive a relation between BHs (with tangent spins ag)
and NSs (with origin spins a0), as discussed in Pugliese and Quevedo (2019), and also the
transformation laws for BHs in the extended plane, as explicitly shown in Pugliese and
Quevedo (2019a).

The relation between BHs and NSs can be formalized by analyzing the function of the
tangent spin ag(a0) in terms of the MB origin a0 as follows

Kerr geometry σ = 1:

∀ a0 > 0, ag ≡
4a0M2

a2
0 + 4M2

where ag ∈ [0,M] and lim
a0→0

ag = lim
a0→∞

ag = 0,

ag(a0 = 2M) = M. Alternatively, we can explicitly write the relation between the tangent
spin and the radius as follows:

atangent(r) ≡
r(M − rg) + Mrg√
−(rg − 2M)rg

(13)

where rg ∈ [0, 2M], ag = a± :
rg

M
≡

2a2
0

a2
0 + 4M2

.

Some general results from the study of metric bundles in the extended plane
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We now summarize some general results obtained in Pugliese and Quevedo (2019);
Pugliese and Quevedo (2019a). For simplicity, we focus on the equatorial plane of the
Kerr geometry so that a MB can be represented as a curve on the plane (a, r).

Vertical lines r =constant in the extended plane
Vertical lines r =constant in the extended plane intersect specific MBs. First, on a point

r, there is always a maximum of two intersections (limiting cases are on the horizon curve
or on the origin r = 0 and a0 = 0 or r = 2M and a0 = 0), which provide the two limit
frequencies ω± ≡ {ωb, ω

′

b}, corresponding to the two characteristic frequencies of the two
MBs. These are also horizon frequencies ω± ≡ {ωb, ω

′

b} ≡ {ω
x
H(ag), ωy

H(a
′

g)}, respectively,
where (x, y) = ± and ag and a

′

g. They are the tangent spins of the two MBs with frequency
ωb and ω

′

b, respectively. We clarify in Pugliese and Quevedo (2019a) the precise corre-
spondence between {x, y,±}. In fact, these quantities are related to the notion of BH inner
horizon confinement, discussed firstly in Pugliese and Quevedo (2019), and to the horizon
replicas introduced in Pugliese and Quevedo (2019a). The BH inner horizon confinement
is related to the notion of bottleneck as well. It is based on the fact that it is not possible
to find a bundle outside the outer event horizon (r > r+) in the plane (and for any ge-
ometry a) with a characteristic frequency equal to that of the inner horizon. This implies
that outside the horizon of a given spacetime, it is not possible to find a photon limiting
frequency equal to the inner horizon frequency. Nevertheless, it is possible to find such
orbits for the frequencies of the outer horizon. However, it is possible to find frequencies
of the inner horizon in the Kerr case for σ sufficiently small (sufficiently close to the rota-
tion axis); therefore, it is possible to ”extract” this inner horizon frequency on an ”orbit”
r > r+ : L · L = 0.

This notion led to the definition in Pugliese and Quevedo (2019a) of the horizon replicas.
These structures occur when there is a point r of the bundle such that the characteristic
bundle frequencies ωb(a) ∈ {ω+

H(ap), ω−H(ap)} are located exactly at r±(ap) > r+(a), that is,
on the horizon with frequency ωb(a). Such orbits are, therefore, called horizons replicas
(these are clearly related to the vertical lines of the extended plane crossing the horizon
curve on the tangent point to the bundle).

Horizontal lines a =constant on the extended plane
Horizontal lines a =constant on the extended plane determine a particular geometry and

are related to the orbits with frequencies equal to that of the Killing horizons in the extended
plane and, therefore, to the concept of horizon replicas.

The Kerr-de-Sitter metric bundle
To complete this overview of the MBs of axisymmetric spacetimes, we present here the

explicit expressions for the Kerr-de Sitter geometry, which has an interesting and complex
horizon structure. Further details on these specific solutions can be found in Pugliese and
Stuchlı́k (2019b).
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On the metric bundles of axially symmetric spacetimes 241

Figure 1. Kerr-de-Sitter geometry: Equatorial plane (σ = 1). Left panel: Metric bundles of the Kerr-
de-Sitter geometries in the plane (a/M, r/M) for fixed cosmological constant Λ > 0. The black thick
curve is the horizon curve in the extended plane. Metric bundles are tangent to the horizon curve.
The origin spins a0 are also shown. The tangent spin ag is on the horizon curve. Each bundle (curve)
has a specific frequency (the lower bundle corresponds to greater frequencies due to the fact that
the inner horizon frequency is always greater then the outer horizon frequency, a part in the extreme
BH case), which is the horizon frequency of the point (a, r) of the bundle, particularly, at the origin
(a = a0, r = 0) and tangent point (a = ag, r = rg). Center and right panel: Bundles in the (Λ, r/M)
plane for different spins and frequencies. Black curves represent the horizon. Each curve is for a
different fixed frequency ω (the lower the curve, the greater the frequency).

Kerr-de-Sitter metric bundle, general form in Λ:

Λω ≡

−6 sin2(θ)
[
ω2

(
a2 + r2

)2
+ a2 − 4aMrω

]
[
a2 cos(2θ) + a2 + 2r2] [a sin2(θ)

[
aω2 (

a2 + r2) − 2ω
(
a2 + r2) + a

]
+ r2

]
+

6
[
a2ω2 sin4(θ)

[
a2 + r(r − 2M)

]
+ a2 + r(r − 2M)

]
[
a2 cos(2θ) + a2 + 2r2] [a sin2(θ)

[
aω2 (

a2 + r2) − 2ω
(
a2 + r2) + a

]
+ r2

] . (14)

This expression gives the form of the MBs in the Kerr-de-Sitter spacetime in terms of the
cosmological constant Λ > 0 for any plane σ ≡ σ2θ. Similar solutions can easily be found
in terms of aω. The extended plane is represented, however, a 3D space. In Figs. (1), we
show different representations of this case.

3 CONCLUDING REMARKS

We discussed the concept of metric bundles of axially symmetric spacetimes. In Eqs. (7),
(8) and (9) explicit expression of these bundles are given on the equatorial plane of the
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Kerr geometries, Kerr-Newman spacetimes and for the spherically symmetric Reissner-
Nordström spacetime. In Eq. (14), we present the expression for the Kerr-de-Sitter geom-
etry. Figs (1) illustrate these MBs and their main features such as the origins a0 and the
tangent points ag on the horizon curve in the extended plane, where the MBs are repre-
sented as curves. At the end of Sec. (2), we discussed some results concerning the general
properties of the geometries defined by the bundles, as extracted from the analysis of these
structures, such as the BH horizon confinement and horizon replicas. The issues discussed
in this article refer to the study of Pugliese and Quevedo (2019), where the concept of
metric bundle was first introduced and the definition of Killing throat and bottleneck for
the Kerr, Kerr-Newman and Reissner-Nordström spacetimes were considered. In Pugliese
and Quevedo (2019a), we present the general definition on an arbitrary plane of the Kerr
geometry and give definition of horizon replicas. In a future work, we intend to general-
ize this study to other spacetimes (Pugliese and Stuchlı́k, 2019b) and investigate in detail
the consequences for the BH thermodynamical properties as described in Sec. (2). Kerr-
de Sitter MBs eventually face the problem of finding a convenient MBs parametrization
and definition in spherically symmetric spacetimes. The MBs tangency with the horizons
curves, characteristic of the axially symmetric spacetimes, reduces to an approximation for
the static geometries, while an adaptation of the (conformal invariant) MBs definitions to
the static case is possible. MBs utility lies in enlightening spacetime properties emerging
in the extended plane, related to the local causal structure and BH thermodynamics such
as the surface gravity, temperature and luminosity. The extended plane and metric bundles
connect different points of one geometry and different geometries, providing a new frame
of interpretation of these metrics families. Some spacetime properties can be detected by
stationary observers and the light-like orbits in the region outside the BH horizon. In this
sense, we mention the horizons confinement and the replicas. There is a replica when
certain properties of a BH horizon are replicated in other points of the same or different
spacetimes. There is also the vice versa effect called confinement, as we proved for a por-
tion of the Kerr inner horizon curve. Significant for the transformations from one solution
to another, MBs represent a global frame for the BHs analysis. Of direct astrophysical
interest, MBs, read in terms of the light surfaces, relate many aspects of BHs physics, such
as ”BH” images, and several processes, which constrain energy extraction, such as the
BHs jet emission and jet collimation, or regulate the Blandford-Znajek process. They also
constraint accretion disks or the Grad-Shafranov equation for the force free magnetosphere
around BHs.
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