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ABSTRACT
We consider ringed accretion disks (RADs), representing models of aggregates of
corotating and counterrotating toroids orbiting a central Kerr super-massive black
hole (SMBH). We comment on the system of two-tori governed by the polytropic
equation of state and including a toroidal magnetic field. We found the RADs lead-
ing function describing the RAD inner structure and governing the distribution of
orbiting toroidal structures and the emergence of the (hydro-mechanical) instabili-
ties in the disk. We perform this analysis first in pure hydrodynamical models by
considering one-specie perfect fluid toroids and then by considering the contribution
of the toroidal magnetic field.

Keywords: Accretion – Accretion disks – Black holes – Active Galactic Nucleai
(AGN)

1 INTRODUCTION

Active Galactic Nucleai (AGNs) provide a rich scenario to observe SMBHs interacting
with their environments. Chaotical, discontinuous accretion episodes may leave traces in
the form of matter remnants orbiting the central attractor producing sequences of orbiting
toroidal structures with strongly different features as different rotation orientations with
respect to the Kerr BH where corotating and counterrotating accretion stages can be mixed.

Motivated by these facts, ringed accretion disks (RADs) model structured toroidal disks
which may be formed during several accretion regimes occurred in the lifetime of non-
isolated Kerr BHs. RAD features a system made up by several axi-symmetric matter con-
figurations orbiting in the equatorial plane of a single central Kerr SMBH. Both corotating
and counterrotating tori are possible constituents of the RADs. This model was first intro-
duced in Pugliese and Montani (2015) and then detailed in Pugliese and Stuchlı́k (2015,
2016, 2017, 2018c,b,a, 2019); Pugliese and Montani (2018).
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The model strongly binds the fluid and BH characteristics providing indications on the
situations where to search for RADs observational evidences. The number of the instability
points is generally limited to n=2 and depends on the dimensionless spin of the rotating
central attractor. The phenomenology associated with these toroidal complex structures
may be indeed very wide, providing a different interpretative framework. Obscuring and
screening tori, possibly evident as traces (screening) in x-ray spectrum emission, are also
strongly constrained. More generally, observational evidence is expected by the spectral
features of AGNs X-ray emission shape, due to X-ray obscuration and absorption by one
of the tori, providing a RAD fingerprint as a radially stratified emission profile.

In Sec. (2) we introduce the model and the main definitions used throughout this article.
In Sec. (2.1) we focus on RAD with polytropic tori. In Sec. (3) we analyze the effects of
a toroidal magnetic field in the formation of several magnetized accretion tori. Conclud-
ing remarks are in Sec. (4). Appendix (A) summarizes the main constraints on the RAD
structure.

2 RINGED ACCRETION DISKS

Ringed accretion disk (RAD) is a fully general relativistic model of axially symmetric but
”knobby” accretion disk orbiting on the equatorial plane of a Kerr SMBH. It constitutes an
aggregate of corotating and counter-rotating perfect fluid, one particle species, tori orbiting
on the equatorial plane on one central BH attractor. Because of the symmetries of the
system (stationarity and axial-symmetry), it is regulated by the Euler equation only with
a barotropic equation of state (EoS) p = p(%):

Tµν = (p + %)UµUν − pgµν,
∇µp
p + %

= −∇µ ln(Ut) +
Ω∇µ`

1 −Ω`
(1)

Ω =
Uφ

U t = −
gtt

gφφ
`0 =

f (r)
r2 sin2 θ

`0, ` = −
Uφ

Ut
.

Ve f f (`) ≡ ut W ≡ ln Ve f f (`),

((t, r, φ, θ) are Boyer-Lindquist coordinates), Ve f f (`) is the effective torus potential, Ω is
the fluid relativistic angular frequency, ` specific angular momenta, assumed constant and
conserved for each RAD component but variable in the RAD distribution Ua is the fluid
four velocity, and Tµν is the fluid energy momentum tensor.

We introduce the following definitions: we use the notation () to indicate a configuration
as a function which can be closed, C, or open O. Specifically, toroidal surfaces correspond
to the equipotential surfaces, critical points of Ve f f (`) as function of r.

Consequently tori are determined as solutions of W : ln(Ve f f ) = c = constant (or
equivalently Ve f f = K =constant). We indicate the possible solutions as C, for the cross–
sections of the closed surfaces (equilibrium quiescent torus); C×, for the cross–sections
of the closed cusped surfaces (accreting torus) and O×, for the cross sections of the open
cusped surfaces, which are generally associated to proto-jet configurationsPugliese and
Stuchlı́k (2018a, 2016).
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Sign Q± for a general quantity refers to counterrotating (Q+) and corotating (Q−) tori
respectively. We introduce the concept of `corotating disks, defined by the condition `(i)`(o) >
0, and `counterrotating disks defined by the relations `(i)`(o) < 0. The two `corotating tori can be
both corotating, `a > 0, or counterrotating, `a < 0, with respect to the central attractor spin
a > 0. We use short notation ()i < ()o and ()o > ()i for the inner and outer configurations of
a RAD couple.

An essential part of the RAD analysis is the characterization of the boundary conditions
on each torus in the agglomerate and the RAD disk inner structure. The model is con-
structed investigating the function representing the angular momentum distribution inside
the disk which is not constant. This sets the toroids location (and equilibrium) in the ag-
glomerate and it coincides, in the hydrodynamical RAD model of perfect fluids, with the
distribution of specific angular momentum of the fluid in each agglomerate toroid. This
function can be written as

Leading (HD) RAD function:

`∓ =
a3 + ar(3r − 4M) ∓

√
r3∆2/M

a2M − (r − 2M)2r

∣∣∣∣∣∣∣
r∗
, (2)

∆ ≡r2 − 2Mr + a2,

(M is the central BH mass). Each point r > rmso (marginally stable orbit) on curve `∓

fixes the center (points of maximum density inside the torus) of the toroidal RAD com-
ponent and r < rmso sets possible instabilities points of the toroids, more details can be
found in Pugliese and Stuchlı́k (2015, 2017). Because of the importance of this function in
defining the inner structure of the RAD, this is called Leading RAD function.

We shall see in Sec. (3) that changing the energy-momentum tensor by including a toroidal
magnetic field will make it convenient to change the leading function `± adopted in the Hy-
drodynamical (HD) case to a different one. This new function obtained from the study of
the magnetic field in the RAD can represent and regulate the tori distribution. In Sec. (A),
we include a summary of the main constraints on the RAD inner structure–Pugliese and
Stuchlı́k (2015, 2017)

2.1 Polytropic tori

We conclude this section considering RAD tori with polytropic fluids: p = κ%1+1/n. We
develop some general considerations on the EoS and the polytropic RAD tori governed by
the EoS: p = κ%γ, where κ > 0 is a constant and γ = (1 + 1/n) is the polytropic index,
in Pugliese et al. (2013). Details of this analysis can be found in Pugliese and Stuchlı́k
(2019). We also refer to this analysis for commenting on the tori energetics of various
RAD configurations, and significance in the case of polytropic tori. It has been shown in
Pugliese et al. (2013); Pugliese and Stuchlı́k (2019) that for the Schwarzschild geometry
(a = 0) there is a specific classification of eligible geometric polytropics, and a specific
class of polytropics is characterized by a discrete range of values for the index γ. Therefore,
we can propose a general classification for the tori (C,C×), as for proto-jets O×, assuming
a particular representation of the density function. We can write the density % as a function
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of γ. However, we concentrate our attention on the RAD components C and C× for which
K < 1 and there is :

%γ ≡κ
1/(γ−1)%̄γ and %̄γ ≡

[
1
κ

(
V
−
γ−1
γ

e f f − 1
)] 1

(γ−1)

for (3)

γ ,1 with %γ ≡ C
1/(−1+γ), C ≡ (V−2

e f f )
γ−1
2γ − 1.

(note C is actually a function of K ∈]Kmin,Kmax], while Kmax < 1, regulates whether the
torus is quiescent or in accretion). The pressure p, associated to the solution in Eq. (3),
depends on k

1
1−γ . It decreases with κ more slowly then %.

We consider the case K < 1 with the condition % > 0, verified, according to Eq. (3), for
γ > 1. Integration of the % density function in the polytropic case where γ = 4/3 is shown
in Figs (1). The situation for different indices, and particularly γ = 5/3, is also shown,
integration of density profiles have been specified particularly for the couple C−× < C+

×.
Note that we can then directly impose several constraints for the density function. Some
simple example, including special (composite) density profiles in the case %−[+] = %i

γ − %
o
γ =

%Φ =constant, have

[Ki =

[%Φ − ε
(
Ko
−
γ−1
γ − 1

) 1
γ−1

]γ−1

+ 1

−
γ
γ−1

. (4)

In Figs (1) we show the profiles %Φ for ε = −1. Important to note that these rela-
tions are generally seen as constraints on independent solutions for each RAD compo-
nents. Toroidal configurations emerging from these constraints (%−[+]) as in Fig (1) are
by no means directly matched with solutions for two different RAD components coupled
through the background. The RADs effective potential (a potential describing the entire
macrostructure as introduced in Pugliese and Stuchlı́k (2015)) can be derived from com-
posite energy-momentum tensors made by collections of the fluid tensors, decomposed in
each fluid adapted frame. This holds for not colliding tori. They will be naturally cou-
pled through the unique background metric tensor gµν and proper boundary conditions
imposed on the fluid density and pressure. The boundary conditions by the step-functions
cuts H(θ) defining the RAD in the two forms of potential functions included in the en-
ergy momentum tensor. Nevertheless, the projection after 3 + 1 decomposition, defining
the 3D hyperplane h(i)

i j , has to be done according to the orthogonality condition for fluids
field velocity vectors u(i), respectively, for the (i)−torus. These solutions can create special
tori surfaces from the condition on the constant pressure. Moreover, these constraints can
found application in the collision analysis within the limits considered before to infer the
final states (es. final merger tori). (Other notable cases can be founded using the constraints
%[×] = %i

γ%
o
γ =constant, %{×} = %γ(KiKo) =constant or %±

{+}
= %γ(Ki ± Ko) =constant.). It is

possible to show that not all these profiles are related to quiescent of accreting toroids.
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Figure 1. Left panel: Profiles of constant rationalized density function %k in Eq. (3) in the plane γ−K,
γ > 1 is the polytropic index, K ∈ [K±mso, 1] is the K-parameter attached to any tori at constant `. The
values K±mso for the two SMBHs with spin a = 0 and a = 0.99991M are also plotted. Corotating
([-]) and counterrotating fluids ([+]) are considered. Indices γ = 4/3 considered also in the analysis
of Pugliese and Stuchlı́k (2019) and γ = 5/3 are shown. Arrows follow the increasing values of %γ.
The region in the range γ ∈ [4/3, 5/3] has been partially thicken with highlighted (green-colored) K-
constant curves. Density profiles %±γ for corotating (bottom left panel) and counterrotating tori (upper
right panel) are shown orbiting around a SMBH with spin a = 0.382M, and the specific angular
momentum of the fluids is ` = −3.99 and ` = 3.31 and the polytropic index γ = 4/3. (x, y) are
Cartesian coordinates. Bottom right panel shows the profiles of constant composite density function
%−γ[+] defined in Sec. (2.1).

3 INFLUENCE OF TOROIDAL MAGNETIC FIELD IN MULTI-ACCRETING
TORI

In this section, we consider RAD with toroidal sub-structures regulated by the presence
in the force balance equation of a toroidal magnetic field component. We refer to the
analysis of Pugliese and Montani (2018), the toroidal magnetic field form used here is the
well known Komissarov-solution Komissarov (2006), used in the approach Pugliese and
Montani (2013, 2018), see also Adámek and Stuchlı́k (2013); Hamersky and Karas (2013);
Karas et al. (2014); Zanotti and Pugliese (2015); Stuchlik et al. (2020). In this section, we
use mainly dimensionless units.

3.1 Ideal GR-MHD

Before considering the model of magnetized RAD, it is convenient to review some ba-
sic notions of ideal GR-MHD. The fluids energy-momentum tensor can be written as the
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composition of the two components

T f
ab =(% + p)UaUb − ε pgab (5)

T em
ab = − ε

(
FacF c

b −
1
4

FcdFcdgab

)
=

gab

2
(E2 + B2) − (EaEb + BaBb)

− 2εĞ(aUb) − εUaUb(E2 + B2),
∇[aFbc] =0, ∇aFab = εJb, Ja = %cUa + ja,

(quantities are measured by an observers moving with the fluid). Ǧa denotes the Pointing
vector, UaUa = ε, (ε in this section is clearly a signature sign) and hab ≡ gab−εUaUb, is the
projection tensor, where ∇αgβγ = 0. Considering the charge density and conduction current
with the Ohm’s law, there is ja = σabEb, Ja = %cUa + σEa. We consider isotropic fluids
for which σab = σgab, σ is the electrical conductivity coefficient. For ideal conductive
plasma there is σ→ ∞ (Ea = FabUb = 0): the electromagnetic field does not have a direct
effect on the conservation equation along the flow lines, or

Ua∇
a% + (p + %)∇aUa − UbF c

b (∇aFac) = 0, (6)

In the ideal MHD

(p + %)Ua∇aUc − εhbc∇b p − ε(∇aFad)Fcd = 0, (7)

and

Ua∇as =
1

nT
UbF c

b ∇
aFac. (8)

(T is the temperature and n is the particle number density). In infinitely conducting plasma
there is Ua∇as = 0 and the entropy per particle is conserved along the flow lines of each
toroids. a particular case of interest is when s is a constant of both space and time implying
p = p(%). Pugliese and Valiente Kroon (2016); Pugliese and Kroon (2012).

3.2 Magnetized tori

We consider an infinitely conductive plasma in the magnetized case where FabUa = 0, Fab,
UaBa = 0, ∂φBa = 0 and Br = Bθ = 0. The toroidal magnetic field contribution in each
RAD component can be written by considering,

Bφ =

√
2pB

gφφ + 2`gtφ + `2gtt
(9)

or alternatively

Bφ =
√

2Mωq
(
gtφgtφ − gttgφφ

)
(q−2)/2Ve f f (`)

with pB = M
(
gtφgtφ − gttgφφ

)
q−1ωq the magnetic pressure, ω is the fluid enthalpy, q and

M (magnitude) are constant; Ve f f is a function of the metric and the angular momentum
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Figure 2. Left panel: Profiles of S =constant in the panel ω-q, where ω is the fluid enthalpy and q
is a magnetic field family parameter. Arrow directions indicate the increasing values of S q = 1 is
a singular value for S. At q < 1 (S < 0) excretion tori (density profiles in the right panel) appear.
From Pugliese and Montani (2018).

`–Komissarov (2006); Zanotti and Pugliese (2015); Pugliese and Montani (2013); Adámek
and Stuchlı́k (2013); Hamersky and Karas (2013); Karas et al. (2014). The Euler equation
for the HD case is modified by the term:

∂µW̃ = ∂µ
[
ln Ve f f + G

]
, (10)

where

(a , 0) : G(r, θ) = S
(
AV2

e f f

)q−1
; (11)

and

A ≡ `2gtt + 2`gtφ + gφφ, S ≡
qMωq−1

q − 1
,

We here concentrate on q > 1 as, the magnetic parameter S is negative for q < 1,
where excretion tori are possible Stuchlı́k (2005); Stuchlı́k et al. (2009); Slaný and Stuchlı́k
(2005); Stuchlı́k and Schee (2010). q = 1, gives singular value for S, see Figs (2). In this
new frame, the analysis of RAD structure is performed by considering the new equation
W̃ ≡ G(r, θ) + ln(Ve f f ) = K. The deformed potential function Ṽ2

e f f ,

Ṽ2
e f f ≡ V2

e f f e
2S

(
AV2

e f f

)
q−1

= (12)

=

(
gtφgtφ − gttgφφ

)
exp

(
2S

(
gtφgtφ − gttgφφ

)q−1
)

`2gtt + 2`gtφ + gφφ
= K2.

For S = 0 (orM = 0), this reduces to the effective potential V2
e f f for the HD case: V2

e f f :

Ṽ2
e f f = V2

e f f +
2S

(
AV2

e f f

)
q

A
+ O

(
S2

)
.

Sn =
M lnn(ω)(n + ln(ω) + 1)

Γ(n + 2)
for n ≥ 0 and q ' 1, (13)

where Γ(x) is the Euler gamma function. As for the HD case in Eq. (2), we could find the
RAD angular momentum distribution:
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Figure 3. Magnetized RAD: angular momentum profiles ˜̀ in comparison with the HD case `, for
different values of the magnetic parameters S, q and the BH dimensionless spin a/M, varying from
the Schwarzschild case a = 0 to the extreme Kerr BH a = M for corotating (-) and counterrotating
(+) fluids. From Pugliese and Montani (2018).

˜̀∓ ≡ ∆
(
a3 + ar

[
4Q(r − M)S∆Q + 3r − 4

]
∓

√
r3 [

∆2 + 4Q2(r − 1)2rS2∆2Q+1 + 2Q(r − 1)2rS∆Q+1])
a4 − a2(r − 3)(r − 2)r − (r − 2)r

[
2Q(r − 1)S∆Q+1 + (r − 2)2r

]
(14)

(dimensionless units), where there is

lim
S→0

˜̀∓ = lim
q→1

˜̀∓ = `±, Q ≡ q − 1

see Figs (3). However the introduction of a toroidal magnetic field B, makes the study of
the momentum distribution within the disk rather complicated. In Pugliese and Montani
(2018), it was adopted as a function derived from the S parameter:

Leading RAD function:

Scrit ≡ −
∆−Q

Q

a2(a − `)2 + 2r2(a − `)(a − 2`) − 4r(a − `)2 − `2r3 + r4

2r(r − 1)
[
r(a2 − `2) + 2(a − `)2 + r3] . (15)

This function represents the new leading function for the distribution of tori in the RAD
instead of Eq. (14) with a toroidal magnetic field component. (Each torus is on a line S
=constant). This is able to determine (1) the limits on the value of the magnetic parameter
for the tori formation, (2) the emergence of HD instability associated with the cusped con-
figurations C× and ()×, (3) the emergence of collision between two tori of a RAD couple.
It highlights the difference between magnetized corotating and counter-rotating tori with
respect to the central black hole. (This difference is also evident from the dependence in
Eq. (15) from the quantities (a ± `).) As demonstrated in Pugliese and Montani (2018),
such magnetized tori can be formed in the RAD macro configurations for sufficiently small
(qS) and the constraints described in Sec. (A) are essentially confirmed for the magnetized
case.

4 CONCLUDING REMARKS

The RAD dynamics is strongly affected by the the dimensionless spin of the central BH
and the fluids relative rotation, especially in the magnetized case considered in Sec. (3).
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In general, there is evidence of a strict correlation between SMBH spin, fluid rotation
and magnetic fields in RADs formation and evolution. The analysis presented here poses
constraints on tori formation and emergence of RADs instabilities in the phases of accretion
onto the central attractor and tori collision emergence Pugliese and Stuchlı́k (2017, 2019).
Eventually the RAD frame investigation constraints specific classes of tori that could be
observed around some specific SMBHs identified by their dimensionless spin. As a sideline
result, we provided a full characterization of the counter rotating tori in the multi-accreting
systems. This model is designed for an extension to a dynamic GRMHD setup. From
observational viewpoint, AGN Xray variability suggests connection between X-rays and
the innermost regions of accretion disk. In Sochora et al. (2011); Karas and Sochora (2010);
Schee and Stuchlı́k (2009, 2013) such relatively indistinct excesses of the relativistically
broadened emission-line components are predicted to be arising in a well-confined radial
distance in the accretion structure originating from a series of episodic accretion events.

Another significant aspect is the possibility to relate the RAD oscillations and their com-
ponents with QPOs. The radially oscillating tori of the couple could be related to the
high-frequency quasi-periodic oscillations (QPOs). Finally, for a discussion on the relation
among Papaloizou-Pringle (PP) global incompressible modes in the tori, the Papaloizou-
Pringle Instability (PPI), a global-hydrodynamic-non-axisymmetric instability, and the
Magneto-Rotational Instability (MRI) modes, see Pugliese and Montani (2018); Bugli et al.
(2018).

As an extension of this model to a more general situation, multi-orbiting configurations,
considering tilted warped disks are also studied in Pugliese and Stuchlı́k (2020a,b). This
possibility, rather probable as a scenario in the initial phases of tori formation, could be
investigated as perturbation or deformation of the axis-symmetric equatorial model consid-
ered here.
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APPENDIX A: BASIC HD-RAD CONSTRAINTS

In this section we show some main constraints of the RAD models by schematically sum-
marizing the analysis of Pugliese and Stuchlı́k (2017, 2019).

In general, two quiescent tori (not cusped tori) can exist in all Kerr spacetimes if their
specific angular momenta are properly related. Whereas there are only following four
double tori with a critical (cusped) topology: i) C±× < C± ii), C+

× < C±,iii) C−× < C± and iv)
C−× < C+

×–
Moreover: • for `corotating tori or in the background of a static (Schwarzschild) attractor

only the inner torus can be accreting (with a cusp). • In the `counterrotating couple, an cusped
corotating torus has to be the inner one of the couple whereas the outer counterrotating
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torus can be in quiescent or with a cusp. If there is C−× (or for a static attractor), then C−× is
part of C−× < C− or C−× < ()+, doubled system.

Therefore, summarizing the situation for corotating and counterrotating RAD compo-
nents, in particular there is: • a corotating torus can be the outer of a couple with an inner
counterrotating cusped surface. The outer torus of this couple may be corotating (quies-
cent), or counterrotating cusped or in quiescence. Both the inner corotating and the outer
counterrotating torus of the couple can have a cusp. • A counterrotating torus can reach
the (HD) instability as the inner configuration of an `corotating or `counterrotating couple or,
viceversa, the outer torus of an `counterrotating couple. If the cusped torus is C+

×, it follows
that there is no inner counterrotating torus, but there can be C+

× < C± or ()− < C+
×.
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Slaný, P. and Stuchlı́k, Z. (2005), Relativistic thick discs in the kerr–de sitter backgrounds, Classical
and Quantum Gravity, 22(17), pp. 3623–3651.
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