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ABSTRACT
We study circular orbits of magnetized particle around Schwarzschild black hole
immersed in the uniform magnetic field. Despite the topic overlaps with the one of
[Classical and Quantum Gravity 20, 469 (2003)], our calculations complement it by
correcting effective potential of the magnetized particle presented in it. As a rule, the
effective potential is independent of the energy of test particle. We briefly demon-
strate the formalism and present qualitative picture on the effect of the magnetic
coupling parameter on innermost stable circular orbits.

Keywords: Schwarzschild spacetime – magnetized particle – innermost stable cir-
cular orbit

In the paper (de Felice and Sorge, 2003), the circular orbits of a particle with mass m
possessing magnetic dipole momentum µ around Schwarzschild black hole with mass M
immersed in the asymptotically uniform magnetic field B that is perpendicular to the orbital
plane was studied. In this paper we refine the results presented in that paper by addressing
the problem associated with that effective potential of the magnetized particle. For the
reader’s sake, prior to attracting one’s attention to the problem, we aim to address, we here
briefly highlight the main equations presented in the paper (de Felice and Sorge, 2003), till
we reach the problem. As a starting point, let us choose the Hamilton-Jacobi equation for
the uncharged and spinless particle, but still possessing the magnetic dipole moment in the
following form (de Felice and Sorge, 2003):

gµνpµpν − mDµνFµν + m2 = 0 , (1)

where pµ is the four-momentum and m is mass of the test particle. The explicit form of the
product of polarization tensor Dµν and the electromagnetic field tensor Fµν has shown as

DµνFµν = 2µαBα = 2µα̂Bα̂ = −U � m . (2)
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After introducing the new definitions for the radial coordinate r, energy E, angular momen-
tum L, and magnetic parameter:

ρ =
r

2M
, λ =

L
2mM

, γ =
E
m
, β =

2µB0

m
, (3)

the authors derived the equation for the radial motion in the form (de Felice and Sorge,
2003)

4M2
(

dρ
dτ

)2

= γ2 − V(ρ; λ, γ, β) , (4)

where τ is the proper time along particle trajectory and the effective potential V(ρ; λ, γ, β)
is defined as (de Felice and Sorge, 2003)

V(ρ; λ, γ, β) =

(
1 −

1
ρ

) 1 +
λ2

ρ2 −
β
(
1 − 1

ρ

)
√

1 − 1
ρ
− 4M2Ω2ρ2

 . (5)

where Ω is the angular velocity, measured by a distant observer often called Keplerian
frequency, defined as

Ω =
dφ
dt

=
uφ

ut =
λ

2Mγ

ρ − 1
ρ3 . (6)

Finally, we arrived at the point where we think the problem is. Indeed, eq. (5) reproduces
the effective potential for the neutral particle in the field of the Schwarzschild black hole,
if the magnetic coupling is neglected (β = 0). In the Ref. (de Felice and Sorge, 2003),
the authors aimed to discover the effect of the magnetic interaction parameter, β, on the
circular motion of the particle. To do so, finding the correct form of the effective potential
is crucial, as it is a problem of motion in the central field. As a rule, the effective potential
in equation (4) should not depend on the specific energy of the particle. However, if one
applies expression of the angular velocity of the particle (6) into the effective potential (5),
the effective potential will depend on the specific energy of the particle, as in the case of the
paper (de Felice and Sorge, 2003), that contradicts the rule. As proof of that, analogously
it is enough to show that the Keplerian frequency (6) is independent of the specific energy
(actually, in general, it is independent of both the specific energy and specific angular
momentum of the test particle). Therefore, in order to escape from this contradiction,
we propose the following procedure:

- In the circular orbit, the particle’s four-velocity is given as uµ = (ut, 0, 0, uφ) and from
the normalization condition of the four-velocity uµuµ = −1 we obtain

ut =
1√

−gtt −Ω2gφφ
=

1√
1 − 1

ρ
− 4M2Ω2ρ2

. (7)
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- On the other hand, since motion of the particle with magnetic momentum in the external
magnetic field does not follow the geodesics, by using the (radial) non-geodesic equation
for magnetized particle proposed in (Preti, 2004)

D
Dτ

[
(m +U)uα

]
= −U,α , (8)

we find the following relation:

gtt,r + Ω2gφφ,r
gtt + Ω2gφφ

= −
2U,r

m +U
, (9)

where sub-index ,α indicates the derivative with respect to coordinate xα. Note that in
the derivation of equation (9), ut is eliminated by using equation (7). Hereafter, applying
simple algebraic operations, one can obtain the explicit expression of the angular velocity
of the magnetized particle in the circular orbit in the following form:

Ω =

√
−

gtt,r + 2gtt ln(m +U),r
gφφ,r + 2gφφ ln(m +U),r

. (10)

One can see from expression (10) that the Keplerian frequency depends only on the space-
time metric and interaction potential, U. In the absence of the interaction term, U = 0 or
µ = 0, the angular velocity of the magnetized particle in the circular orbit, (10), reduces
to the well-known Keplerian frequency of the neutral test particle in the Schwarzschild
spacetime, Ω0 =

√
−gtt,r/gφφ,r =

√
M/r3.

On the other hand, one has to keep in mind that the interaction potentialU is a function
of Ω (See, for example: (de Felice and Sorge, 2003)):

U = β
mgtt√

−gtt −Ω2gφφ
= βU(ρ, β) , (11)

and Ω is itself function of magnetic parameter from equation (10).
Before go on further let us introduce the normalized interaction potential U → U/m.

Now we first find Ω from equation (11) then substitute it into equation (9), and taking into
accountU � m, one can have the following differential equation:

2U,r = −
gφφ,r
gφφ
−
U2

β2gtt

(
gφφ,r
gφφ
−

gtt,r

gtt

)
, (12)

or using equations (11) and (3), one can have

βU,ρ = −
1
ρ

+
(2ρ − 3)
2(ρ − 1)2 U2 . (13)

Unfortunately, it is difficult to get an analytical solution for equation (13), however, one
can use perturbation in order to obtain a semi-analytical solution for U at least in linear
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order approximation. Then new interaction potential U can be expanded in the power of β
parameter as

U(ρ, β) = U0(ρ) + βU1(ρ) + ... (14)

Substituting it into equation (13), hereafter performing simple algebra one can obtain Ui(ρ)
in the form:

U0(ρ) =

(
1 −

1
ρ

) (
1 −

3
2ρ

)−1/2

, (15)

U1(ρ) =
(ρ − 1)2

(2ρ − 3)
U′0(ρ)
U0(ρ)

=
(ρ − 3)(ρ − 1)
2(3 − 2ρ)2ρ

. (16)

Finally, in linear approximation of β parameter, the effective potential for magnetized
particle can be written as

V(ρ) =

(
1 −

1
ρ

) 1 +
λ2

ρ2 + β

(
1 −

1
ρ

) (
1 −

3
2ρ

)−1/2 . (17)

As it is seen, the effective potential for the magnetized particle moving in the field of the
Schwarzschild black hole immersed in the uniform magnetic field significantly different
from the one presented in (de Felice and Sorge, 2003). Even from this point, one can
say that the characteristic circular orbits, such as marginally (i.e., innermost or outermost)
stable circular orbits evaluated from the effective potential (17) are different from the ones
presented in (de Felice and Sorge, 2003). To estimate these differences quantitatively, let
us study one of the most important characteristic circular orbits, such as innermost stable
circular orbits. The stability of the circular orbits is guaranteed by the non-negativity of
the second derivative of the effective potential with respect to the radial coordinate. If the
equality holds then, the solutions of this equation give the innermost stable circular orbits.
As this equation has cumbersome form in our case and the solutions cannot be written
analytically, we decided to present it in the following form:

β = −
4
√

2(ρ − 3)
√
ρ(2ρ − 3)3/2

ρ[5ρ(4ρ − 21) + 174] − 81
, (18)

One can easily notice from eq. (18) that in the absence of the magnetic coupling of param-
eter (β = 0), one recovers the radius of ISCO of the neutral particle around Schwarzschild
black hole (ρ = 3). Moreover, in Fig. 1 we demonstrate the dependence of the ISCO radius
from the magnetic coupling parameter. One can see from Fig. 1 that for negative values
of the magnetic coupling parameter, the stable circular orbits of the magnetized particle
are located very far from the black hole, i.e., negative values of the magnetic coupling pa-
rameter increases the radius of ISCO. As figure shows, the radius of the ISCO diverges
for β tends to -0.8 from right side, β → −0.8+. Thus, from this property we determine
that for the existence of the ISCO, the minimum value of the magnetic coupling parameter
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Figure 1. Dependence of the ISCO radius from the magnetic coupling parameter. Where shaded and
white regions represent the ones that the stable and unstable circular orbits occupy, respectively.

is βmin = −0.8. On the other hand, for the existence of the ISCO, positive values of β is
also restricted. This maximum value is βmax = 1.7329 at which the ISCO is located at
ρISCO = 2.2587. If the value β > βmax, the stable circular orbits can exist anywhere of the
spacetime outside photonspehere (ρ > 1.5).

In this paper, we have presented guidelines on how to derive the effective potential for
the magnetized particle orbiting around the Schwarzschild black hole in the presence of
the external uniform magnetic field. One has to emphasize that in Ref. (de Felice et al.,
2004) the same problem but in the Kerr, spacetime was solved by using the same approach.
Later, in Refs. (Preti and de Felice, 2005, 2006) the same approach was applied for the
magnetized particle motion around the Schwarzschild and Kerr black holes in the presence
of the dipole magnetic field. Now we think that it makes sense if scenarios considered in
the papers (de Felice et al., 2004; Preti and de Felice, 2005, 2006) can be recalculated by
the method we presented and make comparison with the results shown in them. We keep
that calculations for our near future projects.
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