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ABSTRACT
We investigate physical conditions under which nuclear matter may cross to quark
matter using several equations of state for both phases. We calculate the combined
equation of state using the nuclear matter equation of state for low-density region
and the quark matter equation of state for the high-density region using Maxwell
construction. Then we use it to calculate properties of non-rotating compact stars
with quark cores and hadronic surface. We focus primarily on the maximum mass
of a non-rotating star and on the moment of inertia of quark core for different com-
binations of selected equations of state. This work is the starting point for future
investigation of rotating neutron stars with quark cores.
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1 INTRODUCTION

Neutron stars are the densest objects with internal structure currently known to exist in
the Universe. Their structure is governed by general relativity and nuclear physics of very
dense matter (densities in the cores of neutron stars can reach values several times higher
than standard nuclear matter density). The matter in the cores of neutron stars is in the
standard picture composed of neutrons, protons, and electrons in β-equilibrium, however, at
sufficiently high densities the matter can undergo the phase transition to deconfined quarks.

Phase transitions in neutron stars are of huge interest since they can affect the global
properties of neutron stars like the neutron star mass M, radius R moment of inertia I or the
Love numbers Λ. For the current status of phase transition in compact stars see the recent
overview by Blaschke and Chamel (2018).

Since phase transition to quark matter corresponds to the transition to a form of matter
that is energetically preferable at high densities, it leads to the softening of the equation of
state in that region. Equation of state with phase transition describing hybrid stars should
therefore allow for the maximum mass that is smaller than the maximum mass allowed
by the hadronic equation of state without phase transition. Therefore observations of mas-
sive neutron stars constrain the hadronic equation of state even if it does not describe the
whole interior of the observed star. Currently, the most massive neutron stars known are
M = 2.01 ± 0.04M� by Antoniadis et al. (2013) and M = 1.97 ± 0.04 by Demorest et al.
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(2010) that are both in a binary system with a white dwarf, and massive enough to put
serious constraints on the equation of state of neutron star matter. Other observational con-
straints on equations of state with phase transition have been discussed also by Kurkela
et al. (2014) who shown that constraints from neutron star observations on the equation of
state of neutron star matter are insensitive to the size of quark matter core. The maximum
mass of neutron stars with quark cores was also discussed by other authors - see e.g. Zdunik
and Haensel (2013).

In this short presentation, we focus on simple calculations using several equations of state
of hadronic matter and for each, we calculate the physical conditions of Maxwell phase
transition to simple MIT Bag model with various values of bag constant. We calculate
non-rotating models of compact stars with quark core and focus on mass-radius relation,
on maximum mass, and on the moment of inertia of quark core.

2 MODEL

2.1 Equations of state

Hadronic EoS: In our presentation we use selection of representative hadronic equations
of state namely APR (Akmal et al., 1998), FPS (Lorenz et al., 1993), Gandolfi (Gandolfi
et al., 2010), KDE (Agrawal et al., 2005), NRAPR (Steiner et al., 2005), SLy4 Rikovska
Stone et al. (2003), and UBS (Urbanec et al., 2010). Each of these equations of state is
composed of an equation of state describing nuclear matter composed of neutrons, protons,
electrons, and muons in β-equilibrium based on various theoretical models of nucleon-
nucleon interaction and are matched to a standard set of equations of state describing the
low-density region, where the matter is composed of stable atomic nuclei or free neutrons
in equilibrium with nuclei (Baym et al., 1971).

Quark EoS: We assume the quark core to consist of mass-less u and d quarks. To describe
quark matter we use MIT Bag model (Chodos et al., 1974; Farhi and Jaffe, 1984; Haensel
et al., 1986) where pressure P is related to energy density ρ by

P =
1
3

(ρ − 4B) , (1)

where B is Bag constant that gives energy density corresponding to zero pressure ρ0 = 4B.
The factor 1/3 can be related to sound speed of quark matter vs = c

√
dP/dρ = c/

√
3 . The

baryon number density is given as

nB =

[
4(1 − 2αc/π)1/3

9π2/3~
(ρ − B)

]3/4

, (2)

where αc is strong interaction coupling constant. Chemical potential per baryon is given
by

µB =
ρ + P

nB
. (3)

In our calculations we take αc = 0 and for bag constant we choose six different values
B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3.
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Phase transition For all possible combinations of hadronic EoS and quark EoS, we calcu-
late pressure and baryonic chemical potential of the phase transition using Maxwell con-
struction, i.e. the resulting EoS has continuous chemical potential as a function of pressure
µB = µB(P). Phase transition takes place at pressure Ppt and baryonic chemical potential µpt
that is calculated for each combination of the hadronic equation of state and quark equation
of state from our selection. The same approach to model the phase transition was used e.g.
by Benić et al. (2015) or by Alvarez-Castillo et al. (2019) where they used more advanced
quark EoS based on QCD and used relativistic mean-field model EoS of hadronic matter.

Compact star models Global properties of non-rotating compact stars are given by differ-
ential equations of hydrostatic equilibrium - TOV equation (Tolman, 1939; Oppenheimer
and Volkoff, 1939)

dP
dr

= −
(ρ + P)

[
m(r) + 4πr3P

]
r [r − 2m (r)]

, (4)

where m(r) is mass inside a sphere of radius r and is given by

dm(r)
dr

= 4πρr2. (5)

The set of differential equation is solved for given value of central pressure. Equations are
integrated while the pressure remains positive and the radius r where pressure vanishes is
giving the surface of compact star, i.e. P(R) = 0 with R being the radius of the compact
star. Mass is given by M = m(R). We also calculate moment of inertia of the star Itot given
by (Hartle, 1967)

Itot = −
2
3

R∫
0

r3
(

d j
dr

) (
ω̃

Ω

)
dr, (6)

where Ω is angular velocity of the star and j is given by j = 1/
√
−grrgtt. The function ω̃ is

found by solving equation

1
r4

d
dr

(
r4 j

dω̃
dr

)
+

4
r

d j
dr
ω̃ = 0. (7)

One can find a moment of inertia of the quark core Icore by performing the integral in eq.
(6) to rpt = r(P = Ppt) instead performing the integral to the surface where r = R.

3 RESULTS AND DISCUSSION.

We solved the structure equations described in the previous section to obtain mass, radius,
a moment of inertia of the whole star, and the moment of inertia of the quark core as a
function of central pressure. At first, we solved the problem for purely hadronic equations
of state and we present the mass-radius relation on the left panel of Fig. 1. The results when
we assumed only quark matter described by the MIT Bag model is presented on the right
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Figure 1. Mass vs radius of neutron stars with hadronic equations of state (left) and quark stars with
MIT Bag model (right).

panel of Fig. 1. The maximum mass of quark stars is given purely by bag constant in a
simple model we assumed here and was discussed by Haensel et al. (1986). They found
a maximum mass and corresponding radius, a moment of inertia, and central density as a
function of Bag constant (see eq. (28) in Haensel et al. (1986) and related discussion for
details)1.

Mass-radius relations of hybrid stars (neutron stars with quark cores) are discussed on
Fig. 2 where each panel correspond to a particular value of bag constant and bag constant
is increasing from the top left to bottom right. The lines at each panel starting on the right
where mass is smallest and radius largest are corresponding to lower central pressures. As
central pressure increases the radius is becoming smaller and mass is increasing. On the
left panel of the top row, where B = 2.0 × 1014g.cm−3(left) the mass reaches maximum
values (different for each hadronic equation of state but well bellow 1M�). After that, the
mass is decreasing and starts to increase again. The stellar models when mass is decreasing
with central pressure increasing are unstable against radial perturbations. After reaching
minima the mass starts to increase, stellar models are stable again and the mass reaches
new maxima. This second maximum is primarily given by the value of bag constant and is
almost the same for all considered hadronic equations of state. We can see that for a small
interval of masses the stable configuration may have two different radii. These objects are
usually called twin stars - see Benić et al. (2015) for a more interesting case of high mass
twin stars. In the case of our selection of equations of state, none of the hybrid star models
meets the highest observed mass of 2.01 ± 0.04M�. The only equation of state that meets
the requirement is the UBS with B = 4.5 × 1014g.cm−3 but the mass is reached before the
quark core starts to be present (see bottom right panel of Fig. 3 demonstrating there is no
quark core before maximum mass is reached).

We calculated the moment of inertia of quark core Icore and we present its size relative
to the total moment of inertia Itot versus gravitational mass on Fig. 3. One can see that

1 Haensel et al. (1986) were motivated by the investigation of strange stars, objects that are composed by a
mixture of u,d and s quarks and the quark phase is energetically preferable up to zero pressure. In our case quark
matter becomes energetically favorable if P > Ppt.
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Figure 2. Mass vs radius of neutron stars with quark matter cores. Each panel represents stars having
the same quark EoS but different hadronic equations of state. The values of Bag constants are (top left
to bottom right) B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3 and all phase transitions are calculated using
Maxwell construction. We can see that for a very small value of bag constant B = 2 × 1014g.cm−3the
maximum mass is dominated by the equation of state of quark matter, while in the case of higher
values bag constant the hadronic equation of state plays an important role. Quark matter core is
present in most of maximum mass configurations apart from the one with UBS EoS (see Fig 3).

the maximum size of quark core in stable compact stars corresponds to the lowest value
of bag constant and that Icore/Itot is decreasing with increasing bag constant. Even for the
highest values of B the quark core is present before reaching maximum mass except for
UBS equation of state.

In this short proceeding, we presented a simple analysis of phase transition using several
hadronic equations of state and combined each of them with the simplest form of MIT bag
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Figure 3. Moment of inertia of the quark core relative to the moment of inertia of the whole star.
Each panel represents stars having the same quark EoS but different hadronic equations of state. The
values of Bag constants are (top left to bottom right) B = {2; 2.5; 3; 3.5; 4; 4.5} × 1014g.cm−3 and all
phase transitions are calculated using Maxwell construction. One can see that quark matter core starts
to be present before maximum mass is reached in most of the cases, however, in the case of UBS the
stable configurations can have quark core only in the two of investigated cases (top row).

model calculated for various values of bag constant. We showed that for low values of bag
constant the maximum mass is determined by the value of bag constant while the hadronic
equation of state plays an important role for higher values of bag constant. That is the
starting point for our future investigation where we plan to use a more advanced equation
of state of quark matter and investigate also rotating objects.
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