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ABSTRACT
We compare charge particle dynamics around magnetized compact object for two
different configurations of magnetic field, uniform magnetic field and dipole mag-
netic field. Comparing charged particle trajectories, position of circular orbits and
frequencies of small harmonic oscillations in both magnetic fields, we will try to
answer the question if the dipole magnetic field can be approximated by uniform
magnetic field at last at small scales.
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1 INTRODUCTION

Magnetic fields plays very important role in astrophysics as they have been detected and
measured in nearly all celestial objects. We consider weak magnetic fields that will satisfy
test field approximation - have negligible effect on background spacetime or on the motion
of neutral particles. However, for the motion of charged test particles the influence of the
magnetic field can be really large. For a charged test particle with charge q and mass m
moving in vicinity of a black hole with mass M surrounded by an external asymptotically
uniform magnetic field of the strength B, one can introduce a dimensionless quantity b that
can be identified as relative Lorenz force (Frolov and Shoom, 2010)

b =
|q|BGM

mc4 . (1)

This quantity can be quite large even for weak magnetic fields due to the large value of
the specific charge q/m, and the influence of the magnetic field on the motion of charged
particles cannot be neglected even for weak magnetic fields. In our approach the ”charged
particle” can represent matter ranging from electron to some charged inhomogeneity orbit-
ing in the innermost region of the accretion disk. The charged particle specific charges q/m
for any such structure will then range from the electron maximum to zero.
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Figure 1. Magnetic field lines for magnetic uniform and dipole fields around Schwarzschild black
hole. Uniform magnetic field structure is quite simple - the magnetic field lines are parallel and
equally spaced. Dipole magnetic field structure is more complicated and the magnetic field intensity
is increasing close to the compact object. Dipole magnetic field is generated by circular current loop
with radius a = 4, hence magnetic field lines for 2 < r < 4 are not plotted. The gray disc with radius
r = 2 represent Schwarzschild black hole horizon, we also plotted dashed circle with radius r = 4
representing neutron star surface.

In this paper we will concentrate our attention on two particular cases of magnetized
compact object: asymptotically uniform external magnetic field known as Wald solution
(Wald, 1974) and relativistic version of dipole magnetic field generated by current loop
(Petterson, 1974). Charged particle dynamics in both magnetic filed scenarios has been
already widely studied in literature; for example for the uniform magnetic field in (Kopáček
et al., 2010; Kološ et al., 2015; Tursunov et al., 2016), while for the dipole magnetic field
in (Kovář et al., 2008; Bakala et al., 2010, 2012). The dipole magnetic field configuration
is assumed to be much more relevant for neutron stars, while for black holes we can use
the uniform field configuration.

Throughout the present paper we use the spacelike signature (−,+,+,+), and the system
of geometric units in which G = 1 = c.

2 CHARGED PARTICLE DYNAMICS

We describe dynamics of a charged particle with charge q , 0 in the vicinity of the
Schwarzschild black hole embedded in magnetic field, using Lorentz equation and Hamil-
tonian formalism, and we compare both approachers.
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The gravity will enter to the equations of motion through Schwarzschild black hole (with
mass M) spacetime line element

ds2 = −

(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2)

We consider first case of magnetic field which is uniform at the spatial infinity, having
strength B there. The field is oriented perpendicularly to the equatorial plane of the black
hole spacetime. The only nonzero covariant component of the electromagnetic four-vector
potential Aµ takes the form (Wald, 1974)

AU
φ =

B
2

gφφ. (3)

Dipole magnetic field will be generated by circular current loop with radius a ≥ 2, located
on the surface of compact object in equatorial plane. Outer r > a solution for four-vector
potential Aµ in Schwarzschild metric is given by only one nonzero covariant component of
the electromagnetic four-vector potential (Petterson, 1974)

AD
φ = −k

[
ln

(
1 −

2M
r

)
+

2M
r

(
1 +

M
r

)]
gφφ, (4)

where the term in square brackets is negative for r > 2.
Both uniform and dipole magnetic fields are static, have axial symmetry, and the only

nonzero covariant component of four-vector potential Aµ can be written as

A(U,D)
φ = const. f (r) gφφ. (5)

For uniform magnetic field the f (r) function is quite simple f U(r) = 1, while for dipole
magnetic fields the f (r) function is little bit complicated

f D(r) = − ln
(
1 −

2M
r

)
−

2M
r

(
1 +

M
r

)
. (6)

The function f (r) is positive for any r > 2.
Hereafter, we put M = 1, i.e., we use dimensionless radial coordinate r (and time coor-

dinate t). Cartesian coordinates can be found by the coordinate transformations

x = r cos(φ) sin(θ), y = r sin(φ) sin(θ), z = r cos(θ). (7)

The equations of motion for charged particle with charge q and mass m in magnetized
Schwarzschild black hole spacetime are given by the Lorentz equation and velocity norm-
ing condition

duµ

dτ
+ Γ

µ
αβu

αuβ =
q
m

gµρFρσuσ, gµνuµuν = −1, (8)

where uµ = dxµ/dτ is the four-velocity of the particle, Γ
µ
αβ are Christoffel symbols for

Schwarzschild metric 2 and Fµν is tensor of electromagnetic field, given by

Γ
µ
αβ =

1
2

gµγ
(
gγα,β + gγβ,α − gαβ,γ

)
, Fµν = ∂µAν − ∂νAµ. (9)
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Figure 2. Effective potential for charged particle motion around black hole immersed into uniform
(left) or dipole (right) magnetic fields.

The Lorentz equation (8) is set of four second order ordinary differential equations. The
main advantage of Lorentz equation is that we can clearly see the Lorentz force f µL =

(q/m)Fµνuν acting on the charged particle.
The equations of motion for charged particle can be also obtained using Hamiltonian

formalism
dxµ

dζ
=
∂H
∂πµ

,
dπµ
dζ

= −
∂H
∂xµ

, H =
1
2

gαβ(πα − qAα)(πβ − qAβ) +
m2

2
= 0, (10)

where the kinematical four-momentum pµ = muµ = dxµ/dζ is related to the generalized
(canonical) four-momentum πµ by the relation πµ = pµ + qAµ. The affine parameter ζ of
the particle is related to its proper time τ by the relation ζ = τ/m. The Hamiltonian equa-
tions (10) is set of eight first order ordinary differential equations. The main advantage of
Hamiltonian formalism is the possibility to use very precise numerical integration scheme
(symplectic integrator) (Kopáček et al., 2014).

Due to the symmetries of the Schwarzschild spacetime (2) and both uniform and dipole
magnetic field (3-4), one can easily find the conserved quantities that are particle energy
and axial angular momentum

E =
E
m

= −
πt

m
= −gttut, L =

L
m

=
πφ

m
= gφφuφ +

q
m

Aφ. (11)

Using such symmetries one can rewrite the Hamiltonian (10) in the form

H =
1
2

grr p2
r +

1
2

gθθp2
θ +

1
2

gttE2 +
1
2

gφφ(L − qAφ)2 +
1
2

m2 = HD + HP, (12)

where we separated total Hamiltonian H into dynamical HD (first two terms) and potential
HP (last two terms) parts.
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We will define new particle and magnetic field parameters: particle specific charge q̃,
and magnetic parameters for uniform B and dipole K magnetic fileds

q̃ =
q
m

B =
qB
2m

, K = −
qk
m
. (13)

Energetic boundary for particle motion can be expressed from the equation (12)

E2 = Veff(r, θ) (for pr = pθ = 0), (14)

We introduced effective potential for charged particle Veff(r, θ) by the relation

Veff(r, θ) ≡ − gtt

[
gφφ

(
L − q̃Aφ

)2
+ 1

]
=

(
1 −

2
r

) ( L

r sin(θ)
− K f (r) r sin(θ)

)2

+ 1

 , (15)

where magnetic field constants K ∈ {B,K} stands B for uniform and K for dipole mag-
netic field, the function f (r) specify the exact magnetic field radial behaviour (5). The
effective potential Veff(r, θ) combine the influence of gravity potential (first term) with the
influence of central force potential given by the specific angular momentum L and elec-
tromagnetic potential energy (terms in square brackets). The effective potential (15) shows
clear symmetry (L,K)↔ (−L,−K), hence from now on we will focus on L > 0 case only.
The positive angular momentum of a particle L > 0 means that the particle is revolved
in the counter-clockwise motion around the black hole in x-y plane. Example of effective
potential Veff(r, θ) behaviour can be found in Fig. 2.

For charged particle we distinguish two following situations

- Lorentz attractive (minus configuration), here K < 0 - magnetic field and angular mo-
mentum parameters have opposite signs and the Lorentz force is attracting the charged
particle to the z-axis, towards the black hole.
+ Lorentz repulsive (plus configuration), here K > 0 - magnetic field and angular momen-
tum parameters have the same signs and the Lorentz force is repulsive, acting outward the
black hole.

For uniform magnetic field, if charge of the particle is taken to be positive q > 0, the minus
configuration K < 0 corresponds to the vector of the magnetic field B pointing downwards,
while plus configuration K > 0 corresponds to the vector of the magnetic field B pointing
upwards the z-axis.

3 CIRCULAR ORBITS AND ISCO

Particles on circular orbits around compact object can form Keplerian accretion disk, with
its inner edge given by innermost circular orbit (ISCO). The circular orbit parameters and
ISCO position can be determined by examination of effective potential Veff(r, θ) function.

The stationary points of the effective potential Veff(r, θ) function are given by

∂rVeff(r, θ) = 0, ∂θVeff(r, θ) = 0. (16)
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Figure 3. Specific axial angular momentum LE(r) for charged particle on circular orbit in magnetic
field, as function of radial coordinate r. The non-magnetic case is given as dashed curve, the black
point are located at minima of LE(r) function and represents radial position of ISCO.

The second equation in the extrema condition (16) has one root at θ = π/2. In another
words, there is extrema of the Veff(r, θ) function located in the equatorial plane. The first
equation in the extrema condition (16) leads to a quadratic equation with respect to the
specific angular momentum L

(r − 3)L2 + XL − Y = 0, (17)

where functions X,Y are given by

X = Kr2 [
(r − 2)r f ′ + 2 f

]
, Y = K2r4 f

[
(r − 2)r f ′ + (r − 1) f

]
+ r2. (18)

Real roots of radial coordinate r > 2 from eq. (17) determine maxima, minima and inflex
points of the Veff(r, θ = π/2) function. Such extrema give stable (minima) and unstable
(maxima) equilibrium positions for the circular particle motion, i.e. stable or unstable
circular orbits. The inflex points give the marginally stable circular orbits. The solutions of
quadratic equation (17) determine the specific angular momentum LE±(r) for any circular
orbit with radial coordinate r

LE±(r) =
−X ±

√
X2 + 4Y(r − 3)

2(r − 3)
(19)

The angular momentum LE±(r) function is plotted for uniform and dipole magnetic fields
in Fig. 3. One can clearly see the biggest difference between uniform and magnetic field
in equatorial plane. The effect of uniform magnetic became more visible with large radii
r, because the magnetic field is constant for any r and does not disappear at infinity. The
dipole magnetic field gets weaker as one is departing from the generating current loop
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Figure 4. Charged particle ISCO for different values of magnetic field parameters B,K .

which should be located close to the origin of coordinates but above Schwarzschild horizon,
the dipole magnetic field disappear at infinity r → ∞.

The local extrema of the LE±(r) function (19) determine the innermost stable circu-
lar orbits (ISCO). The ISCO radial position for charged particle moving around black
hole strongly depends on the magnetic field, see Fig. 4. For uniform magnetic field the
charged particle ISCO position is decreasing for both attracting (B < 0) or repulsing
(B > 0) Lorentz force configurations. Even for relatively small magnetic field parame-
ter B = ± 0.05 the ISCO radii is shifted from from 6M to 5M in the geometrized units. For
dipole magnetic field, the charged particle ISCO position is sifted towards to the black hole
for attracting Lorentz force (K < 0), while for repulsive Lorentz force (K > 0) the ISCO
position is shifted away from black hole.

4 ANY MAGNETIC FIELD IS UNIFORM AT SMALL SCALES

As numerical simulations shows, realistic magnetic field around compact object with ac-
cretion disk will be probably quite complicated. The question arise, if one can substitute
this realistic magnetic field by some simple analytic solution, at last for large scales. In this
article we will focus on much simpler situation. We will try to substitute dipole magnetic
field, as model of complicated magnetic field, with the uniform magnetic field.

Any smooth function can be approximated in neighborhood of some point by linear
function using Taylor expansion. We can expand complicated dipole magnetic field into
uniform magnetic field at given point, just by assuming to have the the same value of
Lorentz force there. We give an example of charged particle moving in dipole and uniform
magnetic field where the initial conditions and strength of Lorentz force was set to be the
same in both dipole and uniform field cases. In Fig. 5. the particle trajectory will stay close
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106 M. Kološ, A. Tursunov

Figure 5. Charged particle trajectory around Schwarzschild black hole with dipole or uniform mag-
netic filed. Particle initial conditions and strength of Lorentz force are set to be the same in both
cases.

to its initial point, because we are close to the effective potential minima. In this case the
charged particle trajectory in dipole magnetic field can be well approximated by particle
moving in uniform magnetic filed. In Fig. 6. the situation is completely different, since the
charged particle in dipole field is exploring large areas below and above equatorial plane,
where it will feel the dipole field inhomogeneities. In this situation the approximation by
uniform field will valid only for very short time.

Dipole/uniform magnetic field substitution is then possible only for charged particle os-
cillating around its circular orbit.

5 HARMONIC OSCILLATIONS IN MAGNETIC FIELD

If a charged test particle is slightly displaced from the equilibrium position located in a
minimum of the effective potential Veff(r, θ) at r0 and θ0 = π/2, corresponding to a stable
circular orbit, the particle will start to oscillate around the minimum realizing thus epicyclic
motion governed by linear harmonic oscillations. For harmonic oscillations around the
minima of the effective potential Veff , the evolution of the displacement coordinates r =

r0 + δr, θ = θ0 + δθ is governed by the equations

δ̈r + ω2
r δr = 0, δ̈θ + ω2

θ δθ = 0, (20)
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Figure 6. Charged particle trajectory around Schwarzschild black hole with dipole or uniform mag-
netic filed. Particle initial conditions and strength of Lorentz force are set to be the same in both
cases.

where dot denotes derivative with respect to the proper time τ of the particle (ẋ = dx/dτ),
and locally measured angular frequencies of the harmonic oscillatory motion are given by

ω2
r =

1
grr

∂2HP

∂r2 , ω2
θ =

1
gθθ

∂2HP

∂θ2 , ωφ =
dφ
dτ

= Lgφφ − K f (r), (21)

where we added also the Keplerian (axial) frequency ωφ. We will not put explicit
The locally measured angular frequencies ωr, ωθ, and ωφ, given by ωβ = d�β/dτ where

β ∈ {r, θ, φ}, are connected to the angular frequencies measured by the static distant ob-
servers (in the physical units) by the gravitational redshift transformation

νβ =
1

2π
c3

GM
d�β
dt

=
1

2π
c3

GM
ωβ

−gttE(r)
. (22)

Behaviour of the frequencies νr(r), νθ(r) and νφ(r), as functions of the radial coordinate
r, is demonstrated in Fig. 7 for both dipole and uniform magnetic field. For small radii,
r ≥ rISCO, we see strong gravitational influence on the angular frequencies in both dipole
and uniform cases. For large radii r � rISCO the influence of the uniform magnetic field is
prevailing, while the influence of the dipole magnetic field is fading away and the frequen-
cies are coinciding with non-magnetic case.
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Figure 7. Frequencies νθ, νr, νφ of small harmonic charge particle oscillations around magnetized
Schwarzschild black hole as measured by static distant observers. One can easily substitute the effect
of dipole magnetic field (left figures) with uniform magnetic field (right figures). The black curves
are for magnetic case, while the non-magnetic (neutral) case is given by grey curves.

The charged particle oscillations with frequencies νr(r), νθ(r) and νφ(r), suggest inter-
esting astrophysical application, related to quasi-periodic oscillations (QPOs) observed in
many Galactic Low Mass X-Ray Binaries (LMXB) containing neutron stars or black holes
(Bakala et al., 2010; Kološ et al., 2015). According to the observed frequencies of QPOs,
which cover the range from few mHz up to 0.5 kHz, different types of QPOs were distin-
guished. These are the high frequency (HF) and low frequency (LF) QPOs in the timing
spectra with frequencies up to 500 Hz and up to 30 Hz, respectively. The HF QPOs are
sometimes detected with the twin peaks (upper fup and lower flow) which have frequency
ratio close to 3 : 2. The simplest geodesic QPOs model is epicyclic resonance (ER) model
(Török et al., 2005), where the two resonant modes are identified to be the radial νr and
vertical νθ epicyclic frequencies

fup = νup ≡ νθ, flow = νlow ≡ νr, νup : νlow = 3 : 2, (23)
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The frequency commensurability is crucial ingredient of the resonant model, and a particu-
lar case of this commensurability occurs for the parametric (internal) resonant phenomena
that become strongest in the case of the 3 : 2 frequency ratio

The open question is, if we can once again substitute the influence of complicated mag-
netic field (dipole), with the simple uniform magnetic field. To fit the observed QPOs
frequencies fup and flow, for compact object with mass M, one must change the dipole
magnetic field parameter K in functions νD

up(rD,K ,M), νD
low(rD,K ,M) and hence obtain

required frequencies for 3:2 resonant radii rD. Frequencies at resonant radii rD for dipole
magnetic field with parameter K can be substituted by frequencies at resonant radii rU for
uniform magnetic field νU

up(rU,B,M), νU
low(rU,B,M) with parameter B using equations

νD
up(rD,K ,M) = νU

up(rU,B,M), νD
low(rD,K ,M) = νU

low(rU,B,M). (24)

Examples of frequencies substitution for dipole/uniform magnetic field is show in Fig. 7
for both Lorentz attractive and repulsive cases.

6 CONCLUSIONS

Magnetic field can strongly influence astrophysical processes around compact object. If
the specific particle charge q/m is large enough, even weak magnetic field can significantly
influence position of Keplerian accretion disc inner edge, the charged particle trajectory
and charge particle oscillatory frequencies.

Real magnetic field around compact object will be far away from to be completely uni-
form, but any magnetic field can be approximated by uniform at last at small scales. Such
magnetic field simplification for charged particle motion will work only if the particle tra-
jectory will remain in small region of space. When the particle trajectory will move away
from vicinity of its initial position, it will start to feel magnetic field inhomogeneity.

We tested charged particle motion in two magnetic filed configurations: in dipole mag-
netic field, as representation of complicated filed, and in uniform magnetic field. The
charged particle ISCO behave differently for dipole or uniform field: for dipole field the
ISCO is increasing or decreasing with the field strength, depending on direction of Lorentz
force; for uniform filed is the ISCO always decreasing. Charged particle QPOs frequencies
for dipole magnetic field can be substituted by frequencies calculated for uniform magnetic
field.
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