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ABSTRACT
We introduce a general transformation leading to an integral form of pressure equa-
tions characterizing equilibrium configurations of charged perfect fluid circling in
strong gravitational and combined electromagnetic fields. The transformation gener-
alizes our recent analytical treatment applicable to electric or magnetic fields treated
separately along with the gravitational one. As an example, we present a particular
solution for a fluid circling close to a charged rotating black hole immersed in an
asymptotically uniform magnetic field.
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1 INTRODUCTION

Investigation of fluids under astrophysical conditions represents one of the most challeng-
ing tasks in physics. Encircling sources of strong gravity, such as black holes and neutron
stars (compact objects), astrophysical fluids manifest as compressible (gaseous) fluids, typ-
ically. We can find them in a form of pure neutral or quasi–neutral ionized gas (plasma), as
a neutral or charged microscopic dust, or dust grains (pressure–less fluid), and very often
as a dispersed medium, such as dusty gas, dusty plasma, etc. The gaseous fluids can range
from extremely diluted ones (represented by separated particles, and described within the
test–particles approach), through diluted ones (described within the kinetic approach), up
to dense fluids (conveniently studied within the magneto–hydrodynamic approach).

From another point of view, astrophysical fluids can whirl in extremely complex dy-
namical situations, for instance, falling down and accreting onto compact objects, or being

978-80-7510-257-7 c© 2017 – SU in Opava. All rights reserved. äy ää äy

http://www.opava-city.cz/
jiri.kovar@fpf.slu.cz


120 J. Kovář et al.

launched in the form of winds or jets; on the other hand, fluids can settle down in equilib-
rium configurations and circle around compact objects.

In recent years, we have been focusing on the latter scenario, i.e on the magneto–
hydrodynamic study of electrically charged fluids forming equilibrium toroidal–like struc-
tures around compact objects. For this purpose, in a serie of papers, we developed a rele-
vant basic general relativistic (Kovář et al., 2011, 2014, 2016) and Newtonian (Slaný et al.,
2013; Trova et al., 2016) models, and introduced them in several gravito–electromagnetic
backgrounds, revealing interesting configurations of the charged fluid. For instance, in
contrast to the neutral perfect fluid being capable to form toroidal structures only in the
equatorial plane (Kozłowski et al., 1978; Abramowicz et al., 1978), the charged fluid cir-
cling in a proper electromagnetic background can soar up the equatorial plane and form
a ‘levitating’ torus, or it can ‘hover’ above the compact object as a ‘polar cloud’.

The toroidal structures are well determined by their pressure profiles as solutions of the
coupled pressure differential equations – the fundamental equations characterizing the con-
sidered model. These pressure equations, being accompanied by an integrability condition
and equations of state, can be satisfactorily solved in a numerical way. The analytical treat-
ment, however, is more traditional, enabling easier subsequent processing and bringing
a deeper insight into the studied problem.

Here, we focus on the general relativistic approach, and introduce a transformation lead-
ing to an unified integral form of the pressure equations characterizing the charged fluid
motion in more general background than considered up to now. The transformation en-
ables us to analytically treat the fluid circulation in gravitational field being accompanied
by a combined electromagnetic field, i.e. by the field characterized by two non–zero com-
ponents of its vector potential.

2 MODEL IN DIFFERENTIAL DESCRIPTION

The considered model of charged fluid circling in strong gravitational and electromag-
netic fields can be characterized by the following assumptions: 1) pure azimuthal cir-
culation of the fluid with elementary charges adherent to the moving fluid components,
2) gravito–electromagnetic test fluid, and axial symmetry and stationarity of the gravito–
electromagnetic background, 3) fluid properties to be of the perfect fluid one and satisfying
the polytropic pressure–density relation; utilization of these assumptions within the general
relativistic magneto–hydrodynamic equations (conservation laws, Maxwell equations and
Ohm law) provides us with the basic coupled pressure equations.

2.1 Pressure equations

The rotating fluid with profiles of charge density qρ and total energy density ε forms a struc-
ture being determined by the iso–surfaces of the pressure p (equi–pressure surfaces), which
can be determined from the coupled pressure equations

∂r p = −(p + ε)R1 + qρR2 ≡ R, (1)
∂θp = −(p + ε)T1 + qρT2 ≡ T,
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where R = R(r, θ) and T = T(r, θ) denote the right hand sides of these equations, and

R1 = ∂r ln |Ut | −
ω∂r`

1 − ω`
, R2 = U t∂rAt + Uφ∂rAφ, (2)

T1 = ∂θ ln |Ut | −
ω∂θ`

1 − ω`
, T2 = U t∂θAt + Uφ∂θAφ.

Here, the electromagnetic vector potential has the t and φ independent form Aα = (At, 0, Aφ, 0)
in the coordinate system (t, r, φ, θ), Uα = (U t, 0,Uφ, 0) is the fluid 4-velocity, ` = −Uφ/Ut

the specific angular momentum and ω = Uφ/U t the the angular velocity, all related by the
formulae

ω = −
`gtt + gtφ

`gtφ + gφφ
, (Ut)2 =

g2
tφ − gttgφφ

`2gtt + 2`gtφ + gφφ
, (3)

in a prescribed gravitational field gαβ. Note that a derivation of the pressure equations (1)
can be found in (Kovář et al., 2011, 2014, 2016); their uncharged limit qρ = 0 corresponds
to the Euler equations describing a rotating electrically neutral perfect fluid (Kozłowski
et al., 1978; Abramowicz et al., 1978).

2.2 Rotation regime, charge distribution and thermodynamic setup

The pressure equations (1) are not generally integrable and must be accompanied by the
integrability condition

∂θR + T∂pR = ∂rT + R∂pT. (4)

From the physical point of view, this condition relates the charge density distribution qρ =

qρ(r, θ) throughout the torus and its rotation regime ` = `(r, θ) (or ω(r, θ)), which must be
properly adjusted to each other according to this condition.

Formally, to close the system of equations, it is necessary to specify relations for the
pressure and total energy density. For the purpose of basic theoretical investigation, we can
consider a compressible perfect fluid satisfying the general polytropic equation of state for
the pressure

p = κρΓ, (5)

together with the total energy density relation

ε = ρ +
1

Γ − 1
p, (6)

with κ and Γ being the polytropic coefficient and exponent, and ρ the rest–mass density.

3 UNIQUE SOLUTION

In order to avoid numerical integrations of the pressure equations (1) and the related in-
tegrability condition (4), we can introduce a transformation of the charge density together
with a transformation of the pressure. Then under certain conditions specified below, the
system of differential pressure equations can be uniquely rewritten, unified and integrated.
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3.1 Transformation of pressure equations and correction function

Defining the charge density transformation by the relation

K =
qρ
ε + p

, (7)

where we address the function K as the ‘correction function’ (on the basis of integrabil-
ity condition (4) mathematically ensuring the integrability of the pressure equations (1)
after the profiles `(r, θ) or ω(r, θ) are set), and the pressure transformation by the coupled
equations

∂rh =
∂r p

(p + ε)
, ∂θh =

∂θp
(p + ε)

, (8)

where we address the function h as the ‘auxiliary function’, we get the system of trans-
formed pressure equations in the form

∂rh = −(R1 − KR2), (9)
∂θh = −(T1 − KT2),

accompanied by the integrability condition

∂θ(R1 − KR2) = ∂r(T1 − KT2). (10)

Providing that ε = ε(p), which is guaranteed by the chosen thermodynamic alignment
(5)-(6), the auxiliary function can be explicitly expressed as

h =

∫ h

0
dh =

∫ p

0

dp
p + ε

= ln
1 +

Γκ
1
Γ p

Γ−1
Γ

Γ − 1

 . (11)

In the considered combined electromagnetic field, it is, moreover, very convenient to
rescale the correction functions as

K = KUφ. (12)

Then, our system of the transformed pressure equations (9) can be written in the form

∂rh = −∂r ln |Ut | +
ω∂r`

1 − ω`
+K(ω−1∂rAt + ∂rAφ),

∂θh = −∂θ ln |Ut | +
ω∂θ`

1 − ω`
+K(ω−1∂θAt + ∂θAφ),

(13)

indicating a possible unification. After an introduction of the electromagnetic vector time–
component transformation according to the relations

∂rat = ω−1∂rAt, ∂θat = ω−1∂θAt, (14)
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and the ‘magnetic function’ A = at +Aφ, we get the final system of the transformed pressure
equations

∂rh = −∂r ln |Ut | +
ω∂r`

1 − ω`
+K∂rA, (15)

∂θh = −∂θ ln |Ut | +
ω∂θ`

1 − ω`
+K∂θA.

3.2 Solution for the h-function

Providing that ω = ω(`) and K = K(A), on one hand restricting degrees of freedom in the
model, but still providing realistic physical scenarios, we can join equations of the system
(15) into the unified integral form∫ h

0
dh = − ln

∣∣∣∣ Ut

Utin

∣∣∣∣ +

∫ `

`in

ωd`
1 − ω`

+

∫ A

Ain

KdA, (16)

with the solution written in the closed form

h = −H + Hin. (17)

Here, the function H(r, θ) represents the variable part (potential) in the right–hand side of
equation (16) after the integration, and the subscript ‘in’ refers to the inner edge of the
structure at r = rin and θ = θin, determining the constants of integration being coupled in
Hin. Then, thanks to the transformation (11), equi–pressure surfaces p = const determining
the topology of the fluid structure take the same shapes as equi–potential surfaces H =

const.

3.3 Solution in Wald configuration

As an example, we can present our charged fluid structures circling close to a rotating
charged black hole immersed in an asymptotically uniform magnetic field. Such a back-
ground can be advantageously described by the Wald test–field solution of Maxwell equa-
tions (Wald, 1974) in the Kerr spacetime. In the standard general relativistic dimensionless
units, it reads

At = 1
2 B

(
gtφ + 2a gtt

)
− 1

2 Q gtt −
1
2 Q, (18)

Aφ = 1
2 B

(
gφφ + 2a gtφ

)
− 1

2 Q gtφ, (19)

where the charge Q and magnetic field strength B parameters are only test-field parameters,
thus not influencing the background spacetime geometry gαβ.

By setting the rigid rotation regime of the fluid, i.e. ω = const, the electromagnetic
vector time–component transformation can be chosen in the form at = ω−1At, and the
corresponding magnetic function will take the form A = ω−1At + Aφ. Next, for the purpose
of a basic illustration, even if we choose the rescaled correction function with a very simple
profile, such as

K = K(A) = kA, (20)
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Figure 1. Two examples of typical behavior of the potential H(r, θ) shown in terms of the poloidal
equi–potential contours plotted in the cylindrical coordinates R = r sin θ, z = r cos θ. Particularly,
we present topologies embodying two polar potential minima surrounded by closed equi–potential
surfaces (polar clouds) and two equatorial maxima, corresponding to the background and fluid pa-
rameters a = 0.9, Q = 3.99 × 10−3, B = 6.5 × 10−5, ω = −1.6 × 10−3, and k = −1.38 and k = −1.3.
The topology corresponding to the case k = −1.38 (left) embodies also coupled closed equi–potential
surfaces (covering shell) all around the central black hole.

where the coefficient k scales the charge profile of the fluid, we reveal very interesting
behavior of the related H–potential. The behavior of the potential H shows that along with
the typical tori centered and circling in the equatorial plane, the topology of the charged
fluid structures can also exhibit structures such as ‘polar clouds’ or ‘covering shells’ (see
Fig. 1).

4 CONCLUSIONS

The introduced integral form of the pressure equations (16) represents an extremely con-
venient formula, allowing us to avoid a standard general treatment of coupled partial dif-
ferential equations; its uncharged limit is referred to as Boyer’s condition and useful for
investigation of the neutral fluid toroidal structures – the so–called ‘Polish doughnuts’
(Abramowicz et al., 1978). On the other hand, the restricting conditions for the unifica-
tion p = p(ε), ω = ω(`) and K = K(A) can prevent us from treating some more general
interesting regimes in this way; a numerical integration of the pressure equations is then
necessary.

The presented example of the pressure equations unification in the case of the Wald con-
figuration could provide an illustration how efficient the procedure can be, despite of the
physical complexity of the studied scenario – the interplay of strong gravity and electro-
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magnetism forming a rotating charged fluid. No doubt, the introduced rigidly rotating polar
clouds and covering shells represent sufficient reasoning for a detailed survey of different
possible classes of the toroidal topology not only in the Wald configuration. Note that the
existence of the polar clouds was already mentioned in (Kovář et al., 2014). There, how-
ever, the situation was considered simpler (the background spacetime did not rotate, a = 0),
and the unification of the pressure equations was not introduced; an analytical solution was
obtained by a direct solution of the coupled pressure equations.
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Kovář, J., Slaný, P., Stuchlı́k, Z., Karas, V., Cremaschini, C. and Miller, J. C. (2011), Role of electric
charge in shaping equilibrium configurations of fluid tori encircling black holes, Physical Review
D, 84, p. 084002.
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