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ABSTRACT
The Johannsen-Psaltis spacetime is a perturbation of the Kerr spacetime designed to
avoid pathologies like naked singularities and closed timelike curves. This spacetime
depends not only on the mass and the spin of the compact object, but also on extra
parameters, making the spacetime deviate from Kerr; in this work we consider only
the lowest order physically meaningful extra parameter. We use numerical examples
to show that geodesic motion in this spacetime can exhibit chaotic behavior. We
study the corresponding phase space by using Poincaré sections and rotation num-
bers to show chaotic behavior, and we use Lyapunov exponents to directly estimate
the sensitivity to initial conditions for chaotic orbits.
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1 INTRODUCTION

We study the geodesic motion in a family of spacetimes constructed by (Johannsen and
Psaltis, 2011). The corresponding metric is characterized by an infinite number of param-
eters, i.e. the mass M, the spin a and a series of deviation parameters εk, where k ∈ N0.
However, in this work we constrain ourselves to the lowest order of the unconstrained pa-
rameters, which is ε3.

The Johannsen-Psaltis (JP) metric was designed to be a perturbation of the Kerr space-
time, which is of great astrophysical interest. The so-called no-hair theorem (see, e.g.,
Carter, 1971) states that the class of uncharged black-hole exterior solutions which are ax-
isymmetric and don’t violate causality (i.e. no closed timelike curves) consists of a discrete
set of continuous families, each depending on at least one and at most two independent
parameters. No other externally observable parameters are required for this description.
Typically, the Kerr spacetime is assumed to describe a black hole (Rico, 2013). Kerr black
holes are parametrized by their mass M and their angular momentum a. However, there
is yet to be a proof if black holes are indeed described by the Kerr paradigm. Therefore,
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it would be of great astrophysical interest to test this conjecture by observing black hole
candidates through electromagnetic and gravitational wave signals.

The Kerr spacetime is axisymmetric and stationary, but one special feature of this space-
time is that it has an extra ”hidden” symmetry that makes geodesic motion in such a back-
ground correspond to an integrable system (Carter, 1968). There are spacetimes that devi-
ate from Kerr by a deformation parameter, these spacetimes are called in the bibliography
non-Kerr spacetimes (see, e.g., Bambi, 2017). These non-Kerr spacetimes do not usually
possess the symmetry that the Kerr spacetime does, making geodesic motion correspond to
a non-integrable system. As a result, geodesic motion in such spacetimes exhibits chaotic
behavior, which is the topic of our study.

The organization of the article is as follows: in section 2 we describe the basics of
geodesic motion, deterministic chaos in dynamical systems and some of the properties of
the JP spacetime. In section 3 we use numerical examples to show that the JP metric
doesn’t correspond to an integrable system. Section 4 summarizes our main findings. Note
that geometric units are employed throughout the article, G = c = 1. Greek letters denote
the indices corresponding to spacetime and the metric signature is (−,+,+,+).

2 GEODESIC MOTION AND CHAOS

The line element of a rapidly spinning black hole introduced in (Johannsen and Psaltis,
2011) reads in Boyer-Lindquist-like coordinates

ds2 = gttdt2 + grrdr2 + gθθdθ2 + gφφdφ2 + 2gtφdtdφ , (1)

where the metric components gµν (Johannsen and Psaltis, 2011) are

gtt = − (1 + h)
(
1 −

2Mr
Σ

)
, (2a)

gtφ = −
2aMr sin2 θ

Σ
(1 + h) , (2b)

gφφ =
Λ sin2 θ

Σ
+ ha2

(
1 +

2Mr
Σ

)
sin4 θ , (2c)

grr =
Σ (1 + h)

∆ + a2h sin2 θ
, (2d)

gθθ = Σ , (2e)
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and the metric functions are

Σ = r2 + a2 cos2 θ , (3a)

h =

∞∑
k=0

(
ε2k + ε2k+1

Mr
Σ

) ( M2

Σ

)k

, (3b)

∆ = r2 + a2 − 2Mr , (3c)
ω2 = r2 + a2 , (3d)
Λ = ω4 − a2∆ sin2 θ . (3e)

The function h (r, θ) is what causes the deviation from the Kerr metric. Namely, setting
εk = 0 ∀k ∈ N0 gives the Kerr metric. The parameters (εk)∞k=0 are, however, constrained.
As explained in detail in (Johannsen and Psaltis, 2011), we have to set ε0 = ε1 = 0 and
the parameter ε2 is constrained by observational constraints on weak-field deviations from
general relativity (Johannsen and Psaltis, 2011), i.e. |ε2| ≤ 4.6 · 10−4. We therefore set
ε2 = 0 as well and limit ourselves to the lowest order remaining parameter, which is ε3, and
set all the higher order parameters εk = 0 ∀ k ≥ 4.

The proper time τ defined as dτ2 = −gµνdxµdxν is employed as the evolution parameter.
The geodesic motion of a free particle of rest mass m is then generated by the Lagrangian
(see, e.g., Rindler, 2006)

L (xµ, ẋµ) =
m
2

gµν ẋµ ẋν , (4)

where dot denotes a derivative with respect to the proper time. Due to the preservation
of the four-velocity gµν ẋµ ẋν = −1 along a geodesic orbit L = −m/2 is a constant. The
corresponding canonical momenta are

pµ =
∂L

∂ẋµ
= mgµν ẋν (5)

and performing the Legendre transform gives the Hamiltonian

H =
1

2m
gµνpµpν . (6)

The JP metric functions are independent of the parameters t and φ, i.e. it is stationary
and axisymmetric, therefore the energy E := −pt and and the component of the angular
momentum Lz := pφ are integrals of motion. This allows us to restrict our study to the
meridian plane generated by the polar-like coordinates (r, θ) and move to a simpler system
of two degrees of freedom. Namely, one has to merely replace

ṫ =
−gttE + gtφLz

m
, φ̇ =

−gtφE + gφφLz

m
(7)

in the equations of motion to reduce the system. The motion in the resulting reduced system
is characterized by the Newtonian-like two-dimensional effective potential

(pr)2 +
grr

gθθ
(pθ)2 = −Veff := −grr

1 +
gφφE2 + gttL2

z + 2gtφELz

gttgφφ − g2
tφ

 . (8)
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For pθ = pr = 0 the roots of this effective potential Veff = 0 form a curve in the meridian
plane, which is called the curve of zero velocity (CZV).

In the Kerr case, an extra ”hidden symmetry” exists1, giving rise to the Carter constantK
(Carter, 1968). This constant, along with E, Lz and H , are independent and in involution,
therefore geodesic motion in the Kerr spacetime background corresponds to an integrable
system and trajectories of the reduced system lie on a family of two-dimensional invariant
tori. These orbits oscillate in both degrees of freedom with their respective characteristic
frequencies ωr and ωθ; their ratio ω = ωr/ωθ is called the rotation number and it is useful
for the classification of orbits. If ω is rational, the torus is called resonant and it hosts an
infinite number of periodic orbits. If ω is irrational, the motion is called quasiperiodic and
each orbit on the torus covers it densely.

When a perturbation is applied to such an integrable system, all the resonant tori are de-
stroyed. According to the KAM theorem (Meiss, 1992), however, most of the non-resonant
tori survive in the perturbed system for small perturbations; these are called KAM tori. Ac-
cording to the Poincaré-Birkhoff theorem (Lichtenberg and Lieberman, 1992), where there
was a resonant torus, an even number of periodic trajectories survives in the perturbed sys-
tem, half of them stable and half unstable. We use a Poincaré surface of section to display
the phase space structure of the system. We define a surface in the phase space and plot
the intersections of the orbits with the surface. Invariant tori correspond to circles in the
surface of section. These form the main island of stability around a stable fixed point in the
center.

Near the now destroyed resonant tori, quite a different structure arises. Around the stable
periodic points (corresponding to surviving stable periodic orbits), smaller islands of sta-
bility arise, forming together with the unstable points (corresponding to surviving unstable
periodic orbits) Birkhoff chains. These unstable periodic points lie between the aforemen-
tioned islands of stability. From the unstable points emanate asymptotic manifolds, there
are stable and unstable branches. The branches of the same type cannot cross each other,
which results in very complicated structures in the phase space. These complicated struc-
tures are the driving engines of deterministic chaos.

An effective tool to analyze types of motion on a Poincaré section of a non-integrable
system of two degrees of freedom is the angular moment νϑ, known in the literature as
the rotation number (see, e.g, Voglis and Efthymiopoulos, 1998; Voglis et al., 1999). We
denote the central fixed point of the main island of stability uc and the n-th crossing of the
surface of section by the orbit un. We define rotation angles

ϑn := ang [un+1 − uc, un − uc] (9)

and the angular moment as

νϑ = lim
N→∞

1
2πN

N∑
n=1

ϑn . (10)

The dependence of this angular moment on the distance of the initial condition from the
central fixed point is called the rotation curve. In an integrable system, such as the Kerr

1 For more details on this symmetry see (Markakis, 2014) and references therein.
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Figure 1. Left panel: projections of orbits on the meridian plane - the period-1 orbit (red), the 5/7
periodic orbit (blue), the event horizon (green), the CZV (black). Right panel: The main island of
stability on the Poincaré section θ = π

2 .

spacetime, the rotation curve is strictly monotonous, but in a non-integrable system, it has
non-monotonic variations when passing through chaotic zones, and plateaus when passing
through islands of stability.

In order to quantify sensitivity to initial conditions, which is a property of chaotic sys-
tems by definition (Devaney, 1989), it is useful to define the deviation vector as a point
of the tangent bundle of the phase space and interpret it as connecting two infinitesimally
close trajectories. This vector evolves through the geodesic deviation equation

ξ̈µ +
∂Γµκλ

∂xν
ẋκ ẋλξν + 2Γµκλ ẋκξ̇λ = 0 . (11)

As a measure of the deviation vector in a curved spacetime (see, e.g., Lukes-Gerakopoulos,
2014) we use

Ξ2 := gµνξµξν . (12)

Typically, the deviation vector follows one of two behaviors - a linear one for regular tra-
jectories and an exponential one for chaotic trajectories. These behaviors can be detected
by the maximal Lyapunov characteristic exponent

mLCE := lim
τ→∞

1
τ

log
[
Ξ (τ)
Ξ (0)

]
, (13)

which gives the inverse of a characteristic deviation time scale for chaotic trajectories. In
the case of regular trajectories, it behaves as ∼ τ−1 for large τ, so in a plot in logarithmic
scale it appears as a line of slope -1.
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Figure 2. Top panel: Detail of the left tip of the main island of stability. Bottom panel: The rotation
curve plotted for the pr = 0 line of the top panel. The resonance plateaus along the curve are denoted
by the respective fractions.

3 NUMERICAL EXAMPLES

All figures shown are plotted using the parameter values M = m = 1, a = 0.5, ε3 = 0.3,
E = 0.95, Lz = 2.85. In the left panel of Fig. 1 are shown projections of two periodic
orbits on the meridian plane are shown, bounded by the CZV. In the right panel, the main
island of stability in the Poincaré section is shown. The equatorial plane θ = π/2 with
θ̇ > 0 is taken as the surface of section. We notice no difference from an integrable system,
as the chaotic behavior is not prominent at this broad scale depiction. This difference
becomes, however, clearly visible in top panel of Fig. 2, which focuses on the left tip
of the main island of stability shown in the right panel of Fig. 1. In particular, in the
top panel of Fig. 2, alongside with KAM curves, appear islands of stability belonging
to Birkhoff chains (ellipsoid-like structures) and chaotic zones (scattered points). Under
the panel containing this detail of the surface of section, the corresponding rotation curve
is plotted. The rotation curve exhibits non-monotonic variations in a chaotic zone and
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Figure 3. Convergence of mLCE for a regular orbit (left panel) with a chaotic orbit (right panel).
Both orbits starting with pr = 0 on the surface of section shown in Fig. 2, the regular from r = 3.226
and the chaotic from r = 3.2294.

plateaus (denoted by the corresponding fraction) along islands of stability. Thus, Fig. 2
indicates that the JP spacetime corresponds to a non-integrable system.

To directly estimate the sensitivity to initial conditions, we have calculated the mLCE.
Fig. 3 shows the convergence of the mLCE for one regular (left panel) and one chaotic
orbit (right panel). For the regular orbit indeed the mLCE convergence follows the -1
slope, while for the chaotic orbit the mLCE converges to a positive value.

4 CONCLUSION

We have shown by numerical examples that geodesic motion in the JP spacetime back-
ground corresponds to a non-integrable system, since chaos was detected. The astrophys-
ical implication is that if the spacetime around black holes is not described by the Kerr
metric, then one should expect imprints of chaos in electromagnetic and gravitational wave
signals coming from systems like extreme mass ratio inspirals.
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