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ABSTRACT
We consider electrostatic effect on the fluid distribution of compact star. We modify
the energy-momentum tensor including the electric field and current density terms
and get a set of hydrostatic equilibrium equations which are an extended version of
Tolman-Openheimer-Volkoff (TOV) equations. We expect that solutions of set of
hydrostatic equations will lead to a mass-radius relation of the compact star config-
uration.
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1 INTRODUCTION

Compact stellar objects such as neutron stars are the laboratories for study the physics in
extreme conditions, being the crossroad of various disciplines of the contemporary physics.
In the recent years, using the multi-wavelength and multi-messenger observations of neu-
tron stars a large amount of data has been collected, stimulating an interest in testing var-
ious theories and theoretical models. The direct detection of gravitational waves in the
event GW170817, from a binary neutron star merger (Abbott et al., 2017) opened up a new
avenue in the investigation of these remarkable objects, on the other hand, restricting the
applicability of some of the theories (see, e.g. Radice et al., 2018).

Neutron stars are compact stars with tremendously high densities, in which most of
protons and electrons fuse together producing neutrons. However, closer to the surface of
the neutron star, where the densities are expected to be less than in the center, some portion
of charged particles, like protons and electrons may survive under certain conditions, so
the local charge neutrality cannot be imposed (Rotondo et al., 2011). In this contribution
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we focus on the possibility of the neutron star to have non-negligible electric charge and
corresponding electric field, which eventually modifies the conditions for the relativistic
hydrostatic equilibrium.

The net charge contribution in case of the neutron stars is often neglected in the literature,
justified by lack of astrophysical mechanisms for charging of this object to such values, for
which the energy-momentum tensor of electromagnetic field would become comparable
with those of the gravitational field of the neutron star. This problem is quite similar to
the fact that the Reissner-Nordström spacetime metric for compact objects like black holes
is not often used in realistic models. Neglecting the charge also simplifies the equations
governing the hydrostatic equilibrium of neutron stars known as the Tolman-Oppenheimer-
Volkoff (TOV) equation. However, in addition to the purely conceptual interest in studying
charged compact star configurations, one can point out at least two realistic mechanisms of
charging of compact stars, which we briefly summarize below.

The first mechanism is based on Arthur Eddington’s idea formulated in Eddington (1926).
Difference of masses of protons and electrons by a factor of almost 2 × 103 leads to the
charge separation in the stellar atmosphere. Therefore, stars should possess a small and
positive electric charge to prevent protons and electrons from further separation. Eddington
estimated the charge of a star of the order of 100 C per solar mass. Later in 1978, Edding-
ton’s idea was generalized by Bally and Harrison (1978), concluding that any macroscopic
cosmic body, including galaxies, stars and also the neutron stars bear a positive electric
charge of the order of 100 C per solar mass. In this case, the positive charges of cosmic
objects are compensated by negatively charged particles, i.e. electrons distributed in the in-
tergalactic and interstellar media. Indeed, for ordinary stars, the density of charge obtained
in this mechanism is negligibly small due to large stellar surface. However, due to compact-
ness of neutron stars, having relatively small surface area, the charge density corresponding
even to 100 C per solar mass might have some non-negligible impact. Moreover, similar
charging mechanism has been recently applied also to black holes (see, e.g. Zajaček et al.,
2018; Zajacek and Tursunov, 2019). It has been shown that the charge in case of black
hole is not only measurable, but has quite important astrophysical consequences related to
the acceleration of cosmic rays (Tursunov et al., 2020a; Tursunov and Dadhich, 2019) and
interpretation of observational data of black holes (Tursunov et al., 2020b).

In addition to the above mentioned mechanism, the presence of the charge in neutron
stars can be justified by using relativistic approach. Neutron stars are strongly magne-
tized with the strength of magnetic fields reaching up to 1018 G. If the highly magnetized
neutron star is rotating (which is often the case, as observed e.g. in pulsars), this causes
the induction of non-zero electric charge density, known as the Goldreich-Julian charge
density, given by the relation

ρGJ =
1

2πc
ΩB, (1)

where Ω is the angular velocity of the star (Goldreich and Julian, 1969). The relativistic
rotation of a neutron star in the presence of strong and highly ordered magnetic field aligned
with the rotation axis induces an electric field as in the case of the classical Faraday’s
unipolar dynamo, which causes charge separation in the neutron star matter leading to
subsequent electric charge density given by Eq. (1).
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At a high density of matter of a neutron star, the kinetic energy of electrons may become
very high, so that it allows them to escape from the surface of the neutron star. The limit on
this charge, thus, should be given by the electro-hydro-static equilibrium equations. There-
fore, in both Newtonian and relativistic approaches neutron stars bear non-zero electric
charge, motivating us to seek for corresponding modifications of the TOV equations.

The modifications of TOV equations by the presence of an electric charge of the neutron
star have been previously studied by several authors. We briefly introduce some of these
works. Bekenstein (1971) have shown that the metric corresponding to the spherical dis-
tribution of charged perfect fluid matches with the standard exterior Reissner-Nordström
spacetime metric. Malheiro et al. (2004); Ray et al. (2006) found that strongly charged
neutron star configurations (charge tending to its maximal limit) is possible, although such
configuration is likely leads to the collapse of the star and subsequent formation of charged
black hole. Bhatia et al. (1969) estimated the electric field on the surface of the star by the
value of around ∼ 120 V/cm by solving the hydrostatic equilibrium equations including
electrostatic interaction. Lemos et al. (2015) solved electrically modified TOV equation
with an assumption of proportionality of the charge to the energy density distributions. Our
approach somewhat follows the work of Lemos et al. (2015) with the difference that we
include an additional interaction term in the stress-energy tensor expressed in terms of the
four-current density and electromagnetic four-potential. When we neglect the additional
term, resulting modified TOV equations match with those obtained by Lemos et al. (2015).

2 RELATIVISTIC BACKGROUND

The metric of the static spherically symmetric star can be written in the following general
form

ds2 = − f (r)c2dt2 + l(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (2)

Here, f (r) and l(r) are the function of a radial coordinate only, due to the spherical symme-
try of the central object. The hydrostatic equation that we derive should be in accordance
with the Einstein-Maxwell equations, which read

Gµν =
8πG
c4 Tµν, ∇νFµν =

4π
c

jµ, (3)

where Gµν = Rµν −
1
2 gµνR is the Einstein tensor and Fµν = ∂µAν − ∂νAµ is the Faraday-

Maxwell tensor written in the terms of the electromagnetic potential Aµ. Here jµ = ρcuµ

is the four-current of an electromagnetic field, where ρc is the charge density and uµ is
the four-velocity normalized by the condition uµuµ = −c2, which we can write as uµ =

(c
√
−gtt, 0, 0, 0) in the static case. Note, that we use physical units throughout the paper.

We assume a static neutron star configuration with non-vanishing net charge density of
the star, so that the four-current can be written as

jµ =
(
cρc

√
−gtt, 0, 0, 0

)
. (4)
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2.1 Energy-momentum tensor

The total energy-momentum tensor can be represented as the sum of two terms

Tµν = T M
µν + T EM

µν , (5)

where T M
µν corresponds to the energy-momentum tensor of a matter and T EM

µν is an elec-
tromagnetic energy-momentum tensor. In the present paper we consider a matter to be
a perfect fluid with the total mass density ρ, pressure P, and four-velocity uµ. Then the
matter energy-momentum tensor T M

µν takes the form

T M
µν =

(
ρ + P/c2

)
uµuν + Pgµν. (6)

The energy-momentum tensor responsible for the electromagnetic part can be found by
variation of the action

S =
1
c

∫
LEM

√
−gd4x, (7)

with respect to the metric, where the Lagrangian is given by

LEM =
1

16π
FµνFµν + Aµ jµ. (8)

Here the first term of Eq. (8) is the pure contribution due to the electromagnetic field and the
second term is responsible for the interaction of charged particles with an electromagnetic
field. For the interaction term of the Lagrangian, one can find the corresponding energy-
momentum tensor by using the Noether’s theorem (Noether, 1971). It basically states that
for each differentiable symmetry of the action of a physical system associates a conserva-
tion law. Generalization of the Noether’s theorem to non-local field theories was studied
in Krivoruchenko and Tursunov (2019). For the first term, describing the field, the energy-
momentum tensor is calculated in a standard manner by variation of the action Eq. (7) with
respect to gµν and putting on the boundaries δgµν = 0, which gives

1
2
√
−gTµν =

∂
√
−gL

∂gµν
−

∂

∂xλ
∂
√
−gL

∂gµν,λ
. (9)

Thus, one can write the total energy-momentum tensor for electromagnetic field with the
interaction in the following form

T EM
µν =

1
4π

(
F .γ
µ Fνγ −

1
4

gµνFγβFγβ

)
+ Aµ jν. (10)

One should note, that the symmetric property of the energy-momentum tensor requires that
in the last term of Eq. (10) both Aµ and jν correspond to the same source.

Due to the spherical symmetry of the star, only nonzero component of an electric field
should be Er which implies that the nonzero components of a tensor of electromagnetic
field are F tr = −Frt. Thus, the non vanishing components of the total energy-momentum
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tensor Eq. (5) take the form

Ttt = ρc2 f (r) +
1

8π
l−1(r)F2

rt + At(r) jt(r), (11)

Trr = Pl(r) −
1

8π
f −1(r)F2

rt, (12)

Tθθ = r2
(
P +

1
8π

f −1(r)l−1(r)F2
rt

)
, (13)

Tφφ = r2
(
P +

1
8π

f −1(r)l−1(r)F2
rt

)
sin2 θ. (14)

Now, let us rewrite the Maxwell equation given in Eq. (3) as

∂ν
(√
−gFµν

)
=

4π
c

jµ
√
−g . (15)

Here g is the determinant of metric tensor gµν. If we solve the Maxwell equation then we
get

∂r

( √
l(r) f (r)r2F tr

)
= 4πρcr2

√
l(r),

⇒ F tr =
Q(r)

r2
√

l(r) f (r)
. (16)

The above equation can be rewritten as,

dAt(r)
dr

=
Q(r)
r2

√
f (r)l(r) , (17)

where

dQ(r)
dr

= 4πr2ρc
√

l(r) . (18)

3 HYDROSTATIC EQUATIONS

Let us assume the function l(r) in the spacetime metric satisfies the following relation

1
l(r)

= 1 −
2Gm(r)

c2r
+

GQ2(r)
c4r2 , (19)

which coincides with the external Reissner-Nordström metric.
Now we try to find the differential equation concerning mass of the stellar object consid-

ering F tr from Eq. (16). Einstein equation for Gtt = (8πG/c4)Ttt is given by

f (r)
(
rl′(r) + l2(r) − l(r)

)
r2l2(r)

=
8πG
c4 f (r)ρ(r)c2 +

G f (r)Q2(r)
c4r4 +

8πG
c4 At(r) jt(r) . (20)
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Using the form of metric as per expression Eq. (19) we get,

dm
dr

= 4πr2ρ(r) +
Q(r)
c2r

dQ(r)
dr

+
4πr2At(r) jt(r)

c2 f (r)
. (21)

Taking the solution of Maxwell equation, F tr from Eq. (16), we write Einstein equation for
Grr = (8πG/c4)Trr as

r f ′(r) − f (r)l(r) + f (r)
r2 f (r)

=
8πG
c4 l(r)P(r) −

Gl(r)Q2(r)
c4r4 . (22)

By manipulating above equation we get,

d f (r)
dr

=
8πG
c4 r f (r)l(r)P(r) −

f (r)
r

+
f (r)l(r)

r
−

G f (r)l(r)Q2(r)
c4r3 . (23)

Now we are interested to see the radial dependence of pressure inside the star. For this
we introduce the energy-momentum conservation equation as

∇µT µν = 0 . (24)

For ν = 1 we get,

dP(r)
dr

= −

(
ρ(r)c2 + P(r)

)
f ′(r)

2 f (r)
+

Q(r)
4πr4

dQ(r)
dr

−
At(r) jt(r) f ′(r)

2 f 2(r)
. (25)

Eqs. (17), (18), (21), (23), and (25) are the set of five governing equations which we have
to solve simultaneously in order to obtain mass-radius relation.

3.1 Set of equations to be solved

Using Eq. (19) we can simplify Eq. (23) as follows

d f (r)
dr

=
f (r)

(
8πGrP(r)

c4 +
2Gm(r)

c2r2 −
2GQ2(r)

c4r3

)
(
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

) . (26)

From Eq. (4) we can write

jt = cρc(r)gtt
√
−gtt = −cρc(r)

√
f (r) , (27)

and substituting Eqs. (18), (26) and (27) into the pressure equation Eq. (25) we get

dP(r)
dr

= −

(
ρ(r)c2 + P(r)

) (
4πGrP(r)

c4 +
Gm(r)
c2r2 −

GQ2(r)
c4r3

)
(
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

)
+ ρc

Q(r)/r2√
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

+
cρcAt(r)

(
4πGrP(r)

c4 +
Gm(r)
c2r2 −

GQ2(r)
2c4r3

)
√

f (r)
. (28)
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Below we summarize a set of equations which we have to solve in order to describe the
configuration

dAt(r)
dr

=
Q(r)
r2 , (29)

dQ(r)
dr

=
4πr2ρc√

1 − 2Gm(r)
c2r +

GQ2(r)
c4r2

, (30)

dm
dr

=4πr2ρ(r) +
4πrρcQ(r)

c2
√

1 − 2Gm(r)
c2r +

GQ2(r)
c4r2

−
4πr2ρcAt(r)

c
√

f (r)
, (31)

d f (r)
dr

=
f (r)

(
8πGrP(r)

c4 +
2Gm(r)

c2r2 −
2GQ2(r)

c4r3

)
(
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

) , (32)

dP(r)
dr

= −

(
ρ(r)c2 + P(r)

) (
4πGrP(r)

c4 +
Gm(r)
c2r2 −

GQ2(r)
c4r3

)
(
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

)
+ ρc

Q(r)/r2√
1 − 2Gm(r)

c2r +
GQ2(r)

c4r2

+
cρcAt(r)

(
4πGrP(r)

c4 +
Gm(r)
c2r2 −

GQ2(r)
2c4r3

)
√

f (r)
. (33)

3.2 Density profile of mass and charge

We have five differential equations to be solved to find At(r), Q(r), m(r), f (r), P(r), ρ(r)
and ρc(r). So we have to get rid of two unknowns to close the system. At first we calculate
for constant density inside distribution i.e.

ρ(r) = constant . (34)

We assume

ρc(r) = βρ(r) , (35)

where β is a dimensionless parameter describing the charge fraction in the distribution.
As now we know ρ(r) and ρc(r) from Eqs. (34) and (35), we finally have five equations

for five unknowns. Therefore the system is closed.

3.3 Initial and boundary conditions

At the center of the star we can consider that m(0) = 0, Q(0) = 0, At(0) = 0 and l(0) = 1.
We also consider that P(0) = P0, ρ(0) = ρ0 and ρc(0) = ρc0 where Pc is the central pressure,
ρ0 is the central mass density and ρc0 is the central charge density.

äy ää äy åå ? o n 6



36 S. Hensh et al.

We have to consider the pressure of the distribution vanish at the surface i.e. P(R) = 0,
where R is the radius of the star. Apart from that it must be taken into account that the
electric field at infinity is zero, i.e. r → ∞, At → 0 and the spacetime is asymptotically flat
which means r → ∞, f → 1.

Following these initial and boundary conditions if we solve system of equations numer-
ically then we can find mass-radius relation and maximum mass that can be supported by
this configuration. We leave the numerical calculations for further studies.

4 SUMMARY

We revisited the problem of charged neutron star which might be realistic and astrophysi-
cally relevant. We have derived modified TOV Eqs. (29) - (33), governing quantities of our
interest. These equations together with Eqs. (34) and (35) can be simultaneously solved
numerically, which we will complete in the future work, where we also plan to use realistic
equations of state.
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