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ABSTRACT
We demonstrate that the thermodynamics of a perfect fluid describing baryonic mat-
ter can, in certain limits, lead to an equation of state similar to that of dark energy.
We keep the cosmic fluid equation of state quite general by just demanding that
the speed of sound is positive and less than the speed of light. In this framework,
we discuss some propositions by looking at the asymptotic behaviour of the cosmic
fluid.
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1 INTRODUCTION

In this work we attempt to tackle the issue of dark energy (see, e.g., Peebles and Ratra,
2003) by considering just usual baryonic matter in an ever-expanding Universe. We try to
keep the investigation’s assumptions as general as possible. Thus, we do not specify the
equation of state (EOS) and we avoid to limit the study to a specific spacetime. In this
framework the baryonic matter is described by an irrotational relativistic perfect fluid. For
our analysis we follow a perfect fluid formalism introduced by Lichnerowicz (1967) and
Carter (1979), which in recent works was employed mainly for neutron stars (see, e.g.,
Gourgoulhon, 2006; Markakis et al., 2017).

In particular, we consider a perfect fluid in an equilibrium configuration with proper
energy density ε. The state of the fluid depends on two parameters, which can be taken
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to be the rest-mass density ρ and specific entropy (entropy per unit rest-mass) s. Then the
EOS of the fluid is given by a function

ε = ε (ρ, s) . (1)

From Eq. (1) one can derive the first law of thermodynamics:

dε = µ
dρ
mb

+ Td(sρ) , (2)

where mb denotes the rest mass of a baryon and µ is the baryon chemical potential. The
pressure p and specific enthalpy h are functions of ρ and s entirely determined by Eq. (1):

p = −ε + ρT s +
µ

mb
ρ , (3)

h :=
ε + p
ρ

=
µ

mb
+ T s . (4)

Note that Eq. (3) can be obtained by the extensivity property of the energy density, while
the second equality of Eq. (4) comes from Eq. (3). Now Eqs. (2) and (4) yield the thermo-
dynamic relations

dε = h dρ + ρT ds , (5)
dp = ρ dh − ρT ds . (6)

Moreover, writing h = h(ρ, s) and differentiating yields

dh =
hc2

s

ρ
dρ +

∂h
∂s

∣∣∣∣∣
ρ
ds , (7)

where

c2
s =

∂p
∂ε

∣∣∣∣∣
s

=
ρ

h
∂h
∂ρ

∣∣∣∣∣
s

(8)

is the speed of sound. In order to ensure causal evolution, given the upper bound for signal
propagation set by the speed of light, physically admissible fluids should have

0 . s2
m ≤ c2

s ≤ 1, (9)

where s2
m is an arbitrarily close to zero cut-off value for the speed of sound.

A simple perfect fluid is characterized by the energy-momentum tensor

Tαβ = h ρ uαuβ + p gαβ = (ε + p) uαuβ + p gαβ , (10)

where gαβ is the spacetime metric and uµ is the timelike vector tangent to the fluid’s flow,
satisfying the normalization condition uαuα = −1. Such energy-momentum tensor is the
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source in Einstein’s field equations (EFE) Gα
β = Tαβ , which are assumed to hold through-

out this work. By taking the covariant divergence of EFE, the doubly contracted Bianchi
identities ∇βGα

β ≡ 0 assure the covariant conservation of energy-momentum

∇βTαβ = 0 , (11)

which is the relativistic version of Euler equation. Using Eq. (6) with variation evaluated
along the flow lines (d → uα∇α) and thanks to the normalization of the timelike vector uα,
eq.(11) takes the form

∇αTα
β = pβ∇α (ρuα) + ρ

[
uαΩαβ − T∇βs

]
= 0 , (12)

where pα = huα is the canonical momentum of a fluid element, and its exterior derivative
Ωαβ := ∇αpβ − ∇βpα is the canonical vorticity 2-form. If we assume the rest-mass (or
baryon) conservation

∇α (ρuα) = 0 , (13)

Eq. (12) yields the relativistic Euler equation in the canonical form:

uαΩαβ = T∇βs . (14)

Contraction of eq. (14) with the four-velocity uβ makes the left-hand side vanish identi-
cally.1 Hence the specific entropy is constant along the flow lines:

uα∇αs = 0 . (15)

This reflects the fact that the Euler equation describes adiabatic flows, i.e. there are no heat
fluxes in the fluid nor particle production. The adiabatic character of the fluid as expressed
by Eq. (15) is a consequence of assuming rest-mass conservation Eq. (13).

2 THERMODYNAMICAL RELATIONS FOR AN IRROTATIONAL FLUID

The condition for irrotational fluid flow is Ωαβ = 0, and implies through Eq. (14) that the
specific entropy is constant, i.e. ds = 0. The fundamental relations Eqs. (5)-(7) reduce to

dh =
h c2

s

ρ
dρ , (16)

dε = h dρ , (17)
dp = ρ dh . (18)

1 This is because the left-hand side, after contraction with uβ, ends up being a product of the symmetric term
uαuβ with the antisymmetric 2-form Ωαβ.
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Using the limits set by Eq. (9) and making the reasonable assumption that the rest-mass
density is a positive quantity, since we consider fluid composed only of baryonic matter,
we arrive through Eq. (16) to

∫ ρ

ρ1

s2
mdρ′

ρ′
≤

∫ ρ

ρ1

c2
sdρ′

ρ′
≤

∫ ρ

ρ1

dρ′

ρ′
⇒

(
ρ

ρ1

)s2
m

≤
h
h1
≤
ρ

ρ1
, (19)

where index “1” refers to the integration constants of the specific fluid with equation of state
described by the speed of sound c2

s , not by the lower bound and upper bounds of Eq. (9).

Note that we have assumed that dρ > 0. Eq. (19) implies
(
ρ

ρ1

)s2
m−1

≤ 1 , which gives that

ρ1 ≤ ρ, since s2
m < 1, i.e. the integration constant ρ1 corresponds to the minimum of the

allowed values for the rest-mass density of the fluid. Moreover, inequality (19) implies
that h/h1 > 0. At this point we do not make any assumption about the sign of the specific
enthalpy.

Because of Eq. (17), Eq. (19) results in

1

ρs2
m

1

∫ ρ

ρ1

ρ′s
2
m dρ′ ≤

1
h1

∫ ρ

ρ1

hdρ′ ≤
1
ρ1

∫ ρ

ρ1

ρ′dρ′

⇒
ρ1

1 + s2
m

( ρρ1

)s2
m+1

− 1

 ≤ ε − ε1

h1
≤
ρ1

2

( ρρ1

)2

− 1

 , (20)

where
∫ ρ

ρ1

hdρ′ =

∫ ε

ε1

dε′ was employed.

From Eqs. (16) and (18) we get

dp = c2
shdρ . (21)

Taking into account Eq. (21), from Eq. (19) and Eq. (9) we have

s2
m

ρs2
m

1

∫ ρ

ρ1

ρ′s
2
m dρ′ ≤

1
h1

∫ ρ

ρ1

c2
shdρ′ ≤

1
ρ1

∫ ρ

ρ1

ρ′dρ′

⇒
s2

mρ1

1 + s2
m

( ρρ1

)s2
m+1

− 1

 ≤ p − p1

h1
≤
ρ1

2

( ρρ1

)2

− 1

 , (22)

where
∫ ρ

ρ1

c2
shdρ′ =

∫ p

p1

dp′ was employed. Since ρ ≥ ρ1, inequality (22) gives that

(p− p1)/h1 ≥ 0, while inequality (20) gives that (ε−ε1)/h1 ≥ 0. For ρ = ρ1, Eqs. (19), (20),
(22) reduce to h = h1, ε = ε1, p = p1 respectively, which is trivial but self-consistent.
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2.0.1 Assuming constant speed of sound

Assuming c2
s is independent of specific enthalpy, i.e. constant, then by following similar

steps as for arriving to the inequalities (19), (20), (22), we get

ε − ε1 =
1

1 + c2
s
ρ1 h1

( ρρ1

)1+c2
s

− 1

 , (23)

p − p1 =
c2

s

1 + c2
s
ρ1 h1

( ρρ1

)1+c2
s

− 1

 , (24)

which leads to

p = c2
s (ε − ε1) + p1 . (25)

Note that if one changes the equation of the state of the fluid, i.e. c2
s , the integration con-

stants denoted with “1” change as well.

3 ASYMPTOTIC BEHAVIORS

3.1 Rest-mass density

The rest mass conservation (13) can be rewritten as:

ρ̇ + ρ θ = 0 , (26)

where θ = ∇αuα is the expansion scalar of the congruence uα, ˙ = uα∇α denotes the
derivative with respect to a relevant time parameter t along the congruence uα. Integrat-
ing Eq. (26) along the time parameter t leads to

ρ = ρ0 e−
∫ t

t0
θ(t′) dt′

, (27)

with initial condition ρ(t0) = ρ0.

Proposition 1. For a perfect fluid moving along an expanding congruence with conserved
positive rest-mass, the rest-mass density vanishes asymptotically, ρ → 0+, in the limit
t → ∞.

Proof. Since we have an expanding congruence, there exists a k > 0, such that θ ≥ k.
Eq. (27) then leads to

ρ = ρ0 e−
∫ t

t0
θ(t′) dt′

≤ ρ0 e−
∫ t

t0
k dt′

= ρ0 e−k(t−t0) → 0 for t → ∞ . (28)

Since ρ > 0, one has ρ → 0+ for t → ∞, i.e. the rest mass density asymptotically
vanishes. �
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Proposition 1 and the fact that ρ1 ≤ ρ suggests that ρ1 must be an infinitesimally
small positive quantity, i.e. ρ1 ≡ 0+. Moreover, Proposition 1 implies that for t → ∞
Eqs. (23), (24) derived for a fluid with constant non-zero speed of sound lead to

ε − ε1 ' −
1

1 + c2
s
ρ1 h1 , (29)

p − p1 ' −
c2

s

1 + c2
s
ρ1 h1 . (30)

To show an interesting implication of these relations, let us fix the constants of integration
by considering the vanishing pressure limit, p1 = 0. In this limit, one typically imposes
that the specific enthalpy is equal to unity. Then, the relation ε + p = ρh, for p = p1 = 0
and h = h1 = 1, implies

ε1 = ρ1 . (31)

With these constraints on the constants, we obtain the following expressions for
Eqs. (29), (30):

p ' −
ε1 c2

s

1 + c2
s
, (32)

ε '
ε1 c2

s

1 + c2
s
. (33)

It is immediately evident that Eq. (33) represents a constant positive contribution to the
energy density for any c2

s > 0, if ε1 = ρ1 > 0. In a cosmological context such term behaves
like a cosmological constant, since p = −ε. This has been already noticed for the case of
the stiff fluid (cs = 1) by Christodoulou (1995).

Applying proposition 1 on the inequalities (20), (22) and using the (31) choice for fixing
the constants, we arrive at:

−
ε1s2

m

1 + s2
m
. p . −

ε1

2
, (34)

ε1s2
m

1 + s2
m
. ε .

ε1

2
. (35)

Eq. (35) still implies a constant positive contribution to the energy density for t → ∞, but
Eq. (34) is only possible if ε1 = 0, since s2

m � 1. Thus, we are led to ε1 = 0, which means
that Eqs. (34), (35) respectively lead to p ' ε ' 0. Moreover, since the above inequalities
include the constant speed case as a subcase, then ε1 = 0 for Eqs. (32), (33), so they do
not imply the existence of a cosmological constant. On the other hand, this result might be
suggesting that the choice (31) we have made to fix the constants is not the proper one.
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In fact if we do not fix the constants, according to Proposition 1 the inequalities (19),
(20), (22) reduce to

h
h1
' 0, (36)

−
ρ1

1 + s2
m
.
ε − ε1

h1
. −

ρ1

2
, (37)

−
s2

mρ1

1 + s2
m
.

p − p1

h1
. −

ρ1

2
. (38)

Again because of s2
m � 1, Eq. (38) can hold only if ρ1 is exactly zero. Note that even if s2

m
was equal to zero ρ1 had to be zero as well. By not allowing the rest mass energy density
to acquire the zero value, we have arrived to a contradiction. If one would allow it, then
it would not be possible to derive the inequalities in Sec. 2. To resolve this contradiction,
one might claim that the relations derived in Sec. 2 hold only for finite time intervals, i.e.
they do not hold for t → ∞. To discuss the asymptotic behaviors, we need propositions
like Proposition 1.

3.2 Enthalpy

Evaluating the thermodynamic relation Eq. (7) along the flow lines, and implementing
Eq. (15), yields the relation

uα∇αh =
hc2

s

ρ
uα∇αρ , (39)

which can be used to rewrite the rest-mass conservation equation (13) as

0 =∇α (ρuα) (40)
=
ρ

hc2
s

(
uα∇αh + hc2

s∇αuα
)
. (41)

The continuity equation for the rest-mass density as expressed by Eq. (41) is

ḣ = −c2
s θ h , (42)

For generic time-dependent speed of sound and expansion scalar, one then has

h = h0 e−
∫ t

t0
c2

s (t′) θ(t′) dt′
, (43)

with initial condition h(t0) = h0.

3.2.1 Strong Energy Condition

Proposition 2. Consider a perfect fluid moving along an expanding and isotropic congru-
ence, with conserved rest-mass and satisfying the Strong Energy Condition (SEC); then if
the speed of sound is a function of time defined in the interval (0, 1], in the limit t → ∞ one
necessarily has ε → 0 and p→ 0.

äy ää äy åå ? o n 6



182 G. Lukes-Gerakopoulos, G. Acquaviva, C. Markakis

Proof. The equation of rest-mass conservation can be rewritten in the form Eq. (42),
whose general solution is given by eq.(43). We would like to evaluate the behavior of
h in the limit when t → ∞ by obtaining an upper and a lower bound.

Lower bound. First of all c2
s(t) ∈ (0, 1], so we can write

h = h0 e−
∫ t

t0
c2

s (t′) θ(t′) dt′
≥ h0 e−

∫ t
t0
θ(t′) dt′

. (44)

Secondly, the Raychaudhuri equation for an isotropic timelike congruence uα reads

θ̇ = −

(
1
3
θ2 + Rαβuαuβ

)
. (45)

Because of the SEC, the last term is positive. Hence we get the inequality

θ̇ ≤ −
1
3
θ2 . (46)

Integration of such inequality gives

θ ≤
3 θ0

3 + θ0 t
, (47)

with θ0 = θ(t0). Applying such bound to the rightmost term of Eq. (44) gives

h ≥ h0 e−
∫ t

t0
θ(t′) dt′

≥ h0 e−
∫ t

t0

3 θ0
3+θ0 t′ dt′ (48)

= h0

(
3 + θ0t0
3 + θ0t

)3

→ 0 for t → ∞ .

Hence h ≥ 0 for t → ∞.
Upper bound. By assumption, the product c2

s(t)θ(t) is strictly positive: hence there exists
a constant k > 0 such that c2

s(t)θ(t) ≥ k > 0 for any finite time. The function h can then be
bounded from above in the following way:

h = h0 e−
∫ t

t0
c2

s (t′) θ(t′) dt′
≤ h0 e−

∫ t
t0

k dt′

= h0 e−k(t−t0) → 0 for t → ∞ . (49)

Hence h ≤ 0 for t → ∞.
Putting together the results of both bounds, we find that h = 0 in the limit t → ∞.

At the same time ρ → 0 in the same limit, because of Proposition 1. Thus, one has that
h ≡ ε+p

ρ
→ 0 implies that p + ε → 0.

Lastly, the SEC requires p + 1
3 ε ≥ 0: the only case in which the condition p + ε → 0 is

consistent with this bound is when both ε → 0 and p→ 0 (left panel of Fig. 1). �

Note that Proposition 1 by itself could not lead to p + ε → 0, since the asymptotic
bounded value of the specific enthalpy was not guaranteed.

Proposition 2 is a general statement about the impossibility for a “well defined” isotropic
perfect fluid satisfying the SEC to have a non-trivial pressure asymptotically. Hence, in the
following propositions we drop SEC and specialize to a spatially flat Friedmann-Robertson-
Walker (FRW) spacetime.
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Figure 1. Left panel: The plane of allowed EoS assuming SEC, Proposition 2. Right Panel: The
plane of allowed EoS assuming bounded rate of congruence expansion, Proposition 3. In both panels
we assume that the energy density is ε ≥ 0.

3.2.2 Bounded Rate of Expansion

Proposition 3. Consider a perfect fluid moving along an expanding congruence in a flat
FRW spacetime, with conserved rest-mass and a rate of expansion bounded by Ξ; then if
the speed of sound is a function of time defined in the interval (0, 1], in the limit t → ∞ one
has ε + p→ 0, without necessarily ε → 0 and p→ 0, and 0 . Ξ.

Proof. The upper bound stays the same as in Proposition 2, so h ≤ 0 for t → ∞. Lower
bound. A positive, but bounded rate of congruence expansion means that θ̇ ≤ Ξ, thus
θ(t) ≤ Ξ(t − t0) + θ0. Then, Eq. (44) gives

h ≥ h0 e−
∫ t

t0
θ(t′) dt′

≥ h0 e−
∫ t

t0
Ξ(t−t0)+θ0dt′

= h0 e−(Ξ(t−t0)2/2+θ0(t−t0)) → 0 for t → ∞ . (50)

Putting together the results of both bounds, we find that h = 0 in the limit t → ∞. Thus,
again one has that p + ε → 0.

However, from the isotropic Raychaudhuri Eq. (45) we have:

−

(
1
3
θ2 + Rαβuαuβ

)
≤ Ξ⇒ −

3
2

(ε + p) ≤ Ξ , (51)

where we used Friedmann equation θ2 = 3ε. Thus, in this case the solution ε → 0, p → 0
is not the only allowed to have ε + p→ 0 (right panel of Fig. 1). Actually, p→ −ε implies
that 0 . Ξ. �
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Note that proposition 3 allows an exponential growth for FRW

3
ȧ
a

= θ = Ξ(t − t0) + θ0 ⇒ a ≤ a0e(Ξ(t−t0)2/2+θ0(t−t0))/3

even if Ξ = 0. Thus, to have exponential growth the minimal requirement is that θ̇ ≤ 0.

4 SUMMARY

Starting from a general thermodynamical treatment of usual matter, in the form of an ir-
rotational perfect fluid, our investigation indicates that a constant speed of sound for usual
matter is not a viable way to provide a cosmological constant. We have given a formal
proof that if the strong energy condition holds, usual matter cannot provide negative pres-
sure. Moreover, we have provided a formal proof that for a flat FRW spacetime containing
only usual matter, for which the strong energy condition is violated, negative pressure is
possible .
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