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ABSTRACT
We study the general form of spacetime metric representing gravitating axially sym-
metric compact objects. The properties, such as energy momentum tensor and inte-
rior and exterior geometry, of such objects are discussed. Due to the complex nature
of gravitational field equations, especially interior of axial symmetric objects, we
consider exact solutions of the special case of spherical symmetry object.
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1 INTRODUCTION

Recently discovered dark matter and dark energy in the universe has lead to construction
of various modified theories of gravity as being alternate to the Einstein general theory of
Relativity. These extended theories of gravity are likely to provide new exact solutions
for (GR) the gravitational objects and from this point of view it is becoming extremely
important to parametrize solutions of gravitational field equations. Most popular among
them is Johannsen and Psaltis parametrization (Johannsen and Psaltis, 2011) and in recent
years there were several attempts in this direction (see for example (Rezzolla and Zhidenko,
2014; Konoplya et al., 2016)). Following the parameterization of Rezzolla and Zhidenko
(Rezzolla and Zhidenko, 2014), recently, the general parametrization for spherically sym-
metric and asymptotically flat black-hole spacetimes has been developed in an arbitrary
metric theory of gravity (Konoplya et al., 2020). The exact axisymmetric and static solu-
tion of the Einstein equations coupled to the axisymmetric and static gravitating scalar field
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has also been investigated recently (Turimov et al., 2018). Later on, an anisotropic version
of the well-known Tolman VII solution has been presented as stated by the gravitational
decoupling by the minimal geometric deformation approach and this leads to determine an
exact and physically acceptable interior two-fluid solution representing behavior of com-
pact objects (Hensh and Stuchlı́k, 2019). There is also investigation that presents an exact
solution describing the Schwarzschild-like black hole surrounded by the dust cosmological
background for spherically symmetric dust distribution (Jaluvkova et al., 2017).

In this context, our interest in this paper is to write and discuss general expression for the
axial spactime metric which could be valid for different theories of gravity. We study the
general of the spactime metric of axially symmetric gravitational compact objects and test
whether it is possible to have interior solution leading to the formation of naked singularity.

The first major work on study of singularities in GR dates back to 1965 when Penrose
presented his seminal work on singularity theorems (Penrose, 1965). This theorem, which
was later called the Penrose-Hawking singularity theorem, implies that the occurrence of
singularities in GR is inevitable as long as matter obeys certain energy conditions. The
super-dense regions of matter arising from gravitational collapse could be hidden from the
outside observer giving rise to a black hole or it could be visible leading to a naked sin-
gularity (Hawking and Ellis, 1973). Penrose-Hawking theorem investigated the conditions
that give rise to the emergence of singularities in GR (Hawking and Penrose, 1970). The
presence of these singularities represent a breakdown of Einstein’s theory as they give rise
to the notion of geodesic incompleteness. Although the Penrose-Hawking theorem proved
the existence of singularities, it did not shed light on the nature of the singularities arising
in General Relativity as the theory allows both types of singularity to form in a scenario of
gravitational collapse depending on the initial data from which the collapse develops. In
fact, the occurrence of naked singularities in nature has been so far considered the limit of
Einstein’s theory and poses serious theoretical challenges as it indicates the breakdown of
predictability in physics. This in turn led to the formulation of the cosmic censorship hy-
pothesis proposed by Penrose (Penrose, 1969) in 1969 for validity of the Einstein gravity,
preventing the singularity from being seen for observers outside. Irrespective of the fact
that the cosmic censorship conjecture has not been proven yet, there have been, however,
a large amount of work done in this context (see, e.g. Jacobson and Sotiriou, 2010; Saa
and Santarelli, 2011; Li and Bambi, 2013; Düztaş et al., 2020; Barausse et al., 2010; Rocha
and Cardoso, 2011; Shaymatov et al., 2015; Sorce and Wald, 2017; Shaymatov et al., 2019,
2020b; Gwak, 2018; Shaymatov et al., 2020a; Jiang and Zhang, 2020; Yang et al., 2020).

2 AXIALLY SYMMETRIC GRAVITATIONAL COMPACT OBJECTS

The axial symmetry, e.g., rotation of the central gravitational object, makes the gravitational
field equations very complicated to obtain their exact solutions. In fact, the well-known
Kerr (Kerr, 1963), Carter (Carter, 1968) and the Kerr-de Sitter (Carter, 1973) spacetime
metrics have been known as external vacuum solutions, and they refer to partial solutions
and correspond to a special kind of gravitational source. These solutions are associated with
the gravitational field of a rotating uncharged or charged black hole, respectively (Carter,
1971). However, the exact interior solutions of gravitational field equations that can serve
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as the basis for any significant physical model of a rotating body have not yet been obtained.
Hence, possible non-trivial results related to the interior solution being established even
before solving the Einstein equations on the basis of only the equations of motion represent
a definite value.

The established nature of pure rotation of the source having only single axis means that
the quadratic form has axial symmetry and does not depend on time. Therefore, there is a
frame of reference in which coordinates x0, r, θ, and ϕ can be entered, thereby reflecting
the time and axial symmetry of the metric in an explicit form. Having assumed precisely
this nature of the coordinates and the frame of reference, in the general case, both in the
inner and outer regions, the quadratic form for line element can be given as follows (Arifov,
1983):

ds2 = −(dx0)2 + D(dx0 + E sin2 θdφ)2 + Fdr2 + Gdθ2 + H sin2 θdφ2, (1)

where D, E, F, G, and H are unknown functions depending only from r and θ coordinates.
The rotating black hole metric in Boyer-Lindquist coordinates, in particular, can be re-

duced to the following form

ds2 = − (dx0)2 +
χr

r2 + a2 cos2 θ

(
dx0 + a sin2 θdφ

)2
+

r2 + a2 cos2 θ

r2 − χr + a2 dr2+(
r2 + a2 cos2 θ

)
dθ2 +

(
r2 + a2

)
sin2 θdφ2 , (2)

with χ being a constant having same meaning as in the Schwarzschild solution, with con-
stant a is related to the total angular momentum of the rotating massive body.

At this stage we write the non-zero components of the metric tensor corresponding to
the form (1) as

g00 = − (1 − D) , g03 = DE sin2 θ , g11 = F , g22 = G ,

g33 =
(
DE2 sin2 θ + H

)
sin2 θ , (3)

and non-zero inverse components are

g00 = −
1
N

(
DE2 sin2 θ + H

)
, g03 =

1
N

DE , g11 =
1
F
, g22 =

1
G
,

g33 =
1

N sin2 θ
(1 − D) sinθ , g = −NGF sin2 θ , (4)

with N = DE2 sin2 θ + H (1 − D).
It is worth noting that the axial symmetry of the spacetime metric (1) allows its simplifi-

cation. Using two arbitrary coordinate transformation functions

r → r′ = r′(r, θ) , and θ → θ′ = θ′(r, θ) , (5)

one of the functions D, E, F, G and H, or any combination of them can be reduced to a
predetermined function, while maintaining the orthogonality of the transformed r′ and θ′
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axes, namely the equality of the component g′12. Further simplification is no longer pos-
sible. In the general case, the symmetry of the problem requires finding four independent
functions included in the metric (1) and depending on two arguments.

If we introduce the notation for the derivatives

X′ =
∂X
dr

and Ẋ =
∂X
dθ

, (6)

the non-zero components of the Christoffel symbols take the form:

Γ0
01 =

1
2N

(
D2EE′ sin2 θ − HD′

)
,Γ1

00 = −
D′

2F
,

Γ0
02 =

1
2N

[(
Ė sin θ + 2E cos θ

)
D2E sin θ − HḊ

]
,Γ2

00 = −
Ḋ

2G
,

Γ0
13 =

sin2 θ

2N

[
D2E2D′ sinθ +DEH′ − H (DE)′

]
,

Γ0
23 =

sin2 θ

2N

[(
Ė sinθ +2E cos θ

)
D2E2 sin θ + DEḢ − H

(
ḊE

)]
,

Γ1
03 = −

sin2 θ

2F
(DE)′ ,Γ2

03 = −
sin θ
2G

[(
ḊE

)
sin θ + 2DE cos θ

]
,

Γ3
01 = −

1
2N

[
(DE)′ − D2E′

]
, Γ1

11 =
F′

2F
, Γ1

12 =
Ḟ

2F
,

Γ3
02 =

1
2N

[(
ḊE

)
− D2Ė + 2 (1 − D) DE cot θ

]
, Γ1

22 = −
G′

2F
,

Γ1
33 = −

sin2 θ

2F

[(
DE2

)′
sin2 θ + H′

]
, Γ2

11 = −
Ḟ

2G
, Γ2

22 =
Ġ
2G

, Γ2
12 =

G′

2G
.

(7)

A frame of reference, in which the quadratic form for a rotating body can be reduced
to the one in (1), is characterized by a complex motion of its components. Their absolute
acceleration, wµ = uµ;νuν (where uµ is the 4-velocity), is given by

w0 = w3 = 0 , w1 = −
D′

2 (1 − D)
and w2 = −

Ḋ
2 (1 − D)

, (8)

which are everywhere orthogonal to the family of hypersurfaces D = const. The non-zero
components of the rotation tensor, A = 1

2

(
uµ,ν − uν,µ + uµwν − uνwmu

)
, take the forms:

Aoi = A12 = 0 , A13 =
1
2

(DE)′ − D2E′

(1 − D)3/2 sin2 θ ,

A23 =
1
2

(
ḊE

)
− D2Ė

(1 − D)3/2 sin2 θ +
DE
√

1 − D
sin θ cos θ . (9)

The family of hypersurfaces being everywhere orthogonal to the direction of rotation com-
ponents of the reference frame satisfies the following equation:

dr
dθ

=
A13G
A23F

. (10)
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For Kerr metric, in particular, the solutions of this equation belongs to the family

r2 + a cos θ (a cos θ − const) = 0 , θ ,
π

2
, (11)

with equatorial hypersurface θ = π/2.
Let the internal state of the source be described by the energy-momentum tensor T µν =

(ρ + p) uµuν + pgµν of an ideal fluid, the pressure and energy density. In the coordinates
given in (1), we have the 4-velocity components u1 and u2 of the source being equal to zero,
and if we introduce the following notation

dφ
dx0 = ω(r, θ) , (12)

then non-zero component becomes

u3 =
dφ
dσ

= ωu0 , (13)

where σ refers to the source’s proper time.
From the above 4-velocity components uµ{u0, 0, 0, ωu0} and uµ{u0, 0, 0, u3} respectively
read

u0 =

√
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sin2 θ , (14)

and

u0 = −
1 − D

(
1 + ωE sin2 θ

)
√

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

,

u3 = −
DE sin2 θ

(
1 + ωE sin2 θ

)
+ ωH sin2 θ√

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

. (15)

The internal state of the source is determined by three functions ρ, p and ω as a function
of r and θ, and two of them are independent, i.e. ρ (or p) and ω. From all type of axial
rotation bodies, solid-body rotation must be distinguished in the case in which a = const.
In this case and in its own reference frame, both conditions imposed on the quadratic form,
namely, stationarity and axial symmetry, can be expressed explicitly. Indeed, the transition
φ → φ + ωx0 to its own reference frame, in which u3 = 0, does not change the quadratic
forms (1). This is due to the fact that the relative distances between elements of a source
rotating as a solid body remain unchanged. If the rotation of the gravitating object main-
taining axial symmetry does not obey the solid angle law, then in its own frame of reference
the metric can preserve axial symmetry in an explicit form, but can lose the explicit expres-
sion of the stationarity property. The metric already depends on time in its own frame of
reference. The change in the relative distances between the elements of the source at con-
stant coordinates assumes the metric tensor in its own reference frame. Equations (14) and
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(15) retain their form for solid body rotation and in own reference frame if one formally
sets ω = 0.

At this stage we find out what restrictions are imposed by the equations of motion,
T µν;ν = 0, on the internal functions ρ, p and ω of the rotating body. Two of the four
equations of motion corresponding to the coordinates x0 and ϕ are satisfied identically.
The other two equations are given by:

p′ =
1
2

(ρ + p)
D′ + 2ω (DE)′ sin2 θ + ω2

(
DE2 sin2 θ + H

)′
sin2 θ

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

, (16)

ṗ =
1
2

(ρ + p)
Ḋ + 2ω ˙(

DE sin2 θ
)

+ ω2 ˙[(
DE2 sin2 θ + H

)
sin2 θ

]
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

. (17)

The above equations can be rewritten as follows:

dp
ρ + p

=dLog
[
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sinθ

]−1/2

−
DE sin2 θ

(
1 + ωE sin2 θ

)
+ ωH sin2 θ

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

dω . (18)

From above the left side is, according to the thermodynamic equation of state, the total
differential function∫

dp
ρ + p

, (19)

which is solved further for an incompressible ideal fluid and since the first term on the right
is also a total differential, the second term on the right can then only be a total differential
of some function r and θ in the case of ω(r, θ) , const. This would be possible if and only
if the factor in front of dω depends on ω and does not explicitly depend on r and θ, i.e.,

DE sin2 θ
(
1 + ωE sin2 θ

)
+ ωH sin2 θ

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

= b(ω) , (20)

where b(ω) is an arbitrary function. The above equation (20) establishes an algebraic re-
lationship between four functions of coordinates r and θ, i.e, ω, (1 − D), DE sin2 θ and(
DE sin2 θ + H

)
sin2 θ. However, in the case of rotation of the gravitating body, there ap-

pears no such dependence. The equations of motion are thus given by,

exp
[∫

dp
ρ + p

+

∫
b(ω)dω

]
=

const√
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

, (21)
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if ω(r, θ) , const while

exp
[∫

dp
ρ + p

]
=

const√
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

, (22)

if ω = const.
For an incompressible ideal fluid ρ = const, for example, the equations of motion are

completely integrated by

ρ + p =
const√

1 − D
(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

. (23)

The hypersurface, on which the pressure is constant, is called equipotential. The section
of the equipotential hypersurface of the coordinate hyperpsurface x0 = const obviously
refers to the closed surface. Equipotential hypersurfaces form, according to (21-22), a one-
parameter family.

Theorem 1

The boundary of an axially rotating body is an equipotential hypersurface, on which the
pressure is zero. The shape of the border is determined by[
1 − D

(
1 + ωE sin2 θ

)2
− ω2H sin2 θ

]
exp

{
−2

∫
b(ω)dω

}
= const , (24)

if ω(r, θ) , const while

D
(
1 + ωE sin2 θ

)2
+ ω2H sin2 θ = const , (25)

in the case of solid body rotation.
A certain correspondence can be established between the distribution functions of pres-

sure and mass density of rotating and non-rotating bodies.

Theorem 2

For each given equation of state of matter of an axially rotating body and given distribution
of the angular velocity ω in the quadratic frame of reference (1) there exists such a coordi-
nate grid that the distribution functions of pressure, density of the number of particles, and
density of mass-energy coincide with the corresponding functions of a non-rotating body
in a quadratic reference frame, and the boundaries of the body are coordinate hypersurfaces
r = const.

3 CONCLUSIONS

In this work, we have discussed general form of axial symmetric spacetime which could be
applied to the possible solutions of field equations in various extended theories of gravity.
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We have seen in the above that the general solution of Einstein’s equations for a stationary
axially symmetric source, the equation of state and the distribution of the angular velocity
of rotation of the substance given, and the boundaries being free correspond to two types of
the structure of the source. The first type of sources represents only one external solution
having free boundary for which pressure and density of mass and number of particles take
a maximum value in the center and fall monotonically towards the boundary. Another
type of sources has two, internal and external, boundaries at which the pressure is equal
to zero; a cavity free from matter and thermal radiation from the source, with a singular
time-like world line in the center and the pressure and density of the mass and number of
particles take maximum values at the critical hypersurface and fall monotonically towards
both boundaries. As a consequence of the analysis we showed that it is possible to have
only an external solution associated with rotation parameter and realized that it is however
impossible to obtain interior solution in the case of rotation.
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