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ABSTRACT
We study the influence of scalar fields on a specific model of nonlinear electrody-
namics (the square root Lagrangian) spacetime. We show that the singular horizon
created by scalar field in spherically symmetric static scalar-vacuum spacetimes is
still present when nonlinear electrodynamics is added. For the obtained solution, we
investigate the timelike geodesic motions of a test particle by studying the effective
potential.
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1 INTRODUCTION

Studying scalar field when coupled to gravity whether minimally or nonminimally is an old
subject in general relativity. The first exact spacetime solution with scalar field minimally
coupled to gravity in this context was found by Fisher in 1948 (Fisher, 1948) and later
was rediscovered several times (Wyman, 1981; Buchdahl, 1959; Bergmann and Leipnik,
1957; Janis et al., 1968). This scalar-vacuum static spherically symmetric solution was
generalized to Einstein Maxwell scalar field solution (Penney, 1969; Janis et al., 1969;
Uhlíř and Dittrich, 1973; Teixeira et al., 1974, 1976; Eriş and Gürses, 1977; Banerjee and
Choudhury, 1977). The most famous and frequently used form of Fisher solution is the one
described in (Janis et al., 1968), where they showed that such spacetime contains a singular
pointlike event horizon. This solution is referred to as Janis–Newuman–Winicour (JNW)
spacetime.

Presence of naked singularities or irregular horizons was shown to be typical for scalar
field spacetimes by J. E. Chase in 1970 in what is now known as the “Chase theorem”
(Chase, 1970). According to it, roughly any static spherically symmetric vacuum solution
minimally coupled to massless scalar field can not have a regular horizon, any potential
horizon is necessarily the locus of a curvature singularity (see (Tafel, 2014) for generaliza-
tion including potential for the scalar field). These results are connected to scalar no-hair
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theorem nicely reviewed in (Herdeiro and Radu, 2015) where they study four dimensional
asymptotically flat black holes with scalar hair in various types of scalar field models cou-
pled to gravity.

Our motivation is to confirm whether the Chase theorem still holds when, additionally to
massless scalar field, other sources are present, such as Nonlinear Electrodynamics (NE).
Nonlinear electrodynamics is a nonlinear theory of electromagnetic field and various mod-
els exist with different Lagrangians. The most famous and successful model is Born–Infeld
(Born and Infeld, 1934) which in the weak field limit goes to the linear Maxwell theory and
in the strong field limit its Lagrangian tends to ∼

√
FµνFµν (square root model), with Fµν

being electromagnetic tensor.
Since we were not able to find an exact solution for Born–Infeld model when scalar field

minimally coupled to gravity is present, we chose the “square root” model as its approxi-
mation in the strong field regime. We believe one can extend any results related to an event
horizon in the square root model to Born–Infeld model since horizons appear in strong
field regime. Apart from this reason, square root Lagrangians were studied because of their
interesting properties long time ago (Nielsen and Olesen, 1973; Gaete and Guendelman,
2006; Vasihoun and Guendelman, 2014) even before the rise in popularity of NE where it
gained attention recently.

Previously, we studied square root model NE in Kundt class of geometries which contain
exact gravitational waves (Tahamtan and Svitek, 2017).

In (Svítek et al., 2020; Tahamtan and Svitek, 2014), it is shown that the spacetime singu-
larity sourced by static spherically symmetric scalar field is resolved at the quantum level.
In (Svitek and Tahamtan, 2016), we show that scalar-field sources in static, highly symmet-
ric geometries (JNW) tend to vanish in the ultraboost limit instead of being converted into
waves.

Scalar field solutions can be generalized beyond spherical symmetry to truly dynamical
situation (Tahamtan and Svitek, 2015, 2016) using Robinson–Trautman class of geome-
tries. The results confirm no-hair theorem in the asymptotic stationary limit. This class of
geometries can be coupled to NE as well (Tahamtan and Svitek, 2016).

2 SCALAR FIELD AND SQUARE ROOT LAGRANGIAN

We consider the following action, describing a scalar field and an electromagnetic field in
the form of nonlinear electrodynamics minimally coupled to gravity,

S =
1
2

∫
d4x
√
−g

[
R + ∇µϕ∇

µϕ +L(F)
]
, (1)

where R is the Ricci scalar for the metric gµν (we use units convention c = ~ = 8πG = 1).
The massless scalar field ϕ is considered real and the NE Lagrangian L(F) is assumed to
be an arbitrary function of the electromagnetic field invariant F = FµνFµν constructed from
a closed Maxwell 2-form Fµν.

We consider the static spherically symmetric metric

ds2 = − f (r) dt2 +
dr2

f (r)
+ R(r)2dΩ2 , (2)
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where dΩ2 = dθ2 + sin θ2dφ2. We assume t, r, θ, φ coordinate ordering.
By applying the variation with respect to the metric using the action (1), we obtain

Einstein equations

Gµ
ν = T µ

ν = SFT µ
ν + EMT µ

ν. (3)

where the superscript SF indicates scalar field and EM electromagnetic contribution to en-
ergy momentum tensor. For finding an exact solution for our metric functions correspond-
ing to the scalar field and nonlinear electrodynamics sources, we first express the energy
momentum tensors for these sources explicitly.

The energy momentum tensor generated by the scalar field is given by

SFTµν = ∇µϕ∇νϕ −
1
2

gµν gαβ∇αϕ∇βϕ (4)

which for a radial scalar field and our metric anzats (2) reduces to

SFT µ
ν =

f ϕ2
,r

2
diag {−1, 1,−1,−1} . (5)

The wave equation of a massless scalar field ( �ϕ = 0, where � is a standard d’Alembert
operator) with respect to our metric (2) leads to

f ϕ,r R2 = const. (6)

And the electromagnetic energy momentum tensor contribution is defined as following

EMT µ
ν =

1
2

{
δµνL − (FνλFµλ)LF

}
, (7)

in which LF =
dL(F)

dF . Obviously for the Maxwell case L = −F and LF = −1.
For our particular choice of nonlinear electrodynamics model, square root Lagrangian

L = −
√

F , the energy momentum tensor simplifies considerably

NET µ
ν = diag

−
√

F
2
,−

√
F

2
, 0, 0

 . (8)

Since our spacetime is static and spherically symmetric, we assume this to hold for
electromagnetic field as well and consider the following electromagnetic field two-form
for purely magnetic field

F = Fθφ dθ ∧ dφ , (9)

where Fθφ = qm sin θ and qm can be considered as a magnetic charge. All the modified
Maxwell equations (the source–free nonlinear Maxwell equations are dF = 0, d(LF

∗F) =

0, where ∗F is a dual of electromagnetic two-form F) are satisfied trivially. The electro-
magnetic invariant F = FµνFµν becomes

F =
2 q2

m

R4 . (10)
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We start to solve the coupled system by considering tt and rr components of Einstein
equations (3), namely Gt

t −Gr
r = T t

t − T r
r and we immediately obtain

ϕ2
,r = −

2 R,rr

R
. (11)

From the above equation and (6) we are able to find f in terms of R

f =

√
−

C2
0

2 R3 R,rr
. (12)

The rest of Einstein equations will constrain the form of R. From Gt
t − T t

t = 0, we get

f
(

R,r

R

)2

+
R,r

R
f,r −

1
R2 + f

R,rr

R
+

qm
√

2

1
R2 = 0 , (13)

which together with (12) gives the following expressions for R, f and from (11) for the
scalar field ϕ

R(r) =

√
β2

(
r + C̃1

) (
r − C̃2

)
−C2

0 × exp (−Ω(r)) ,
(14)

f (r) = −
e2Ω(r)

β
√

2
, (15)

ϕ(r) =
2
√

2C0

β
(
C̃1 + C̃2

) Ω(r) , (16)

where C̃1 and C̃2 are integration constants and we introduced parameters β, ρ and a function
Ω(r) in the following way

β =
(
qm −

√
2
)
, (17)

ρ =

√
β2

(
C̃1 + C̃2

)2
+ 4C2

0, (18)

Ω(r) =
β
(
C̃1 + C̃2

)
2 ρ

ln
(

r − r0

r − r̃0

)
(19)

where r0 = 1
2

(
C̃2 − C̃1 − ρ/β

)
, r̃0 = r0 + ρ/β and β should be negative for preserving the

metric signature. After some simplifications, the equations (14) and (15) become

R(r) =

√
β2 (r − r0) (r − r̃0)

[
r − r̃0

r − r0

] ν
2

, (20)

f (r) = −
1

β
√

2

[
r − r0

r − r̃0

]ν
, (21)
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where ν =
|β(C̃1+C̃2)|

ρ
≥ 0.

It is clear that f is vanishing at r = r0 indicating horizon. Behavior of R is driven by
the power of (r − r0), which is ν−1

2 . Depending on whether ν S 1, R would be zero, finite
or diverge. Considering the definition for ρ from (18), it is clear that ν < 1 if we have
C0 , 0 (nontrivial scalar field). Thus at r = r0 the function R is vanishing and this location
corresponds to a point instead of a sphere.

Note that since β is negative, r0 > r̃0. So at r0 there is an outermost horizon and it is
a candidate for the outer event horizon of a black hole but we need to see the behavior of
Ricci scalar at r = r0 to determine its regularity.

Ricci scalar with respect to our metric anzats (2) is

Ricci = − f,rr −
4
R

(
f R,r

)
,r − 2 f

(
R,r

R

)2

+
2

R2 (22)

and using (22), we obtain the following expression

Ricci ∼ (r − r0)ν−2 .

Since ν < 1 the Ricci scalar at r = r0 is clearly diverging.
It is clear from (20) and (21) that it is difficult to obtain the metric function f in terms of

R, for this reason we use a parametric plot for f in terms of R to see the behavior in terms of
the areal radius which has better physical interpretation (see Fig. 1). The behavior is clearly
monotonous and the curves for different β approach the location of curvature singularity at
R = 0 smoothly.
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Figure 1. The metric function f (r) in terms of R(r) with different values of β.

So in our solution, the event horizon is also a true singularity which confirms the role of
scalar field in spoiling horizon regularity even in this NE model. Since this is the stationary
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state of geometry it shows that the no-hair theorem is valid in this case as well since we
have not found black hole spacetime with both nongravitational fields being nontrivial.

The scalar field (16) becomes

ϕ(r) =

√
2C0

ρ
ln

[
r − r0

r − r̃0

]
(23)

and it is clear that at r = r0, it diverges as well and the same applies to electromagnetic
invariant (10) and therefore to NE energy momentum tensor (8).

The obtained solution, (20) and (21), is a NE generalization of Janis, Newmann and
Winicour solution (Janis et al., 1968) and the original solution is recovered for qm = 0
while as well setting C̃1 = C̃2.

If we consider a special case when the scalar field vanishes, C0 = 0, then necessarily
ν = 1 and the solution in (20) and (21) will be equivalent to (Tahamtan, 2020) upon trivial
changes in coordinates and constants.

If we assume that both C̃1 and C̃2 vanish then the form of the metric functions simplifies

R(r) =

√
β2 r2 −C2

0 , (24)

f (r) = −
1

β
√

2
, (25)

leading to spacetime containing timelike naked singularity. When qm in β vanishes then the
solution becomes equivalent to (Tahamtan and Svitek, 2016) with some trivial redefinition
of coordinate r.

All the above mentioned solutions with nontrivial scalar field do not possess regular
horizon. Although Maxwell theory and square root NE are significantly different since
both their weak field limit and strong field behavior disagree, when coupled to scalar field
they both produce singular horizon or naked singularity. This indicates dominant negative
role of the scalar field in horizon formation. Note that there is crucial difference already for
solutions without scalar field because square root model geometry (Tahamtan, 2020) only
possesses single horizon compared to Reissner–Nordström solution which can have two
and global asymptotics disagree as well. Nevertheless, the scalar field produces solutions
with similar characteristic — singular horizons — in both cases.

3 GEODESIC MOTION

We study particle motion in order to understand the physical properties of the spacetime un-
der consideration. We will use the variational principle and the Euler—Lagrange equations
for timelike geodesics. The Lagrangian reduces to kinetic part only and has the following
form

2 L = − f ṫ2 +
ṙ2

f
+ R2

(
θ̇2 + sin θ2 φ̇2

)
(26)
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in which dot denotes the derivative with respect to the proper time τ. Because of spherical
symmetry we study the particle motion in equatorial plane, so θ = π

2 . By using Euler-
–Lagrange equations we find two conserved quantities, E (energy) and l (orbital angular
momentum), as expected for static and spherically symmetric spacetime which admits two
Killing vectors (∂t, ∂φ). The energy and angular momentum are given by

E = f ṫ (27)
l = R2 φ̇ (28)

Substituting the above expressions into (26), we obtain equation for radial component of
fourvelocity corresponding to timelike geodesic motion

ṙ2 + Veff = E2 (29)

where Veff is the effective potential given by

Veff = f
(

l2

R2 + 1
)
. (30)

For plotting the effective potential, we consider the following values of constants: C0 =

1, C̃1 = −3, C̃2 = 1. The only remaining constant parameter is β and we plot our graphs for
its different values. Since the domain for β is (−∞, 0) the domain of ν =

|β|
√
β2+1

is (0, 1).

Because ν = 1 is attained asymptotically for β → ∞ more interesting changes in behavior
happen for smaller β.

First, we plot the effective potential for zero angular momentum, l = 0, in this case
the potential and the metric function f would be the same (30), see Fig. 2. When the
absolute value of β is increasing the effective potential (metric function f ) is decreasing.
The zeros are the spacetime singularity points which appear at different r for different β
but all correspond to R(r) = 0. This plot shows that the radially falling particle approaches
singularity with velocity depending on the value of β.

Next, we plot the effective potential for l = 1 and different values of β (same as those
used for l = 0 case), see Fig. 3. Here, similar to case when l = 0 the potential values are
decreasing with increasing absolute value of β. As it is shown in the plot, for some values
of β the effective potential character changes and one global minimum appears indicating
stable circular orbits.

4 CONCLUSION AND FINAL REMARKS

We showed that static scalar field spacetime coupled to ∼ −
√

F Lagrangian which captures
the strong field regime of many NE models (e.g., Born–Infeld) admits generalized solution
of Janis–Newman–Winicour. Similar to all minimally coupled scalar field solutions, the
spacetime has an irregular horizon which is in agreement with the Chase theorem. Our
result and the previous ones show that the effect of scalar field on the spacetime geometry
is dominant. Note that in the absence of scalar field, square root model Lagrangian solution
represents a black hole solution with regular horizon.
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Figure 2. Effective potential Veff for l = 0 and different values of β.
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Figure 3. Effective potential Veff for l = 1 and different values of β.

Furthermore, we studied timelike geodesic motion of a test particle. The obtained effec-
tive potential shows that for nonzero angular momentum and certain values of parameter β
it is possible to have stable circular orbits. These stable circular orbits around singularity
could give rise to disc configurations around the singularity and further study can give clear
observational signatures such objects might exhibit.

In future, we will generalize this solution to massive scalar field with potentials.
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