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ABSTRACT
We explore the dynamics of test particles on perturbed circular orbits in the equato-
rial plane of a Schwarzschild black hole in search of resonant effects. The nonlinear
bond between radial and vertical oscillatory modes is given by Lorentz electromag-
netic force acting on charged particles in the uniform magnetic field. When the
perturbation of the circular orbit is large enough, strong, persistent 2:1 resonance
between radial and vertical modes develops.
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1 INTRODUCTION

The microquasars are binary systems composed of a black hole (BH) and a companion
(donor) star, and Quasi-Periodic Oscillations (QPOs) are periodic changes in X-ray photons
flux in these systems (Remillard and McClintock, 2006). QPOs cover a wide range of
frequencies, from low-frequency QPOs (∼ 30 Hz) to high-frequency QPOs (∼ 500 Hz).
The QPOs are still unresolved phenomena, but the connection to particle orbital frequency
at the innermost stable circular orbit (ISCO) (∼200 Hz for 10M⊙ BH) is frequently assumed
(Török et al., 2005). Most high-frequency QPOs in BHs are detected with twin peaks with
a frequency ratio ∼3:2; obviously, some resonance phenomena in the BH accretion disk
are present. In this proceeding, we will simulate accretion disk resonances using simple
charged test particle dynamics as a model for plasma around BH.

2 CHARGED PARTICLE DYNAMICS

We consider a BH of a mass M described by the Schwarzschild metric

ds2 = − f (r) dt2 + f −1 (r) dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, f (r) = 1 −

2M
r
, (1)
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Figure 1. Charged particle oscillations around circular orbit with very weak magnetic field influence
B = 10−5. We see particle trajectories in x-z plane (first column) with BH as a grey disk, projection in
x-z plane (second column) with dashed energetic boundary, Fourier spectra (third column) for radial
r and vertical θ coordinates with frequency ratios, dashed vertical lines pointing maxima, Poincaré
surface of section (fourth column) for equatorial plane crossing. The first row of figures is for small
perturbation △ = 0.01 from circular orbit, where only main frequencies are present, and the second
row is for larger perturbation △ = 0.1, where we can see higher harmonic in the spectra.

where f (r) is the lapse function. Let the BH be immersed into an external uniform magnetic
field, given by electromagnetic four-potential (Wald, 1974)

Aϕ =
B
2

r2 sin2 θ. (2)

Hereafter, we put M = 1, i.e., we use dimensionless radial coordinate r (and time coordinate
t).

The equations of motion for a charged particle with mass m and electric charge q can be
obtained using the Hamiltonian formalism

dxµ

dζ
=
∂H
∂πµ
,

dπµ
dζ
= −
∂H
∂xµ
, H =

1
2

gαβ (πα − qAα)
(
πβ − qAβ

)
+

m2

2
= 0, (3)

where the kinematical four-momentum pµ = muµ = dxµ/dζ is related to the generalized
(canonical) four-momentum πµ by the relation πµ = pµ + qAµ. The affine parameter ζ of
the particle is related to its proper time τ by the relation ζ = τ/m.

Due to the symmetries of the Schwarzschild spacetime (1) and the magnetic field (2),
one can easily find the conserved quantities that are particle energy and axial angular mo-
mentum and magnetic field parameters B

E =
E
m
= −
πt

m
= −gttut, L =

L
m
=
πϕ

m
= gϕϕuϕ +

q
m

Aϕ, B =
qB
2m
, (4)



Test particle resonances 23

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

x

z

rcirc=6, ℒ≐7.12, ℰ≐1.73

Δ=0.5, r0≐6.1, θ0≐2.06

0 5 10 15

-5

0

5

x

z

10-4 10-3 10-2 10-1 100

10-6

10-5

10-4

10-3

10-2

10-1

100

10

10

10

10

10

10

10

Ω

Ωr ≐ 0.05

Ωθ ≐ 0.05

Ωr /Ωθ ≐ 1.

7.00 7.05 7.10 7.15 7.20 7.25

0.20

0.21

0.22

0.23

0.24

0.25

0.26

r

pr

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

x

z

rcirc=10, ℒ≐13.47, ℰ≐2.33

Δ=0.5, r0≐10.1, θ0≐2.06

0 5 10 15

-5

0

5

x

z

10-4 10-3 10-2 10-1 100

10-6

10-5

10-4

10-3

10-2

10-1

100

10

10

10

10

10

10

10

Ω

Ωr ≐ 0.0685

Ωθ ≐ 0.0343

Ωr /Ωθ ≐ 2.

11.211.411.611.812.012.212.412.6

-0.4

-0.2

0.0

0.2

0.4

r

pr

Figure 2. Charged particle oscillations around circular orbit in stronger magnetic field influence
B = 0.1, similar to Fig. 1. In the first row of figures, the motion has complicated Fourier spectra, but
the main frequency peaks are in resonant ratio Ωr/Ωθ ∼ 1. The trajectory in the second row is close
to chaotic motion, but the main peak frequencies are still in resonant ratio Ωr/Ωθ ∼ 2, which appear
frequently in our numerical experiment.

which reflects a relative relationship between Lorentz and gravitational forces. Using such
symmetries, one can rewrite the Hamiltonian (3) in the form

H =
1
2

grr p2
r +

1
2

gθθp2
θ +

1
2

gttE2 +
1
2

gϕϕ
(
L − qAϕ

)2
+

1
2

m2. (5)

Energetic boundary for particle motion can be expressed from the equation (5)

E2 = Veff (r, θ) (for pr = pθ = 0) . (6)

We introduced effective potential for charged particles Veff(r, θ) by the relation

Veff (r, θ) ≡ −gtt

[
gϕϕ
(
L −

q
m

Aϕ
)2
+ 1
]
. (7)

The effective potential Veff (r, θ) combines the influence of gravity potential (gtt term) with
the influence of central force potential given by the specific angular momentum L and
electromagnetic potential energy given by qAϕ.

A detailed description of charged particle dynamics around BH can be found for the
uniform magnetic field in Galtsov and Petukhov (1978); Karas and Vokrouhlicky (1990);
Frolov and Shoom (2010); Kološ et al. (2015); Kopáček and Karas (2018) or for more
realistic parabolic BH magnetosphere in Kološ et al. (2023).

If a charged test particle is slightly displaced from the equilibrium position located in a
minimum of the effective potential Veff (r, θ) at r0 and θ0 = π/2, corresponding to a stable
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Figure 3. Test particle orbital frequencies (first row), and the ratio of radial and vertical frequencies
(second row) with weak electromagnetic influence (B = −10−5). For small circular orbit perturbation
△ = 0.01, the numerically calculated frequencies (individual dots) from perturbed orbit exactly follow
the analytic frequencies (solid curves) given by effective potential minima. For large perturbation
△ = 0.5, the numerical frequencies are detached from the analytical one. Different resonant radii
(vertical dotted lines in the first row and horizontal dotted lines in the second row) are plotted, but no
clustering around them can be reported.

circular orbit, the particle will start to oscillate around the minimum realising thus epicyclic
motion governed by linear harmonic oscillations with the radial Ωr, vertical Ωθ, and axial
Ωϕ frequencies (Wald, 1984)

Ω2
r =

1
2

f 2 (r)
E2 (r)

∂2Veff

∂r2 , Ω
2
θ =

1
2

f (r)
r2E2 (r)

∂2Veff

∂θ2
, Ω2

ϕ =
L2 (r)

g2
ϕϕ

f 2 (r)
E2 (r)

. (8)

3 RESONANCES FOR PERTURBED CIRCULAR ORBIT

A thin Keplerian accretion disk model is given by a dense set of particles on a circular orbit
where gravity is perfectly compensated by centrifugal force. In our case of charged test
particles, the Lorentz force from an external uniform magnetic field will also be taken into
account. To simulate resonances in the accretion disk around BH, we randomly perturb all
particles on the circular orbits in radial δr and vertical direction δθ. For all different circular
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Figure 4. Charged particle orbital frequencies (first row) and the frequency ratio (second row) with
stronger magnetic field influence B = −0.1, similar to Fig. 3. When the circular orbit is only slightly
perturbed △ = 0.1, the numerical and analytical frequencies coincide for almost all the points with
only a few 2:1 resonant exceptions. The number of trajectories with a 2:1 resonant ratio grows with
circular orbit perturbation, reaching more than 50% for △ = 0.5 value.

orbits from the Keplerian disk, the total perturbation △ will remain the same

r = rcirc + δr, θ = π/2 + δθ, △ =
√
δr2 + δθ2. (9)

As it has been demonstrated in Fig. 3, when the perturbation δ is small, the main peak fre-
quency calculated from particle trajectory using Fourier transform coinciding with analyti-
cally calculated frequencies for small circular orbit perturbation (8). When the perturbation
is large enough and when the nonlinear electromagnetic bound between r and θ oscillatory
modes is present, the particle trajectory main frequency peaks are likely to be in resonant
ratios 2:1, see Fig. 4.

While resonant ratios between oscillatory modes might appear coincidental for a single
particle orbit, they become statistically significant when considering the dense set of cir-
cular orbits covering the entire Keplerian disk. When perturbed, the charged particles are
likely to orbit around BH in 2:1 resonance between Ωr : Ωθ modes as demonstrated in
Figs. 3 and 4.

The parametric resonance model (Abramowicz and Kluźniak, 2004) is given by formula

Ωr

Ωθ
=

2
n
, n = 1, 2, 3, . . . , (10)
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where the strongest resonances can be expected for small n. For the observed QPOs signal,
a 3:2 resonance has been reported and not a 2:1 resonance. However, this discrepancy could
be explained by the fact that we do not observe Ωr and Ωθ directly, but we observe their
combinations

Ωr : Ωθ = 2 : 1 → Ωr + Ωθ : Ωr = 3 : 2. (11)

We currently have no direct explanation for the 2:1 resonance and why we do not observe
stronger 1:1 or weaker 3:2 resonances, even though they are allowed in our model for
charged particle dynamics. The effective potential for a charged particle has a special shape,
it has Z2 symmetry (Veff (x, z) is the same above z > 0 and below z < 0 the equatorial plane),
which could be one of the possible explanations for the observed strong 2:1 resonance.
Another explanation could come from the Kolmogorov-Arnold-Moser (KAM) theorem. If
we can express our system as having the regular part H0 and a perturbative part Hp, with
perturbation parameter ϵ, then the Hamiltonian can be expressed as

H = H0 + ϵHp. (12)

According to the KAM theorem, only nonresonant tori will survive small ϵ perturbation,
while the resonant tori will be destroyed. For two degrees of freedom system, as is our
particle dynamics in an axially symmetric model, one will have

k1Ωr + k2Ωθ = 0, k1 + k2 < 4, (13)

and hence around the resonant elliptic point (minima in effective potential), we can not
construct Birkhoff normal form if k1 + k2 > 4 (Tabor, 1989). The condition (13) is correct
only for 1:1, 1:2, and 2:1 resonances but not 3 : 2 and could explain why 3:2 resonance
between Ωr and Ωθ is not observed in our model.

4 CONCLUSIONS

In our numerical experiment with charged particle dynamics around magnetized Schwarz-
schild BH, we have demonstrated the existence of 2:1 resonance, which could be related to
observed QPO within the parametric resonance model. It is still an open question, whether
these 2:1 resonances are unique to our test particle model, and if 2:1 will appear in other
systems. In the future, we would like to explore other nonlinear models, like string-loop,
spinning particle dynamics, and test particle motion in modified BH spacetimes.
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