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Z. Stuchlík, G. Török, V. Karas and D. Lančová, editors, Silesian University in Opava, 2023, pp. 1–11

Tidal deformability of ultracompact
Schwarzschild stars and their approach to the
black hole limit

Camilo Posada

Institute of Physics in Opava, Silesian University in Opava,
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ABSTRACT
A well-known result in general relativity is that the tidal Love numbers of black holes
vanish. In contrast, different configurations of a black hole may have non-vanishing
Love numbers. For instance, it has been conjectured recently that the Love number
of generic exotic compact objects (ECOs) shows a logarithmic behaviour. Here, we
analyse the ultracompact Schwarzschild star, which allows the compactness to cross
and go beyond the Buchdahl limit. This Schwarzschild star has been shown to be
a good black hole mimicker. Moreover, it has been found that the Love number
of these objects approaches zero as their compactness approaches the black hole
limit. Here, we complement those results by showing that the Love number for
these configurations follows an exponentially decaying behaviour rather than the
logarithmic behaviour proposed for generic ECOs.

Keywords: Tidal deformability – interior solutions – black hole mimicker –
gravastar

1 INTRODUCTION

Black holes (BHs) are one of the most intriguing predictions of Einstein’s classical general
relativity (GR). Beyond their elegant mathematical structure (Chandrasekhar, 1985), they
are also the main candidates to explain most of the astrophysical observations (Celotti et al.,
1999). Nevertheless, besides their curvature singularity in the interior geometry, which is
believed will be “removed” by a consistent quantum theory of gravity, BHs present certain
paradoxes which remain puzzling. For instance, the interior geometry of mathematical
BHs shows some unphysical behaviour, such as the closed timelike geodesics in the Kerr
spacetime (Hawking and Ellis, 1973). On the other hand, the event horizon is at the root of
the so-called “information paradox”, which remains one of the central problems in black
hole physics (Wald, 2001).

As a consequence of the BH paradoxes, a number of models of “regular BHs” or “BH
mimickers” (also known as exotic compact objects (ECOs)) have been proposed in the
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literature (see, e.g. Cardoso and Pani (2019) and references therein). Regular BHs are
constructed with different non-singular interiors, but in such a way that they reproduce the
well-known geometries of BH solutions in GR. For instance, the gravitational condensate
star, or gravastar (Mazur and Mottola, 2001, 2004), is composed of a non-singular de Sitter
interior with negative pressure p = −ϵ, but with positive vacuum energy ϵ > 0, which
is matched to the exterior Schwarzschild solution with p = ϵ = 0. The “gluing” of both
geometries was done by introducing an infinitesimal thin shell of ultra-stiff matter.

In connection with gravastars, Mazur and Mottola (2015) revisited the well-known
Schwarzschild’s interior solution with uniform density, or Schwarzschild star (see e.g.
Glendenning (2000)). The Schwarzschild star manifests a divergence in the central pres-
sure when its compactness reaches the Buchdahl bound M/R = 4/9. The importance of this
limit relies on the fact that it is independent of the equation of state (EOS) of the configu-
ration, as shown by Buchdahl (1959), under the assumption of isotropic pressure, positive
energy density and monotonically decreasing with the distance r. Thus, the Schwarschild
star represents a toy model which saturates the Buchdahl bound and should be considered
as the limiting case of an ultra-stiff EOS; incidentally, configurations with compactness
higher than 4/9 have usually been assumed as unphysical.

Nevertheless, some interesting features become apparent when one considers the
Schwarzschild star beyond the Buchdahl limit, RS < R < (9/8)RS, where RS ≡ 2M. First
of all, the pole where the pressure is divergent moves out from the origin up to a surface of
radius R0 = 3R

√
1 − (4/9)(R/M) < R and a regular interior region with negative pressure

emerges naturally in the regime 0 < r < R0; meanwhile the pressure remains positive in
the region R0 < r < R. In the limit when R0 → R−S , from below, and R → R+S , from
above, the ultracompact Schwarzschild star becomes essentially the gravastar proposed by
Mazur and Mottola (2015). It is important to remark that the Schwarzschild star evades the
Buchdahl limit by having an anisotropic stress at the surface R0. In the limiting case when
R0 = R = RS, the interior static de Sitter is matched to the exterior Schwarzschild geometry
through a boundary layer located at their respective horizons RS = H, where H is related
to the de Sitter energy density by ϵ = 3H2/(8π). Furthermore, there is a discontinuity [κ]
in the surface gravities, which produces a surface tension τs = 1/(8πRS) and incidentally
a δ-function stress tensor which replaces the BH horizon.

Some of the physical properties and observational signatures of the ultracompact
Schwarzschild stars have been studied recently in the literature. For instance, a time-
dependent model was proposed by Beltracchi and Gondolo (2019). On the other hand,
these configurations seem to be stable against radial oscillations (Posada and Chirenti,
2019). The analysis of axial modes was carried out in Konoplya et al. (2019), where it
was found that the Schwarzschild stars are stable against axial perturbations. Moreover,
the Schwarzschild star can “mimic” very well the gravitational wave response of a BH
at l = 2 and higher multipoles because it approaches the Schwarzschild BH spectrum as
closely as possible. This is due to the fact that the null surface R0 provides the same
boundary conditions for the quasi-normal modes as for the case of a BH. An extension to
the anisotropic case using the minimal geometric deformation (MGD) was developed by
Ovalle et al. (2019).

An early model for a slowly rotating ultracompact Schwarzschild star was proposed by
Posada (2017) using the Hartle-Thorne framework (Hartle, 1967; Hartle and Thorne, 1968).
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However, the results reported there are marred by a wrong assumption in the regime be-
yond the Buchdahl limit after making a coordinate transformation. This proposal has been
surpassed recently by Beltracchi et al. (2021), where they developed a model for a slowly
rotating gravastar to second order in the rotation. These authors found that the exterior
metric to a slowly rotating gravastar is precisely that of the Kerr spacetime. Therefore, it
is impossible to tell a gravastar from a Kerr BH by any observation, such as accretion disk
processes or light ring images.

An alternative for, potentially distinguishing ECOs from BHs is through their tidal de-
formability. A compelling result in GR is that the tidal Love numbers of Schwarzschild
BHs are zero (Damour and Nagar, 2009; Binnington and Poisson, 2009; Hui et al., 2021;
Chia, 2021; Charalambous et al., 2021; Poisson, 2021). On the other hand, it has been
found that the Love numbers of general ECOs scale as k ∼ 1/ log ξ, where ξ is a pa-
rameter which measures how much the object deviates from the BH geometry (Cardoso
et al., 2017). Recently Chirenti et al. (2020) studied the tidal Love number of ultracompact
Schwarzschild stars, below and beyond the Buchdahl limit. These authors found that the
Love number of these configurations tends to zero as the compactness approaches the BH
limit. Thus, they concluded that the vanishing of the Love number is not a unique property
of BHs. Instead, it’s a consequence of the approach to the Schwarzschild limit.

In this paper, we will review the main results of the tidal deformability of ultracompact
Schwarzschild stars presented by Chirenti et al. (2020). As an addition to those results,
we will show that the tidal Love number k2 for ultracompact Schwarzschild stars does not
follow the 1/ log ξ proposed by Cardoso et al. (2017). Instead, we found that k2 decays
exponentially as a function of the compactness.

2 TIDAL DEFORMABILITY

2.1 General formulation

The tidal Love number quantifies the deformations of the quadrupole moments of a star in-
duced by external fields, which are connected through the relation (Hinderer, 2008; Damour
and Nagar, 2009)

Qi j = −
2k2R5

3
Ei j ≡ −Λ Ei j , (1)

where k2 is the Love number andΛ is the tidal deformability. It is conventional to introduce
the dimensionless tidal deformability

Λ̄ = Λ/M5 = 2k2/
(
3C5

)
, (2)

here C ≡ M/R denotes the compactness of the configuration. Following Damour and
Nagar (2009), the unperturbed spacetime of a nonrotating star is described, generally, by
the standard metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 , (3)
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and the even-parity metric perturbation H = H0 = H2 is governed by the following equation

d2H
dr2 +C1(r)

dH
dr
+C0(r)H = 0 , (4)

where the coefficients C1 and C0 are given by

C1(r) =
2
r
+ eλ

[
2m
r2 + 4πr (p − ϵ)

]
, (5)

C0(r) = eλ
[
−

l(l + 1)
r2 + 4π(ϵ + p)

dϵ
dp
+ 4π(5ϵ + 9p)

]
−

(
dν
dr

)2

. (6)

In order to simplify the form of the perturbation equation (4), it is conventional to introduce
the logarithmic derivative h(r) ≡ (r/H)dH/dr. Substituting h(r) into Eq. (4), we obtain
a Riccati-type equation in the form (Damour and Nagar, 2009)

r
dh
dr
+ h(h − 1) + rC1h + r2C0 = 0 , (7)

with the regular solution near the origin, h(r) ≃ l. Finally, the Love number k2 can be
determined using the following expression

k2(C, hR) =
8
5

(1 − 2C)2C5 [2C(hR − 1) − hR + 2] ×
{
2C

[
4(hR + 1)C4

+(6hR − 4)C3 + (26 − 22hR)C2 + 3(5hR − 8)C − 3hR + 6
]

+ 3(1 − 2C)2 [2C(hR − 1) − hR + 2] log(1 − 2C)
}−1
,

(8)

where hR is the value of h at the surface r = R.

2.2 Schwarzschild stars

In this section, we discuss the homogeneous configurations with constant density. Although
uniform-density stars are only an approximation for a realistic compact object, they are
useful toy models which are described by Schwarzschild’s interior solution (Glendenning,
2000). Moreover, there are various reasons to consider them in detail (see, e.g. Harrison
et al., 1965).

The tidal Love number for constant-density stars, or Schwarzschild stars, was studied by
Damour and Nagar (2009); Postnikov et al. (2010); Chan et al. (2015) and more recently
by Chirenti et al. (2020). The details of the computation were discussed in these papers, so
we refer the reader to those works.

The interior Schwarzschild solution describes a configuration of constant energy den-
sity ϵ. For convenience, it can be written in terms of the auxiliary function y (Chandrasekhar
and Miller, 1974; Posada and Chirenti, 2019; Chirenti et al., 2020) defined as

y2 = 1 −
( r
α

)2
, with α2 =

3
8πϵ
≡

R3

RS
, (9)
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where R is the radius of the star and RS ≡ 2M is the Schwarzschild radius. The function
y is defined in the range [1, y1] where y1 ≡ y(R) is the corresponding value at the surface.
The interior metric functions are given by

eν =
1
4

(3y1 − y)2 and eλ =
1
y2 , (10)

which match continuously, at the surface r = R, with the exterior Schwarzschild solution.
The pressure p in the interior is found to be

p = ϵ
(

y − y1

3y1 − y

)
, (11)

which vanishes at the surface r = R. The central pressure diverges when the compactness
reaches the Buchdahl bound M/R = 4/9 (Buchdahl, 1959).

It is convenient to introduce a new coordinate x given by (Chandrasekhar and Miller,
1974)

x ≡ 1 − y = 1 −

√
1 −

( r
α

)2
, (12)

which is defined in the range [0, x1] where x1 = 1 − y1 ≡ x(R), which depends on the
compactness. The interior metric functions (10) take the form

eν(x) =
1
4

(k + x)2, and eλ(x) =
1

(1 − x)2 , (13)

and the pressure (11) reads now

p = ϵ
(

1 − x − y1

κ + x

)
, (14)

where the constant κ is defined as

κ ≡ 3y1 − 1 . (15)

Note that κ > 0 when C < 4/9, and, −1 < κ ≤ 0 in the regime beyond Buchdahl. Note that
Eq. (14), has a regular singular point at x0 ≡ −κ. The careful analysis of this singularity
for the computation of the Love number was done in Chirenti et al. (2020), so we refer the
reader to that paper for more details.

The same singular point appears when one considers the extension of the ultracompact
Schwarzschild star to slow rotation, using the equations derived by Hartle (Chandrasekhar
and Miller, 1974; Posada, 2017). However, the results presented by Posada (2017) are
marred after assuming, wrongly, an absolute value of κ when the compactness goes beyond
the Buchdahl limit 1.

1 The author acknowledges Emil Mottola and Philip Beltracchi for calling his attention to this point.
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3 TIDAL DEFORMABILITY OF ULTRACOMPACT SCHWARZSCHILD
STARS

In this section, we summarise the results of the tidal deformability of ultracompact
Schwarschild stars reported by Chirenti et al. (2020). We used the transformation (12)
in the perturbation equation (7), which facilitates the computation when the compactness
goes beyond the Buchdahl bound. Profiles of the solutions to the perturbation equation
for certain values of the compactness are presented in Figs. 1 and 2 in Chirenti et al.
(2020). Of particular interest is the value of k2 at the Buchdahl limit, which was found to
be κBuch

2 = 0.0017103, which is in excellent agreement with the result reported by Damour
and Nagar (2009).

The value of k2 is computed in the following way; the structure equations (13)–(14) are
substituted into the coefficients (5) and (6), which consequently determine Eq. (7). Given
the condition at the origin h(r) = l, one solves numerically Eq. (7) for h(r)−, in the interior
of the star, from the center (or, rather, some cutoff value, r0 = 10−7), outwards up to the
surface r = R. Some care must be taken here regarding the constant density condition.
Note that Eq. (6) contains a term in the form (ϵ + p)(dϵ/dp) which vanishes in the limit
ϵ = constant. Given the discontinuity of the density at the surface, this term contributes
a δ− function which must be taken into account to obtain h+R (see the discussion in Damour
and Nagar (2009); Postnikov et al. (2010)). This correction is given by

h+R = h−R −
(

4πR3ϵ

M

)−
, (16)

which gives

h+R = h−R − 3 . (17)

In Fig. 1, we show the profile of the tidal Love number k2, as a function of the com-
pactness M/R, for Schwarzschild stars below and beyond the Buchdahl limit (Chirenti
et al., 2020). The inset shows a zoom of the region near the Buchdahl limit up to the
Schwarzschild radius. The results of k2 for C ≤ 4/9 are in very good agreement with those
reported by Damour and Nagar (2009). Note how k2 approaches continuously to zero as
the compactness approaches the Schwarzschild limit. Stars with compactness bigger than
4/9 show a region of negative pressure in the interval x ∈ [0, x0] with x0 = −κ. In the
limit when C → 1/2 from above, and x0 → x1 from below, the central region of neg-
ative pressure covers the whole interior of the star. Thus, in this limit, the ultracompact
Schwarzschild star becomes essentially the gravastar (Mazur and Mottola, 2015).

Note the striking “quenching”, in three orders of magnitude, of the tidal Love number,
for ultracompact Schwarzschild stars, from 0.75, for C → 0, to 0.0017103 at the Buchdahl
bound, and the subsequent approach to zero as the compactness approaches 1/2. This rapid
quenching of k2 clearly indicates that these configurations do not follow the logarithmic be-
haviour suggested by Cardoso et al. (2017) as a “generic feature” of ECOs with an exterior
geometry arbitrarily close to the BH geometry. To see this, in Fig. 2, we show the same
results shown in Fig. 1, but we also include the fit, which we model as an exponentially
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Figure 1. Tidal Love number k2, as a function of the compactness, for Schwarzschild stars below
and beyond the Buchdahl limit. Note how k2 approaches smoothly and continuously to zero, as the
compactness approaches the Schwarzschild limit (figure adapted from Chirenti et al. (2020)).

decaying function in the form

k2 = a
[
1 − e−b(C−0.5)

]
+ d, (18)

where the fitted coefficients are shown in the label of Fig. 2. We found that the R-squared
value for this fitting model is R2 = 0.999429, which shows that the exponentially decay-
ing model is a good one. Note that in reference Chirenti et al. (2020), this fitting was
overlooked, so here we are complementing those results.

Finally, in Fig. 3 we show in log-scale the tidal Love number as a function of the com-
pactness, and we also include the Post-Minkowskian (PM) expansion for constant density
stars introduced by Chan et al. (2015). Note that for configurations with low compactness
(Newtonian limit), the PM approximation is in good agreement with our results. However,
when the compactness approaches the Buchdahl limit, the differences between both results
increase. This difference is expected, considering that near the Buchdahl limit, we are en-
tering into the strong gravity zone. Thus, the PM expansion is not a good approximation; in
the strong gravity regime, we require the full general relativistic computation. In reference
Chirenti et al. (2020), figure 4 shows a similar log-scale for k2, together with the PM ap-
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Figure 2. Same results as in Fig. 1, but we also present the fit in a black solid curve. We consider an
exponentially decaying model in the form: a

[
1 − e−b(C−0.5)

]
+ d. The corresponding coefficients are

shown in the label.

proximation. After the publication of that paper, the author found that the plot was marred
due to a typo in the PM expansion. However, this error does not affect the results of k2.

4 DISCUSSION

The Schwarzschild interior solution with constant density, or Schwarzschild star, remains
an interesting and simple example of an exact solution to Einstein’s equations for a perfect
fluid. One of the most remarkable features of this model only discovered recently, is that it
allows for compactness to cross beyond the Buchdahl limit. Moreover, these configurations
can approach arbitrarily close to the Schwarzschild radius, where they become essentially
the gravastar.

It has been found that the Love number k2 of the ultracompact Schwarzschild stars is
a smooth and continuous function of the compactness, and it approaches zero as the com-
pactness approaches the BH limit 1/2. Thus, one can conclude that the result k2 → 0 is not
an exclusive property of BHs but rather a consequence of the compactness approaching the
Schwarzschild limit.

We found that the Love number of ultracompact Schwarzschild stars does not follow
the logarithmic behaviour conjectured by Cardoso et al. (2017) for generic ECOs. Instead,
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Figure 3. Same as Fig. 1, but in log-scale to emphasise the approach to the Schwarzschild limit. For
comparison, we also show the Post-Minkowskian approximation for constant density stars presented
in Chan et al. (2015). In the Newtonian limit, both approaches are in good agreement. In the strong
gravity zone, near the Buchdahl limit, the deviations start to grow as expected.

we found that k2 decreases rapidly with compactness, following an exponentially decaying
behaviour. Therefore, we believe that the conclusions drawn by Cardoso et al. (2017),
regarding the behaviour of k2 for ECOs, are too restrictive considering that they studied
only 4 types of ECOs, namely, thin-shell gravastar, boson stars, wormholes and some kind
of anisotropic stars.
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