
Proceedings of RAGtime 23–25 13
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ABSTRACT
Large-scale magnetic fields pervade the cosmic environment where the astrophys-
ical black holes are often embedded and influenced by mutual interaction. In this
contribution, we outline the appropriate mathematical framework to describe mag-
netized black holes within General Relativity, and we show several examples of
how these can be employed in the astrophysical context. In particular, we examine
the magnetized black hole metric in terms of an exact solution of electro-vacuum
Einstein-Maxwell equations under the influence of a non-vanishing electric charge.
New effects emerge: the expulsion of the magnetic flux out of the black-hole horizon
depends on the intensity of the imposed magnetic field.
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1 INTRODUCTION

Astrophysical black holes are cosmic objects that can be mathematically described by a
set of Einstein-Maxwell equations (e.g., Romero and Vila, 2014). Various formulations of
the Uniqueness Theorems express in a rigorous way the conditions under which the black
hole solutions exist, and they constrain the parameter space that is necessary to specify
different cases (Wald, 1984). It turns out that classical black holes are described by a small
number of such parameters, in particular, the mass, electric (or magnetic) charge, and an-
gular momentum (spin). Black holes do not support their own magnetic field except the
gravito-magnetically induced components in the rotating, charged Kerr-Newman metric.

However, astrophysical black holes are embedded in a magnetic field of external origin,
which then interacts with the internal properties of the black hole (Ruffini and Wilson,
1975). In the case of very strong magnetic intensity, the magnetic field even contributes
to the spacetime metric. In the present contribution, we examine the interesting properties
of such an electrically charged, magnetized, rotating black hole. To this end, we employ
the solution originally derived in the 1970s by means of Ernst magnetization techniques
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(Ernst and Wild, 1976) and demonstrate its interesting features in terms of magnetic flux
threading different regions of the black hole horizon or an entire hemisphere (see Bičák and
Hejda (2015), and further references cited therein).

We limit our discussion to axially symmetric and stationary solutions. These are vacuum,
asymptotically non-flat solutions, where the influence of plasma is ignored, but the effects
of strong gravity are taken into account.

2 MAGNETIZED BLACK HOLES WITH SPIN AND CHARGE

We can write the system of mutually coupled Einstein-Maxwell partial differential equa-
tions (Chandrasekhar, 1983),

Rµν − 1
2 Rgµν = 8πTµν, (1)

where the source term Tµν is of purely electromagnetic origin,

Tαβ ≡ TαβEMG =
1

4π

(
FαµFβµ −

1
4

FµνFµνgαβ
)
, (2)

T µν;ν = −Fµα jα, Fµν;ν = 4π jµ, ⋆Fµν;ν = 4πMµ, (3)

and ⋆Fµν ≡ 1
2εµν

ρσFρσ. We will consider the spacetime solutions for the metric that sat-
isfies the electro-vacuum case with a regular event horizon under the constraints of axial
symmetry and stationarity,

ds2 = f −1
[
e2γ

(
dz2 + dρ2

)
+ ρ2 dϕ2

]
− f ( dt − ω dϕ)2 , (4)

with f , ω, and γ being functions of z and ρ only. Hereafter, instead of the canonical cylin-
drical form (4), we will also employ the spheroidal coordinates r and θ when convenient.
In the weak electromagnetic field approximation, the electromagnetic (test) field is sup-
posed to reside in the background of a rotating black hole, e.g., Kerr metric or a weakly
charged Kerr metric (e.g., Wald, 1984; Gal’tsov, 1986). As an example, in such an asymp-
totically flat spacetime, the axial Killing vector ∂ϕ(≡ ξ̃) generates a uniform magnetic field,
whereas the field vanishes asymptotically for the time-like Killing vector ∂t(≡ ξ). These
two solutions are known as the Wald’s field, i.e.

F = 1
2 B0

(
dξ̃ + 2J

M dξ
)

(5)

in Wald (1974) notation. Magnetic flux surfaces are defined,

4πΦm =

∫
S

F = const. (6)

Magnetic and electric (Lorentz) forces are then given in terms of the particle’s mass m, its
four-velocity u, and magnetic and electric charges, qm and qe, respectively:

mu̇ = qm
⋆F.u, mu̇ = qeF.u. (7)
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Magnetic field lines are determined by

dr
dθ
=

Br

Bθ
,

dr
dϕ
=

Br

Bϕ
, (8)

in a perfect analogy with classical electromagnetism. We will employ the above-given
quantities in our discussion further below.

Magnetic (electric) lines of force are defined by the direction of Lorentz force that acts
on electric (magnetic) charges,

duµ

dτ
∝ ⋆Fµν uν,

duµ

dτ
∝ Fµν uν. (9)

Therefore, in an axially symmetric system, the equation for magnetic lines takes a lucid
form,

dr
dθ
= −

Fθϕ
Frϕ
,

dr
dϕ
=

Fθϕ
Frθ
, (10)

that is in correspondence with eq. (8).
Let us now turn our attention to the case of a strong magnetic field, where we cannot ig-

nore its influence on the spacetime metric. The latter is not necessarily flat in the asymptot-
ical spatial region far from the black hole (Ernst and Wild, 1976; Karas and Vokrouhlický,
1991).

As an example, we can consider magnetized Kerr-Newman black hole metric expressed
in the form (García Díaz, 1985)

ds2 = |Λ|2 Σ
(
∆−1 dr2 + dθ2 − ∆A−1 dt2

)
+ |Λ|−2 Σ−1A sin2 θ ( dϕ − ω dt)2 , (11)

where Σ = r2+a2 cos2 θ, ∆ = r2−2Mr+a2+e2, A =
(
r2 + a2

)2
−∆a2 sin2 θ are functions from

the Kerr-Newman metric. The outer horizon is located at radius r≡r+ = 1+
(
1 − a2 − e2

)1/2
,

like in an unmagnetized case, and the horizon existence is restricted to the range of parame-
ters a2+e2 ≤ 1. Let us emphasise that, in the magnetized case, the traditional Kerr-Newman
parameters a and e are not identical with the black hole total spin and electric charge, as
we will see further below. Moreover, because of the asymptotically non-flat nature of the
spacetime, the Komar-type angular momentum and electric charge (as well as the black
hole mass) have to be defined by integration over the horizon sphere rather than at radial
infinity.

The magnetization function Λ = 1 + βΦ − 1
4β

2E, in terms of the Ernst potentials Φ (r, θ)
and E (r, θ), reads

ΣΦ = ear sin2 θ − ie
(
r2 + a2

)
cos θ, (12)

ΣE = − A sin2 θ − e2
(
a2 + r2 cos2 θ

)
+ 2ia

[
Σ
(
3 − cos2 θ

)
+ a2 sin4 θ − re2 sin2 θ

]
cos θ. (13)
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Figure 1. The “butterfly diagram” shows the magnetic flux Φm of magnetized Kerr-Newman black
hole with a2 + e2 = 1 as a function of the total electric charge QH. Solid curves correspond to
a constant value of the dimensionless magnetization parameter β = BM (β = 0 is the case of an
unmagnetized Kerr-Newman black hole). The area of the plot with ultra-strong magnetization is
bounded by β = 1 (red curve) and emphasized by yellow colour in the plot. The lines of a constant
ratio of a/e and varying β are also plotted (dashed; the cases of a/e = ±0.85 and 0 are shown); some
distinctive combinations of the parameters a, e are emphasized by colour points.

The corresponding components of the electromagnetic field can be written conveniently
with respect to orthonormal LNRF components,

H(r) + iE(r) = A−1/2 sin−1θΦ′,θ, (14)
H(θ) + iE(θ) = − (∆/A)1/2 sin−1θΦ′,r, (15)

where Φ′(r, θ) = Λ−1
(
Φ − 1

2βE
)
. The total electric charge QH is

QH = − |Λ0|
2 ℑmΦ′ (r+, 0) , (16)

and the magnetic fluxΦm(θ) across a cap placed in an axisymmetric position on the horizon
is

Φm = 2π |Λ0|
2 ℜeΦ′

(
r+, θ̄

)∣∣∣∣θθ̄=0, (17)

where Λ0 = Λ(θ = 0). The adopted notation indicates subtraction of the Ernst potential
values Φ′

(
r+, θ̄

)
taken at θ̄ → θ and θ̄ → 0.
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At this point, it is interesting to mention that the span of the azimuthal coordinate in
the magnetized solution must be rescaled by the multiplication factor Λ0 in order to avoid
a conical singularity on the symmetry axis (Hiscock, 1981):

Λ0 =
[
1 + 3

2β
2e2 + 2β3ae + β4

(
1

16 e4 + a2
)]1/2
. (18)

This rescaling procedure effectively leads to the increase of the horizon surface area, and
thereby also magnetic flux across the horizon (Karas, 1988). In Figure 1, the magnetic
flux across the entire black hole hemisphere in Kerr-Newman strongly magnetized black
hole solution, Φm(θ = π/2), is shown as a function of electric charge on the horizon, QH
(additional details can be found in Karas and Budinová (2000); Karas et al. (2019)).

Cases of intersection of the β = const curves with F = 0 and non-zero charge, QH , 0,
correspond to the vanishing angular momentum of the black hole, J = 0. This property
is rather different from the behaviour of weakly magnetized black holes with only a test
magnetic field imposed on them. On the other hand, this exact solution does not allow us to
study the effects of the misalignment of the magnetic field with respect to the rotation axis,
which is so far possible only in the test-field approximation or by numerical techniques. Let
us also note that it may be interesting to consider the magnetic flux also in other spacetime
metrics for comparison and better understanding of the underlying processes (see, e.g.,
Gutsunaev and Manko (1988); Kovář et al. (2012); Khan and Chen (2023); Vrba et al.
(2023), and further references cited therein).

3 CONCLUSIONS

We discussed the magnetic flux across the event horizon of a magnetized rotating black
hole and the associated electric charge within the framework of the exact solution of mutu-
ally coupled Einstein-Maxwell equations. To this end, we adopted Ernst and Wild (1976)
spacetime, which represents an axially symmetric, stationary solution that corresponds, in
a straightforward manner, to the Wald (1974) solution of an asymptotically uniform mag-
netic field imposed on the background of Kerr metric. On the other hand, in the limit of
small black hole mass, zero angular momentum and strong magnetic intensity, the adopted
solution goes over to the cosmological solution of Melvin universe (Melvin, 1964). The
latter represents an asymptotically non-flat ‘geon’ that is maintained in the static configu-
ration by the gravitational effect of the magnetic field acting upon itself. In other words,
this means that our discussion is appropriate for the limit of ultra-strong magnetic fields
that might be possibly relevant in the conditions of early Universe (Beskin et al., 2015). On
the other hand, we think that this extreme situation does not bring any qualitatively new
phenomena into the discussion of the magnetic Penrose process, which has been recently
discussed in the context of weakly magnetized black holes (Karas and Stuchlík, 2023).

We elaborated a detailed graphical representation of magnetic flux which exhibits an in-
tricate structure as a function of the space-time parameters. This has allowed us to position
specific configurations, such as those with vanishing angular momentum or vanishing elec-
tric charge. The corresponding combinations of the model parameters are different from the
case of weak magnetic field limit because of strong-gravity effects. Let us note that ultra-
strong magnetic fields are expected to affect processes on molecular and atomic scales in
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the conditions when the magnetic energy density becomes comparable to the binding en-
ergy density (Lai, 2015).
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