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ABSTRACT
We present1 a generalization of the Rezzolla-Zhidenko theory-agnostic parametriza-
tion of black-hole spacetimes to accommodate spherically-symmetric Lorentzian,
traversable wormholes (WHs) in an arbitrary metric theory of gravity. By applying
our parametrization to various known WH metrics and performing calculations in-
volving shadows and quasinormal modes, we show that only a few parameters are
important for finding potentially observable quantities in a WH spacetime.
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1 INTRODUCTION

Wormholes (WHs) are hypothetical tunnel-like spacetime structures that connect two dif-
ferent regions of our Universe and can even be envisaged as bridges between different
universes (Visser, 1995). The concept of a WH emerged as early as 1916 in the work
by Flamm (1916), and also in the works of Einstein and Rosen (1935) and Wheeler (1955),
however, these WHs were non-traversable. The first examples of exact solutions in GR
corresponding to traversable WHs sourced by a phantom scalar field have been obtained
in Bronnikov (1973); Ellis (1973). A significant rekindling of interest in the subject came
about with the work of Morris and Thorne (1988).

As the work of Morris and Thorne and subsequent studies have revealed, traversable
WHs typically come with a number of problems, such as the requirement of exotic forms
of matter to support the throat from collapsing (Morris and Thorne, 1988), and/or dynam-
ical instabilities (Bronnikov and Grinyok, 2001; Gonzalez et al., 2009; Bronnikov et al.,
2011, 2012; Bronnikov, 2018; Cuyubamba et al., 2018). To date, there is no known fully
satisfactory model for a traversable, Lorentzian WH that has been proven to be both free
of the necessity for exotic mater for its existence and at the same time corresponding to
a dynamically stable configuration. As a consequence, a general theory-agnostic approach

1 Talk given by the author at RAGtime 23, Opava, Czech Republic, based on Bronnikov et al. (2021).
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to parametrizing a WH geometry in such a way that can be constrained by current and
upcoming observations could provide a solution. For a recent review on the search for
astrophysical WHs in our Universe, the reader is directed to Bambi and Stojkovic (2021).

In the case of black hole (BH) geometries, a general theory-agnostic parametrization that
can be constrained from observations has been proposed by Rezzolla and Zhidenko (2014)
(RZ). This method is similar in spirit to the parametrized post-Newtonian formalism, al-
beit with validity that is not limited to the weak-field regime but rather covers the whole
spacetime outside the event horizon of the BH. The RZ BH metric is defined in terms of
a compact radial coordinate and a continued fraction expansion involving an infinite tower
of dimensionless parameters. Due to the rapid convergence properties of the continued
fractions, however, in practice, only the first few of the expansion parameters are dominant
and important for describing observable quantities in a BH background. Inspired by the
above, in Bronnikov et al. (2021), we proposed a modification of the RZ BH metric that
allows for the parametrization of WH geometries in a theory-agnostic way.

This article is structured as follows. In Sec. 2, we discuss in general terms some features
of asymptotically flat WH spacetimes. In Sec. 3, we provide a brief overview of the RZ
BH parametrization and then introduce our extended parametrization for WH. In Sec. 4 we
obtain parmetrizations for examples of known WH metrics. Section 5 is dedicated to the
study of shadows and quasinormal modes on the parametrized WH backgrounds as tests
for the accuracy of our method. We conclude in Sec. 6.

2 WORMHOLE SPACETIMES: GENERAL CONSIDERATIONS

2.1 Asymptotically flat, traversable Lorentzian wormholes

The line element for an arbitrary four-dimensional static, spherically symmetric geometry
can be written as

ds2 = − f (r)dt2 +
1

h (r)
dr2 + K2 (r)

(
dθ2 + sin2 θ dϕ2

)
. (1)

Out of the three metric functions f (r), h(r), K(r) in the above ansatz, only two are inde-
pendent, and upon appropriately transforming the radial coordinate, any metric can be cast
in the form where K(r) = r, however, this might not always be feasible analytically. In
general, the area of the sphere at radial coordinate r is A(r) = 4πK2(r). A WH structure is
characterized by a minimum radius r0 called the throat (the narrowest part of the tunnel)
for which the surface area is minimized, namely

A′(r0) = 0→ K′(r0) = 0 . (2)

The metric functions f (r) and h(r) are regular and positive in a range of r containing the
throat and values of r on both sides from the throat such that K(r) ≫ K(r0). It is then said
that the metric (1) describes a traversable, Lorentzian WH. Furthermore, a WH is classified
as being asymptotically flat if, for r tending to some r = r∞, the following conditions are
satisfied

f (r)→ 1 , h(r)
(

dK(r)
dr

)2

→ 1 . (3)
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2.2 The Morris-Thorne frame

A very commonly used frame in the literature where WH metrics are written is the one
introduced by Morris and Thorne (1988) (MT)

ds2 = −e2Φ(r)dt2 +

(
1 −

b (r)
r

)−1

dr2 + r2dΩ2. (4)

There are two arbitrary metric functions in the above line element. The first, Φ(r), is
often called the redshift function, and the absence of event horizons (WH traversability)
requires that it should be finite everywhere. The second, b (r), is called shape function, and
indirectly determines the spatial shape of the WH in its embedding diagram representation.
In the MT frame, r0 is determined by the condition

h(r) =
(
1 −

b (r)
r

)
= 0, (5)

while eΦ(r0) > 0 is required, and the radial coordinate is defined for r ∈ [r0,∞). The
shape function should satisfy the so-called flair-out conditions on the throat, b(r0) = r0
and b′(r0) < 1 while b(r) < r for r , r0. In the framework of GR, Morris and Thorne
(1988) showed that WHs require the presence of some sort of exotic matter that violates the
null energy condition. For recent developments regarding traversable WHs without exotic
matter in Einstein-Dirac-Maxwell theory see Blázquez-Salcedo et al. (2021); Bolokhov
et al. (2021); Konoplya and Zhidenko (2022b).

2.3 Wormhole shadows

In this section, we outline the method for the computation of shadows in an arbitrary
static spherically symmetric and asymptotically flat spacetime Synge (1966); Perlick et al.
(2015). Starting with the general metric ansatz (1), it is convenient to introduce the function

w2(r) ≡
K2(r)
f (r)

. (6)

The photon-sphere radius rph, corresponds to the minimum of w2(r) and is thus determined
as a solution to

dw2(rph)
dr

= 0 . (7)

The angular radius of the shadow (associated with the outermost photon sphere), as seen
by a distant static observer located at rO, is then obtained by means of (6) as

sin2 ash =
w2(rph)
w2(rO)

. (8)

Under the assumption rO ≫ r0, where r0 is a characteristic length scale that can be identi-
fied with the radius of the WH throat or the BH event horizon depending on the nature of
the compact object under consideration, we have that

f (rO) ≃ 1 , K2(rO) ≃ r2
O , (9)
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and thus, one finds that the radius of the shadow is given by

Rsh ≃ rO sin ash ≃ w(rph) =
K(rph)√

f (rph)
. (10)

3 CONTINUED-FRACTION PARAMETRIZATION FOR WORMHOLES

3.1 The Rezzolla-Zhidenko parametrized black-hole metric

Let us begin this section by briefly reviewing the parametrization of spherically symmet-
ric BHs suggested in Rezzolla and Zhidenko (2014) (RZ), and subsequently, we will see
which modifications of this approach are required when going over to WH geometries.
The RZ parametrization is based on a dimensionless compact coordinate (DCC) that maps
[r0,∞)→ [0, 1] according to

x(r) ≡ 1 −
r0

r
, (11)

where r0 is the location of the outer event horizon of the BH determined via the condition
f (r0) = 0. If K2(r) = r2, then r0 is also the radius of the outer event horizon. In terms
of (11), the following parametrization equations are introduced:

f (r) = Ã (x) , (12)

1
h(r)
=

B̃ (x)

Ã (x)
, (13)

where the parametrization functions Ã(x) and B̃(x) are defined as

Ã (x) ≡ x

1 − ϵ (1 − x) + (a0 − ϵ) (1 − x)2 +
a1

1 + a2 x
1+ a3 x

...

(1 − x)3

 , (14)

B̃ (x) ≡

1 + b0 (1 − x) +
b1

1 + b2 x
1+ b3 x

...

(1 − x)2


2

. (15)

The above parametrization involves two families of parameters. The first family consists
of three “asymptotic” parameters (ϵ, a0, b0), which are determined via the expansions of
the parametrization equations at spatial infinity (x = 1), while the second family consists
of the remaining parameters (a1, a2, . . . , b1, b2, . . .) i.e. the “near-field” parameters which
are determined at the location of the event horizon (x = 0). For the axially-symmetric
generalization of the RZ metric see Konoplya et al. (2016), while for its higher-dimensional
extension see Konoplya et al. (2020b). More recently, an extension of the parametrization
to non-asymptotically flat cases has been proposed in Konoplya and Zhidenko (2022a,
2023).
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3.2 The parametrized wormhole metric

To construct our WH parametrization, we consider the radial coordinate compactification
according to (11), with r0 interpreted in this context as the location of the WH radius2.
Then, we may parametrize the metric functions according to Bronnikov et al. (2021)

f (r) = f0 + x

(1 − f0) − (ϵ + f0) (1 − x) + (a0 − ϵ − f0)(1 − x)2 +
a1(1 − x)3

1 + a2 x
1+ a3 x

...

 , (16)

h(r) = h0 + x

(1 − h0) − (b0 + h0) (1 − x) +
b1(1 − x)2

1 + b2 x
1+ b3 x

...

 . (17)

Being an extension of the RZ parametrization, it is no surprise that our parametrized WH
metric shares several appealing properties with its BH predecessor, to which it reduces in
the limit ( f0, h0) → (0, 0). Quite importantly, it is valid for all space (x ∈ [0, 1]), not only
near x = 0 or x = 1, and the continued-fraction expansions, endow the parametrization with
quick converge properties3. The n−th order approximation of a given metric can be easily
obtained by setting the (n + 1) − th near-field parameters (an+1, bn+1) equal to zero, thus
removing all the higher-order parameters from the expressions of the metric functions. The
metric (16)-(17) involves once again two families of parameters, the asymptotic (ϵ, a0, b0),
which are determined at (x = 1) and the set ( f0, h0, ai, bi) which are determined near the
throat of the WH (x = 0), in analogy to the BH case discussed in the previous section.

3.3 Observational constraints on the asymptotic parameters

Given that the parametrization is developed in a theory-agnostic way, i.e. independently of
the underlying theory of gravity, there are no precise constraints to be imposed on the metric
functions f (r) and h(r). However, general constraints on the asymptotic parameters can be
imposed via the parameterized post-Newtonian (PPN) expansions (Will, 2006, 2014). To
this end, consider the expansions of our parametrized metric (16)-(17) at x = 1

f (r) = 1 − (1 + ϵ) (1 − x) + a0 (1 − x)2 + O
(
(1 − x)3

)
, (18)

1
h(r)
= 1 + (1 + b0) (1 − x) + O

(
(1 − x)2

)
. (19)

It is then straightforward, by comparison with the PPN expansions, to associate the asymp-
totic parameters (ϵ, a0, b0) with the PPN parameters β and γ in the following way

ϵ =
2M
r0
− 1 , a0 =

2M2

r2
0

(β − γ) , (20)

2 For alternative definitions of the DCC and its optimization see Bronnikov et al. (2021).
3 These properties, allow for the parametrization to also be utilized for the analytic representation of numerical
WH solutions along the lines of the analyses performed for BH spacetimes, see e.g. Younsi et al. (2016); Kokkotas
et al. (2017); Hennigar et al. (2018); Konoplya and Zhidenko (2019); Konoplya et al. (2020a).
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and

b0 = γ
2M
r0
− 1 ⇒ b0 = γ (ϵ + 1) − 1 . (21)

Since β and γ are constrained as |β − 1| ≲ 2.3× 10−4, and |γ − 1| ≲ 2.3× 10−5 , it follows
that in our parametrization, astrophysically viable WHs must be characterized by a0 ≃ 0
and b0 ≃ ϵ. This is to be contrasted with the PPN constraints on the BH parametrization for
which one finds a0 ≃ 0 and b0 ≃ 0 (Rezzolla and Zhidenko, 2014; Bronnikov et al., 2021).

4 EXAMPLES OF PARAMETRIZATION

In this section, we consider various exact WH geometries and obtain the parametrizations
for the first few orders in the continued-fraction expansion. This will provide a means to
test the adequacy of the proposed method in providing accurate approximations for WH
geometries in terms of only a few coefficients of the expansion. For more details and ex-
amples of WH parametrizations the interested reader is referred to Bronnikov et al. (2021).

4.1 The Bronnikov-Kim II braneworld wormhole solution

In the context of the so-called Randall-Sundrum II braneworld model (Randall and Sun-
drum, 1999), by solving the Shiromizu-Maeda-Sasaki modified Einstein equations on the
brane (Shiromizu et al., 2000), Bronnikov and Kim in Bronnikov and Kim (2003) have ob-
tained a large class of static, spherically symmetric Lorentzian wormhole solutions. Here,
we consider one of those solutions corresponding to a two-parametric family of spacetimes,
with a line element given by

ds2 = −

(
1 −
α2

r2

)
dt2 +

(
1 −
α2

r2

)−1 (
1 +

C − α
√

2r2 − α2

)−1

dr2 + r2dΩ2,

= −

(
1 −
α2

r2

)
dt2 +

(
1 −
α2

r2

)−1
1 −

√
2r2

0 − α
2

2r2 − α2


−1

dr2 + r2dΩ2 , (22)

where in the second line we have used the condition (5) for the determination of the location
of the WH throat r0, in order to write C = α −

(
2r2

0 − α
2
)1/2

. The above line element is one
with a zero Schwarzschild mass and exhibits black-hole and wormhole branches. For the
WH branch, the absence of horizons implies f (r) ≡ −gtt(r) > 0∀ r ∈ [r0,∞) and so the
following condition between the parameters is established

f (r0) =
1 − α2

r2
0

 ⩾ 0⇒ r0 ⩾ α . (23)

The threshold between the WH and BH branches of the solution corresponds to α = r0,
where in this case, r0 is identified with the location of the (double) BH event horizon. The
WH/BH threshold is of special importance for testing the accuracy of the parametrization
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in the case of WHs that deviate only slightly from a BH geometry, thus corresponding to
BH mimickers, see e.g. Damour and Solodukhin (2007); Churilova and Stuchlik (2020);
Bronnikov and Konoplya (2020). For the metric function f (r) the parametrization is exact4

with the values of the expansion parameters (EPs) being

ϵ = −1 , a0 = −
α2

r2
0

, f0 = 1 −
α2

r2
0

, ai = 0 ∀i ⩾ 1 . (24)

On the other hand, the parametrization of h(r) is not exact, the first few EPs are

b0 =

√
1 −
α2

2r2
0

− 1 , h0 = 0 , b1 = b0 +
α2

α2 + 2r2
0

, (25)

b2 =
2α4 (1 + b0) − α2 (7 + 8b0) r2

0 + 8b0r4
0

b1

(
α2 − 2 r2

0

)2 − 3 . (26)

According to results presented in Table 1, the first-order approximation, provides a very
accurate description of the metric (22) with an absolute relative error (ARE) less than 1%
for the majority of the parametric space, i.e. for p ≲ 0.6, but becomes less accurate as the
WH/BH threshold is approached (p→ 1). However, it is also evident that the parametriza-
tion converges very quickly and as a consequence, the error is significantly reduced once
the second-order correction is taken into account even at the WH/BH threshold (Bronnikov
et al., 2021).

Table 1. The maximum ARE in percents between the exact metric h(r) and its approximation at vari-
ous orders in terms of the dimensionless parameter p ≡ α/r0 ⩽ 1. The WH/BH threshold corresponds
to p = 1.

order p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.8 p = 0.99
1 0.00063 0.05460 0.49509 2.53408 5.39226 31.12707
2 0.00010 0.00840 0.07270 0.34042 0.67203 2.49612
3 0.00001 0.00118 0.00829 0.02370 0.02622 0.13332
4 O(10−8) 0.00004 0.00093 0.00883 0.02312 0.12947

4.2 The Simpson-Visser geometry

In Simpson and Visser (2019) (SV), an interesting geometry has been introduced as a toy-
model via a one-parameter deformation of the Schwarzschild metric. Written in terms of
the quasiglobal coordinate, the SV line element reads

ds2 = −

(
1 −

2 m
√

r2 + α2

)
dt2 +

dr2(
1 − 2 m

√
r2+α2

) + (
r2 + α2

)
dΩ2 . (27)

4 Note that, whenever a metric function has a polynomial form, the parametrization is, by construction, always
exact at a finite order. This holds true for both the original RZ (14)-(15) and our (16)-(17) parametrized metrics.
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The above line-element has been generalized to axial symmetry by Mazza et al. (2021),
while the field sources for the SV metric have been obtained recently by Bronnikov and
Walia (2022). Depending on the value of the dimensionless parameter p ≡ α/m, the SV
metric describes a traversable WH for p > 2, an extremal regular BH for p = 2 (thus this
value of p defines also the WH/BH threshold), for p < 2 a black-bounce state is obtained
(see Simpson and Visser, 2019)5, while for p = 0 the Schwarzschild geometry is recovered,
see also Fig. 1.

-10 -5 0 5 10

-0.5

0.0

0.5

1.0

r

f(r)

Figure 1. The f (r) metric function of the Simpson-Visser geometry (27) corresponding to
a traversable wormhole (blue curve, for p ≡ α/m = 2.9), an extremal regular BH (red curve, for
p = 2), a black bounce (black curve, for p = 1.2), the Schwarzschild BH limit (dashed curve, for
p→ 0).

Notice that the metric (27) is not in the Morris-Thorne frame (4) since K2(r) , r2. To
this end, one may perform the coordinate transformation r → r̃ : r̃2 = r2 + α2 , in order to
recast the metric to the MT frame where it is written as

ds2 = −

(
1 −

2 m
r̃

)
dt2 +

(
1 −

2 m
r̃

)−1 (
1 −
α2

r̃2

)−1

dr̃2 + r̃2dΩ2. (28)

Then, one may proceed with the parametrization in terms of (11) and (17). The condi-
tion (5), which determines the location of the WH throat r0 in the MT frame, yields the
following equation in the case of the SV wormhole

h(r) ≡
(
1 −

2 m
r̃

) (
1 −
α2

r̃2

)
= 0. (29)

There are two roots to the above equation, which are located at r̃ = 2m and r̃ = α. The
former root, is not a suitable choice for a WH throat because, in this case, f (r̃0) = 0, and an
event horizon emerges. Thus, the WH branch corresponds to the region in the parametric

5 See also Bronnikov and Fabris (2006); Bronnikov et al. (2007); Bolokhov et al. (2012).
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space defined by α > 2m. Since the metric functions in (28) are of polynomial form, the
parametrization is exact with the EPs given by

ϵ =
2m
α
− 1 , a0 = 0 , f0 = 1 −

2m
α
, ai = 0 ∀i ⩾ 1,

b0 =
2m
α
− 1 , h0 = 0 , b1 = −

2m
α
, bi = 0 ∀i ⩾ 2. (30)

A general parametrization for WH metrics in non-MT frames by means of (16) and (17)
is also possible upon appropriate modification of the DCC. In particular, for the line-
element (27), the optimized version of the DCC6

x(r) = 1 −

√
R2

0

R2
0 + r2

, R0 = α

√
3
2
, (31)

yields a parametrization for the SV metric with the first few EPs given by

ϵ =
2m
R0
− 1 , a0 = 0 , f0 = 1 −

2m
α
, a1 = 2ϵ + 3 f0 − 1 +

2mR2
0

α3 ,

a2 =
3

2a1

4ϵ + 5 f0 − 3a1 − 1 +
2mR4

0

α5

 . (32)

5 SHADOWS AND PERTURBATIONS OF TEST FIELDS

In this section, as gauge-invariant tests for the accuracy of the parametrization, we consider
shadows and perturbations of test fields in the background of the approximate WH metrics
obtained by considering various orders in the continued-fraction expansion and compare
them with the corresponding values obtained when the exact metric expressions are used.

5.1 Shadows of the anti-Fisher wormhole

In the context of GR with a massless minimally-coupled scalar field, a solution containing
a naked singularity has been found (Fisher, 1948). When the kinetic term of the scalar
field has the opposite sign, a solution emerges which has a WH branch and has been called
anti-Fisher solution (Bronnikov, 1973). The metric functions for the latter solution assume
the following form

f (r) = h(r) = e2u(r), K2(r) = e−2u(r)
(
r2 + α2

)
, u(r) ≡

m
α

(
arctan

r
α
−
π

2

)
. (33)

Substitution of (33) in the general expression (10), yields the shadow radius for the anti-
Fisher WH

Rsh = e−2 u(rph)
√

4m2 + α2, (34)

6 For more details on the DCC optimization see Bronnikov et al. (2021).
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where rph = 2m is the photon sphere radius which has been determined via (7). The first
few EPs for the parametrization of f (r) in this case are given by

ϵ = 1, a0 = 2, f0 = e2u(m), a1 = f0

(
3 +

2m2

α2 + m2

)
− 1,

a2 =
6 f0 − 4a1 − 2

a1
, a3 = −

f0
[

2m4

3(α2+m2)2 − 10
]
+ a1 [10 + a2 (5 + a2)] + 4

a1a2
. (35)

By considering various orders in the approximation of f (r) via (16) and (35), we once
again compute the shadow radius by means of (10) and compare the result order-by-order
with the exact value given in Eq. (34). Our findings (Bronnikov et al., 2021) are presented
in terms of the dimensionless parameter p ≡ α/m in Table 2. The high accuracy of the
approximation already at the first order and the quick convergence are evident.

Table 2. The percentage of absolute relative error between the exact value of the shadow radius (34)
and its value as obtained via Eq. (10) for various approximation orders of the metric function f (r).

order p = 0.01 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6
1 1.04775 0.95530 0.83863 0.67406 0.46096 0.19918
2 0.02753 0.03339 0.04295 0.06093 0.09281 0.14633
3 0.00304 0.00387 0.00570 0.01061 0.02367 0.05883
4 0.00011 0.00019 0.00034 0.00063 0.00112 0.00186

5.2 Shadows of the Simpson-Visser wormhole

As a second example for shadows in a wormhole background, we consider the SV metric
in the non-Morris-Thorne frame i.e. (27), for which we obtain the exact expression for the
shadow radius

Rsh = 3
√

3m. (36)

Notice that the value of Rsh is independent of the parameter α and it is identified with the
shadow radius of the Schwarzschild BH, for detailed discussions see Tsukamoto (2021);
Lima et al. (2021). Subsequently, by considering various orders for the approximate metric
according to (32), we compute once again Rsh and compare it with the exact result (36).
The range of values for the dimensionless parameter p ≡ α/m that is relevant for the
analysis here is p ∈ [2, 3] where the lower bound corresponds to the WH/BH threshold and
the upper bound corresponds to the maximum value of p for which the spacetime under
consideration exhibits a photon sphere. Our findings (Bronnikov et al., 2021) are displayed
in Table 3.
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Table 3. The percentage of absolute relative error between the analytic value of the shadow and its
value for various approximation orders of the metric.

order p = 2.01 p = 2.1 p = 2.4 p = 2.5 p = 2.7 p = 2.99
1 0.54727 0.47968 0.25291 0.18463 0.07285 0.00009
2 0.01973 0.01568 0.00544 0.00329 0.00076 O(10−8)
3 0.00278 0.00200 0.00046 0.00023 0.00003 O(10−11)
4 0.00060 0.00039 0.00005 0.00002 O(10−6) O(10−13)

We observe that already with the first-order approximation of the metric, the error is less
than 1% for all values of p, and it is monotonically decreasing from the WH/BH threshold
all the way to the no-photon sphere limit. Furthermore, one can see the quick convergence
of the series where the error is reduced by approximately one order of magnitude with each
additional term in the expansion that is taken into account.

5.3 Quasinormal modes

Let us now consider the fundamental quasinormal modes (QNMs) of the electromagnetic
field propagating in a WH background. QNMs are characteristic frequencies of a compact
object which are independent of the initial conditions of perturbations and are completely
determined by the parameters of the compact object under consideration (Kokkotas and
Schmidt, 1999; Berti et al., 2009; Konoplya and Zhidenko, 2011). The real part of a QNM
represents a real oscillation frequency, while the imaginary part is proportional to the damp-
ing rate. For a non exhaustive list of works where QNMs in WHs backgrounds have
been studied, see Konoplya and Zhidenko (2010); Bronnikov et al. (2012); Taylor (2014);
Cuyubamba et al. (2018); Völkel and Kokkotas (2018); Aneesh et al. (2018); Konoplya
(2018); Kim et al. (2018); Dutta Roy et al. (2020); Churilova et al. (2020); Jusufi (2021);
Biswas et al. (2022). An electromagnetic field obeys the general covariant Maxwell equa-
tions

1
√
−g
∂µ

(
Fρσgρνgσµ

√
−g

)
= 0. (37)

Here Fρσ = ∂ρAσ−∂σAρ and Aµ is a vector potential. For the spherically-symmetric space-
time (1), one may introduce the “tortoise coordinate” r∗, in terms of the metric functions
f (r) and h(r) as

dr∗ =
dr√

f (r)h(r)
. (38)

Then, after separation of variables, Eq. (37) assumes the following wave-like form

d2Ψ

dr2
∗

+
(
ω2 − V(r)

)
Ψ = 0, (39)

and the effective potential reads as

Vem(r) = f (r)
ℓ(ℓ + 1)

r2 . (40)
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Even though the effective potential depends on the gravitational background only via
the metric function f (r), the QNMs will depend on both f (r) and h(r) implicitly via the
tortoise coordinate (38). The boundary conditions for finding QNMs in a WH background
correspond to purely outgoing waves at both infinities r∗ → ±∞ (Konoplya and Molina,
2005). The values of QNMs obtained for the Bronnikov-Kim II and Simpson-Viser WHs
both of which have been discussed in the previous sections, are displayed in Tables 4 and 5
respectively (Bronnikov et al., 2021).

Table 4. Fundamental quasinormal modes (ℓ = 1, n = 0) of the electromagnetic field for the
Bronnikov-Kim II wormhole.

order C = −0.01 C = −0.3 C = −0.7
exact 0.64306 − 0.20529i 0.70322 − 0.03991i 0.73338 − 0.09961i
1st 0.65899 − 0.19306i 0.70232 − 0.03741i 0.73304 − 0.09836i
2nd 0.64093 − 0.20593i 0.70332 − 0.04009i 0.73345 − 0.09969i

Table 5. Fundamental quasinormal modes (ℓ = 1, n = 0) of the electromagnetic field for the Simpson-
Visser wormhole (m = 1/2).

order α = 1.01 α = 1.25 α = 1.4
exact 0.51125 − 0.13311i 0.55491 − 0.03299i 0.56858 − 0.05986i
1st 0.50899 − 0.13211i 0.55394 − 0.03297i 0.56770 − 0.05982i
2nd 0.51241 − 0.13405i 0.55520 − 0.03286i 0.56885 − 0.05969i

As it can be seen, the QNMs obtained with the first two orders in the continued-fraction
expansion of the background metric approximate very accurately the values obtained in
terms of the exact metric.

6 CONCLUSIONS

Building upon the Rezzolla and Zhidenko (2014) theory-agnostic parametrization of BH
spacetimes, we have introduced an extension that allows for general Lorentzian, traversable,
static and asymptotically-flat WH metrics to be accommodated in this parameterized frame-
work (Bronnikov et al., 2021). The parametrization is based on a continued-fraction ex-
pansion in terms of a compactified radial coordinate, exhibits rapid convergence properties,
and is valid in all of spacetime.

We have obtained the parametrizations for various examples of known wormhole ge-
ometries and studied the shadows and perturbations of test fields in these gravitational
backgrounds for different orders in the expansion. Quite importantly, by considering ge-
ometries that interpolate continuously between a BH and a WH, we have demonstrated that
the parametrization is very accurate, (already at the first and in some cases second-order in
the expansion), even at the WH/BH threshold and this is relevant for WHs that act as BH
mimickers.
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Our analysis demonstrates that when a WH metric changes relatively slowly in the ra-
diation zone, the observable effects in the wormhole background depend only on a few
parameters and the following approximation for the line-element is sufficient (Bronnikov
et al., 2021)7

ds2 = − f (r)dt2 +
1

h(r)
dr2 + r2dΩ2 , (41)

f (r) = 1 −
r0 (1 + ϵ)

r
+

r3
0 (a1 + f0 + ϵ)

r3 −
r4

0 a1

r4 , (42)

h(r) = 1 −
r0 (1 + ϵ)

r
+

r2
0 (b1 + h0 + ϵ)

r2 −
r3

0 b1

r3 . (43)
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