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ABSTRACT

The magnetic field through the magnetic reconnection process affects the dynamics
and structure of astrophysical systems. Numerical simulations are the tools to study
the evolution of these systems. However, the resolution, dimensions, resistivity, and
turbulence of the system are some important parameters to take into account in the
simulations. In this paper, we investigate the evolution of magnetic energy in astro-
physical simulations by performing a standard test problem for MHD codes, Orszag-
Tang. We estimate the numerical dissipation in the simulations using state-of-the-art
numerical simulation code in astrophysics, PLUTO. The estimated numerical resistiv-
ity in 2D simulations corresponds to the Lundquist number ~ 10* in the resolution
of 512 x 512 grid cells. It is also shown that the plasmoid unstable reconnection
layer can be resolved with sufficient resolutions. Our analysis demonstrates that in
non-relativistic magnetohydrodynamics simulations, magnetic and kinetic energies
undergo conversion into internal energy, resulting in plasma heating.

Keywords: Magnetohydrodynamics — magnetic energy dissipation — resistivity —
numerical simulations — PLUTO

1 INTRODUCTION

The evolution of magnetic fields has a significant impact on the dynamics and structure of
astrophysical systems, ranging from stars and planets to galaxies and even the large-scale
structure of the universe. Magnetic reconnection is believed to be a responsible mecha-
nism of magnetic field evolution. Magnetic reconnection can explain the heating and ac-
celeration of particles or plasmoids which are observed in high energy ejections like solar
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flares (Giovanelli, 1946; Jiang et al., 2021), magnetic substorms in the Earth magnetosphere
(McPherron, 1979; Akasofu, 1968), jets, and relativistic ejections from the accretion discs
of compact objects (Ripperda et al., 2020, 2022).

In this study, we conduct the Orszag-Tang (OT; Orszag and Tang, 1979), a well-known
test problem in numerical magnetohydrodynamics (MHD) simulation codes, used to exam-
ine the dissipation of magnetic energy and substructure formation in magnetized plasma.
We estimate the numerical resistivity by employing a resistive MHD (Res-MHD) module
in the PLUTO code (Mignone et al., 2007), and we find a resolution sufficient for investi-
gating the system’s properties. Subsequently, we investigate the energy conversion in MHD
simulations.

This paper is structured into the following sections: In Section 2, we present the MHD
equations, describe the initial and boundary conditions of the OT test problem, and detail
the numerical setups. Section 3 is dedicated to the discussion of simulation results, in-
cluding the estimation of numerical resistivity and analysis of energy conversion. The final
section provides the conclusions.

2 NUMERICAL APPROACH AND PROBLEM CONDITIONS
2.1 Magnetohydrodynamics (MHD) method

The MHD method is based on the equations of conservation of mass, momentum, and
energy, and Maxwell’s equations as follows
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where p and v are density and velocity, respectively. I represents the identity tensor, Tgy is
the electromagnetic stress tensor, € is the total energy density and w = p + Uiy is enthalpy
density, where Uiy is the internal energy. Magnetic and electric fields are denoted with B
and E, respectively,
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In the equations above, J is the current density that comes from Ohm’s law,
c? v
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where, in the cgs system of units we use, 1 represents the physical resistivity.



Energy dissipation in astrophysical simulations 137

2.2 Initial and boundary conditions

We solve the OT test problem using the MHD approximation method. This problem is
a standard test problem in MHD codes to examine the power of the code to capture the
MHD shocks and shock-shock interactions.

We set up the simulations of the OT test problem in a 2D box 0 < x,y < 27 with periodic
boundary conditions (Orszag and Tang, 1979) with the polytropic equation of stat with
adiabatic index y = 4/3.

The initial velocity and magnetic fields of the OT test problem are

v =vg (—siny,sinx,0), @)
B = By (—siny, sin2x,0), (®)

where we define vy = 0.99¢/ V2 and By = c+/4npy where py is the scaling factor of density
in code unit. The simulation results are presented in the code unit where the factor 1/ Vdx
and speed of light c are absorbed in the magnetic field and velocity, respectively. The initial
density and pressure are constant (p = 1 and P = 10 in the code unit).

2.3 Numerical setup

We perform the OT test problem in Minkowski coordinate in the Newtonian code PLUTO
v. 4.4. The equations are solved using the HLLC Riemann solver and the Monotonized
Central difference limiter MC. The equations are evolved in time using the second-order
Runge-Kutta method (RK2). To ensure V - B = 0, we use the flux-constrained transport CT
method.

3 SIMULATION RESULTS AND DISCUSSION

The simulations are performed in the resolutions in the range of 64 X 64 to 4096 x 4096
grid cells, with the step of multiplying by 2 in each direction. All simulations run to the
final time r = 107, (t, = L/c is the light-crossing time with L = 1 as the typical length of
the system).

We study the energy evolution of the system by exploring the averaged energy densities
0 defined by

ffs Qdxdy

0= )
ffs dxdy

&)

3.1 Numerical resistivity

To investigate the system evolution, we determine the required resolution at which the
numerical error has the least effect on the physics of the system.

In this section, we assess the numerical resistivity in simulations at different resolutions
using the resistive MHD (Res-MHD) module in PLUTO. The sufficient resolution is the
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resolution in which the numerical resistivity is less than the physical resistivity, and the
substructures (plasmoids) are captured. Plasmoids are regions of higher density and lower
magnetization relative to their surroundings that may exist in the magnetic reconnection
layers. Plasmoids evolve along the reconnection layers by growth, bulk acceleration, and
mergers. Theoretical studies show that the plasmoid unstable reconnection layers exist
when the Lundquist number (S = L/7) is larger than 10* (Ripperda et al., 2020; Loureiro
et al., 2007). We search for the resolution that the numerical resistivity in the code unit is
less than 107*. .

In the left panel of Fig. 1, we present the time evolution of B? in the non-resistive, ideal
MHD simulations at various resolutions. The value of B shows an increase as the reso-
lution is enhanced (numerical resistivity decreases). This indicates that as the resolution
increases, the curves exhibit greater convergence.

To determine the numerical resistivity at each resolution, we compare the time evolution
of B? in ideal MHD simulations (7 = 0) and Res-MHD simulations at different physical
resistivity values (e.g. 7 = 107, 1073, and 5 x 10~3). When the Res-MHD curve converges
to the MHD curve, it indicates that the numerical resistivity is less than/equal to the physical
resistivity.

For example, in the right panel of Fig. 1, we present the results of simulations at a resolu-
tion of 512x 512 grid cells. It is evident that the curve corresponding to 7 = 10~ converges
to the MHD curve (17 = 0). This convergence implies that the numerical dissipation at the
resolution of 512 x 512 grid cells is > 10*. Therefore, the resolutions > 512 x 512 grid
cells can be suitable for studying the evolution and properties of the system.
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1.15- e 64x64 * 1024 %1024 - 1.15¢ . n=0 v n=1x10-3 |
A 128x128 k- 2048 x 2048 | 4 n=1x10"* —m- n=5x10- |
- 256x256 —— 4096 x 4096

Figure 1. Time evolution of B? in MHD simulations in different resolutions (Left) and in Res-MHD
simulations in the resolution of 512 x 512 grid cells and different physical resistivities (Right) using
PLUTO code.

In Fig. 2 are shown the current densities in ideal MHD simulations in two resolutions at
t = 2.5t.. The zoomed frames at the bottom show the reconnection layer in the middle of
the simulation boxes. The left panel shows the results with the resolution of 1024 x 1024
grid cells, where the numerical resistivity is less than 107*, so the current layer is thin
enough to become plasmoid unstable. The right panel shows the results in lower resolution
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Figure 2. Current density J, at t = 2.5, of MHD simulation in the resolution of 1024 x 1024 (left)
and 256 x 256 grid cells (right). The bottom frames show the zoomed-out of the reconnection layer
in the middle of the simulation box.

256 x 256 grid cells that give higher numerical resistivity (> 10™), the layer is thick, and
plasmoids do not emerge. We studied the magnetic reconnection and plasmoid formation
in different models of resistive MHD, relativistic MHD, and 3D simulations in Kayanikhoo
et al. (2023). In addition, Puzzoni et al. (2021) studied the particle acceleration in the re-
connection layer using PLUTO concerning the impact of Riemann solvers and reconstruction
methods, grid resolutions, and numerical resistivity on particle acceleration in magnetic re-
connection simulations. Their findings demonstrate that particle acceleration undergoes
variations based on the choice of numerical solvers and Lundquist numbers (S > 103).

3.2 Energy conversion in MHD simulations

In this section, we study the magnetic energy dissipation in MHD and Res-MHD simula-
tions. The conserved total energy density contains magnetic energy density Ez = B?/2,
kinetic energy density E; = pv?/2, internal energy Uy, = p/(y — 1), and electric energy
density Ex = E?/2. We present the energy components that are computed at the resolution
of 512 x 512 grid cells in Fig. 3. The left column displays ideal MHD simulations (7 = 0),
while the right column represents Res-MHD simulations (7 = 5 x 1073).

In the top row of panels, we show the time evolution of magnetic energy. The magnetic
energy increases to ~ 1.15 times its initial value at ¢ ~ 2 ¢,, coinciding with the presence of
a current layer. Shortly after, at 2.5 7., plasmoids emerge within the current layer in the ideal
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Figure 3. The time evolution of the averaged density of energy components in the simulations MHD
and Res-MHD (7 = 5 x 107%) at the resolution of 512 x 512 grid cells.

MHD simulation (shown in Fig. 2). Subsequently, magnetic energy gradually dissipates as
the simulation progresses. In the Res-MHD simulation, we note that the magnetic energy
dissipates at a faster rate compared to the ideal MHD simulation.

In the second row of Fig. 3, we show the average density of kinetic energy. The evolution
of kinetic and magnetic energies illustrates that kinetic energy leads to the amplification
of the magnetic field at approximately 2¢.. Magnetic energy converts to Kinetic energy
through the magnetic reconnection to the time step ¢ ~ 4¢,.

Both kinetic and magnetic energies dissipate into internal energy by the end of the simu-
lation time, heating the plasma, as shown in the third-row panels. It is evident that resistiv-
ity results in increased dissipation, causing internal energy to rise by approximately 0.5%
more than in the ideal MHD simulation. The last row of panels represents electric energy,
which evolves similarly to magnetic and kinetic energy, as expected.
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4 CONCLUSIONS

In this paper, we investigated the magnetic energy evolution in the magnetized plasma by
performing the Orszag-Tang (OT) test problem, in astrophysical magnetohydrodynamic
(MHD) code PLUTO v. 4.4. OT is a standard test problem to test the power of MHD codes
to capture shocks and resolve the substructures.

Using the resistive MHD module in PLUTO, we estimate the numerical dissipation in each
resolution. The numerical resistivity in the resolution of 512 x 512 grid cells is estimated
to be > 10~* which represents the lowest limit for the existence of the plasmoid-unstable
current layer. In the ideal MHD simulation in the resolution of 1024 x 1024 grid cells, the
plasmoid-unstable current layer is observed while in the lower resolution, 256 x 256 grid
cells the plasmoids do not appear. Furthermore, our results confirm that in the Res-MHD
simulation with a physical resistivity of 107, plasmoids do not emerge within the layer.

We studied the energy evolution in MHD and Res-MHD simulations. Our findings show
that kinetic energy drives the amplification of the magnetic field, resulting in magnetic
energy reaching approximately 1.15 times its initial value. In MHD simulation, shortly
after this increase, the plasmoids are observed within the current layer. Subsequently, both
magnetic and kinetic energies gradually dissipate over the course of the simulation, with
the dissipated energy converting into internal energy and heating the plasma. The results
indicate that in resistive MHD simulation with resistivity = 5 X 1073, the dissipation is
0.5% higher than in MHD simulation.

In Kayanikhoo et al. (2023), we further examined 3D simulations, compared relativistic
and non-relativistic MHD simulations through energy conversion and magnetic reconnec-
tion rates, and the impact of resolution on reconnection rates in the models. Additionally,
we compared two MHD codes widely used in astrophysics PLUTO and KORAL.
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