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ABSTRACT
We review recent calculations of quasinormal modes and asymptotic tails of the
Bardeen spacetime interpreted as a quantum corrected Schwarzschild-like black
holes. Massless electromagnetic and Dirac fields and massive scalar fields are con-
sidered. The first few overtones are much more sensitive to the change of the quan-
tum correction parameter than the fundamental mode because such correction de-
forms the black hole geometry near the event horizon. While the asymptotic tails of
massless fields are identical to those for the Schwarzschild case, the tails for a mas-
sive field differ from the Schwarzschild limit at both intermediate and asymptotic
times.

Keywords: Regular spacetimes – quasinormal modes – outburst of overtones –
quantum corrected black holes

1 INTRODUCTION

Quasinormal modes of black holes (Kokkotas and Schmidt, 1999; Nollert, 1999; Konoplya
and Zhidenko, 2011) are a fundamental aspect of black hole physics and gravitational wave
astronomy. These modes represent the characteristic oscillations and decay of perturbations
around a black hole after an external perturbation, such as a merger or accretion event.
These modes are characterized by complex frequencies, which have direct implications for
the detection and interpretation of gravitational wave signals from black hole mergers by
observatories like LIGO and Virgo (Abbott et al., 2016).

Quasinormal modes of the historically first model of the regular black holes given by
the Bardeen spacetime (Bardeen, 1968) have been extensively studied in a great number
of papers (see for instance Flachi and Lemos (2013); Toshmatov et al. (2015, 2019); Mah-
davian Yekta et al. (2021); Rincón and Santos (2020); López and Ramírez (2022); Saleh
et al. (2018) and reference therein). However, the Bardeen spacetime was considered there
mainly as a solution of specific non-linear electrodynamics (Ayon-Beato and Garcia, 2000)
which describes a black hole as a gigantic magnetic monopole with zero electric charge
(Bronnikov, 2001).

Recently, the quasinormal spectrum of the Bardeen spacetime as a quantum corrected
neutral black hole metric (Nicolini et al., 2019) has been considered in (Konoplya et al.,
2023; Bolokhov, 2023b) with the emphasis to overtones behavior and asymptotic tails.
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Here, we review these results and discuss three interesting phenomena related to the Bardeen
black hole spectrum: a) outburst of overtones, b) arbitrarily long-lived modes of massive
fields, and c) asymptotic tails.

2 BARDEEN SPACETIME AND THE WAVELIKE EQUATIONS

The spherically symmetric line element has the form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1)

where for the Bardeen spacetime, the metric function is

f (r) = 1 −
2Mr2(

r2 + l20
)3/2 , (2)

with M the Komar mass, and parameter l0 is related to the ultraviolet cutoff (Nicolini et al.,
2019). For l0 , 0, the space-time in eq.(5) has horizons for |l0| ≤ 4M/(3

√
3).

The general relativistic equations for the scalar (Φ), electromagnetic (Aµ), and Dirac (Υ)
fields in a curved spacetime can be written as follows:

1
√
−g
∂µ

(√
−ggµν∂νΦ

)
= 0, (3a)

1
√
−g
∂µ

(
Fρσgρνgσµ

√
−g

)
= 0, (3b)

γα
(
∂

∂xα
− Γα

)
Υ = 0. (3c)

Here Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor, γα are gamma matrices and Γα
are spin connections in the tetrad formalism. Using separation of variables (for example, in
case of the scalar field, employing the spherical symmetry and stationarity of the spacetime,
we assume Φ ∼ e−iωtYm

ℓ (θ, ϕ)Ψ(r)/r, where Ym
ℓ spherical harmonic function), after some

algebra the above dynamical equations (3) take the wave-like form:

d2Ψ

dr2
∗

+ (ω2 − V(r))Ψ = 0, (4)

where the “tortoise coordinate” r∗ is:

dr∗ ≡
dr
f (r)
. (5)

The effective potentials for the scalar (s = 0) and electromagnetic (s = 1) fields can be
written in a unified form:

V(r) = f (r)
ℓ(ℓ + 1)

r2 + (1 − s)
f (r)
r

d f (r)
dr
, (6)
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where ℓ = s, s + 1, s + 2, . . . are the multipole numbers. For the Dirac field (s = 1/2) the
problem is reduced to two iso-spectral effective potentials

V±(r) = W2 ±
dW
dr∗
, W ≡

(
ℓ +

1
2

) √
f (r)
r
. (7)

The iso-spectral wave functions can be transformed one into another by the Darboux
transformation

Ψ+ = q
(
W +

d
dr∗

)
Ψ−, q = const, (8)

so that it is sufficient to analyze the spectrum of only one of the potentials.

3 LONG LIVED QUASINORMAL MODES AND THE OUTBURST OF
OVERTONES

The boundary conditions for quasinormal modes are purely outgoing wave at infinity and
purely incoming wave at the event horizon so that

Ψ =

{
eiωr∗ , for r∗ → +∞ (purely outgoing) ,
e−iωr∗ , for r∗ → −∞ (purely ingoing) . (9)

In order to find low-lying quasinormal frequencies, the quick and relatively accurate
method which was used in Konoplya et al. (2023); Bolokhov (2023b) is the 6th order WKB
method (Konoplya, 2003; Konoplya et al., 2019a) with the Pade approximants (Matyjasek
and Opala, 2017). The WKB method was effectively used in a great number of works
(see, for example Kodama et al., 2010; Onozawa et al., 1996; Konoplya et al., 2019a,
and references therein). In order to find accurate values of overtones with n > ℓ, the
convergent Leaver method was used (Leaver, 1985), while for the asymptotic tails, the
time-domain integration (Gundlach et al., 1994) has been applied. The latter was used in
various works as well (for instance, Konoplya and Fontana, 2008; Churilova and Stuchlik,
2020; Bolokhov, 2023a; Bronnikov and Konoplya, 2020) with a good concordance for the
dominant frequencies. As all of these methods are broadly discussed in the literature, we
will not discuss them here in detail.

Using the first order WKB approach and expanding in terms of 1/L and l0, where
L = ℓ + 1

2 we find the position of the maximum of the effective potential:

rmax = 3M −
5l20
6M
−

65l40
216M3 + O

(
l60
)
, (10)

and the frequency

ω =
L

3
√

3M
−

i(2n + 1)

6
√

3M
+ l20

(
L

18
√

3M3
+

i(2n + 1)

54
√

3M3

)
+ l40

(
17L

648
√

3M5
+

7i(2n + 1)

324
√

3M5

)
+ O

(
1
L
, l60

)
.

(11)
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Figure 1. Quasinormal frequencies for the scalar perturbations (ℓ = 0) and n from 0 to 6 (Konoplya
et al., 2023).

Notice that in the eikonal limit, the WKB formula is exact, and the above formula sat-
isfies the eikonal QNMs/null geodesics correspondence (Cardoso et al., 2009), though in
general, the latter should be treated carefully since there are a number of exceptions from
it (Konoplya and Stuchlík, 2017; Konoplya, 2023; Konoplya et al., 2019b).

From fig. 1, we notice that the overtones deviate from their Schwarzschild limits at an
increasing with n rate, which reflects the fact that the Schwarzschild metric is deformed by
the l0 quantum correction mainly near the event horizon (Konoplya and Zhidenko, 2022).

When the scalar field has non-zero mass µ, the spectrum of the Schwarzschild and
Reissner-Nordstrom black holes contains arbitrarily long-lived quasinormal modes at some
values of µ (Ohashi and Sakagami, 2004). When µ is increased, the damping rate decreases,
approaching zero as a kind of threshold at which the mode disappears from the spectrum,
and the first overtone becomes the fundamental mode. This way, at particular values of
the mass of the field, there exist the modes, called quasi-resonances, which are similar to
standing waves. In Bolokhov (2023b), it was shown that this phenomenon also takes place
for the massive scalar field in the Bardeen background and that the outburst of overtones
takes place for such modes as well.

4 TELLING OSCILLATORY TAILS OF THE BARDEEN SPACETIME

At asymptotically late times, the massless scalar and gravitational fields for the
Schwarzschild spacetime decay according to the following law (Price, 1972):

|Ψ| ∼ t−(2ℓ+3), t → ∞. (12)

In fig. 2, we can see that the same law is fulfilled for the Bardeen spacetime.
When the massive term µ is turned on, the late-time behavior of the Reissner-Nordstrom

black hole has two regimes (Koyama and Tomimatsu, 2002). At asymptotic times

t
M
> (µM)−3 , (13)
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Figure 2. Time-domain profile according to (Konoplya et al., 2023) for scalar field perturbations
ℓ = 0 in the background of the quasi-extremal Bardeen black hole l0 = 0.707107; r0 = 1. Logarithmic
plot with the line ∼ t−3 .

the following decay law dominates

|Ψ| ∼ t−5/6 sin(µt), t → ∞. (14)

For the Bardeen spacetime, as was shown in (Bolokhov, 2023b), the decay law is different:

|Ψ| ∼ t−1 sin(A(µ)t), t → ∞, (15)

where A(µ) is some function which could be approximately found by fitting the data for
various values of µ. At the intermediate late times, corresponding to relatively small value
of µM, the decay law for the Bardeen spacetime is (Bolokhov, 2023b),

|Ψ| ∼ t−( 8
6+ℓ) sin(A(µ)t), (16)

which is also different from the Schwarzschild or Reissner-Nordstrom case (Koyama and
Tomimatsu, 2002; Konoplya and Zhidenko, 2011).

5 CONCLUSIONS

We have reviewed recent studies (Konoplya et al., 2023; Bolokhov, 2023b) of quasinormal
modes and evolution of perturbations of a test scalar, electromagnetic and Dirac fields in
the vicinity of the Bardeen spacetime treated as a quantum corrected neutral black hole
(Nicolini et al., 2019). The spectrum has a number of interesting and distinctive properties,
such as outburst of overtones, long-lived quasinormal modes and different tail the behavior
at asymptotic and intermediate times.
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