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PREFACE

The Proceedings collects contributions from three RAGtime meetings in 2021, 2022 and
2023. Most of the presented results have been obtained thanks to the collaboration of the
research groups at the Silesian University in Opava, the Astronomical Institute of the Czech
Academy of Science, the Faculty of Mathematics and Physics of the Charles University in
Prague, Department of Theoretical Physics and Astrophysics of the Masaryk University
in Brno, and furthermore our colleagues at many other foreign institutions. The RAGtime
participants from a wide international community have represented University of Oxford,
Nicolaus Copernicus Astronomical Center in Warsaw, Goethe University of Frankfurt,
Observatoire de Paris, Max Planck Institute in Garching, The Joint Institute for Nuclear
Research in Dubna, The Ulugh Beg Astronomical Institute in Tashkent, The International
Space Science Institute in Bern, Osservatorio Astronomico di Roma, University of
Cologne, and several others. The contributions are listed in the order in which they were
finally accepted for publication.

We thank the Editorial Board members for their valuable advice and assistance, all
the authors for the careful preparation of their contributions, and our referees for their
perfect work. We are also indebted to the Ministry of Education of the Czech Republic and
the European Social Fund in the Czech Republic for providing financial support for the
workshops and participants’ activities, namely within the INTER-EXCELLENCE project
No. LTI17018, the ESF projects No. CZ.02.2.69/0.0/0.0/18_058/0010238, CZ.02.2.69/0.0
/0.0/18_056/0013364, CZ.02.2.69/0.0/0.0/18_054/0014696, and the internal grants of
the Silesian University in Opava (SGS) awarded to the Institute of Physics during the pe-
riod 2021-2023.

Opava, December 2023 Z. Stuchlík, G. Török, V. Karas and D. Lančová
editors
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25 years of RAGtime:

Foreword by the director

Zdeněk Stuchlík

Director of the Institute of Physics in Opava

The RAGtime meeting organised in the year 2023 reached the “celebration” number 25.

This is a good reason to look back and follow its history.

The idea to each year organise a meeting of scientists and students involved in relativistic

astrophysics at the Silesian University in Opava came to my mind at the end of the 20th

century. At those times, a group of scientists and their students, who were focusing their

research on the processes around compact objects such as black holes and neutron stars,

was established at the Institute of Physics, Faculty of Philosophy and Science, Silesian

University in Opava. Because of this Relativistic Astrophysics Group (RAG), I invented

the name of RAGtime Meetings, and our student Jakub Říčan composed the RAGtime

hymn, in fact, a ragtime song with Silesian motives, which is sometimes used even in the

recent times. For my decision to organise such a meeting each year, I found strong support

from my teachers and colleagues from the Institute of Theoretical Physics at the Faculty

of Mathematics and Physics, Charles University in Prague, Jiří Bičák and Jiří Langer, and

from my good friends Marek Abramowicz from the Chalmers University of Technology in

Gothenburg and John C. Miller from the University of Oxford, who promised support in

establishing an interesting program for these meetings. I have to stress that both Marek and

John are playing very important roles in RAGtime meetings at the present time.

We started with the RAGtime Meeting in 1999 with the strong contribution of Standa

Hledík, who prepared the format of the contributed papers for the meetings; Standa and

I prepared the logo.

It soon became clear that the RAGtime was a very useful idea, as the extent and the

scientific relevance of the RAGtime meetings quickly increased, and the content covered

many of the most relevant aspects of relativistic astrophysics and cosmology, including

the black hole and neutron star physics in many theoretical aspects, with their relation to

observational phenomena including the participation on the preparation of important cos-

mic projects organised under ESA, as ATHENA, eXTP, and others. In the beginning, the

pure General Relativistic framework for gravity was considered, along with the Maxwellian

framework for the electromagnetic phenomena, but soon, many alternative theories of grav-

ity entered the play, along with various variants of non-linear electrodynamics. Soon after

the start of the RAGtime meetings, my students and later my collaborators (Gabo Török,

Jan Schee, Jirka Kovář, Petr Slaný, Martin Urbanec, Martin Petrásek, Tomáš Pecháček and

others) had an important role in the preparation of the meetings, at the present time strong

support also comes from younger colleagues (Debora Lančová, Martin Kološ, Arman

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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Tursunov and others). In preparation for the program of the meetings, an important role

was played very soon by people from closely collaborating institutes. Namely Vladimír

Karas from the Astronomical Institute, Academy of Science of Czech Republic, and his

colleagues Michal Bursa and Jiří Horák, Włodek Kluźniak from the Copernicus Centre

Warsaw, Bodo Ahmedov from the Tashkent University, and finally Remo Ruffini and Jorge

Rueda from the ECRANET. I would like to thank them for their significant help in estab-

lishing very interesting scientific programs for the RAGtime Meetings.

I would like to thank very much all of the colleagues and students who helped in the

preparations and organisation of the RAGtime meetings and all of the participants who

helped to keep very high standards of the content of the Contributed Papers. I am sure

that the RAGtime meetings have strong potential to significantly contribute to the fu-

ture development of extremely exciting and fascinating research in the area of relativistic

astrophysics.
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Dedication to Jiřı́ Langer

With gratitude and respect, we dedicate this volume to the memory of our unforgettable

colleague, doc. RNDr. Jiřı́ Langer, CSc. Those who knew him will surely retain and pass

on at least some of what they admired about his personality. He not only instilled in us how

to do science and teach science, honestly, but also influenced our thinking as a connoisseur

of art, philosophy and history, a translator, a helpful friend and an excellent companion.

I firmly believe that his erudition, insight, wit, humour, humanity and refinement, though

inimitable, will be preserved for future generations, at least in this form.

Both his friends, among whom I immodestly count myself, and those who were not

fortunate enough to know Jiřı́ personally, can find several personal memories of Jiřı́ in

the obituary on the website of the Silesian University in Opava (available in Czech at

https://slu.cz/phys/cz/aktuality/15/193), and a very nice memorial article in PMFA 65(3),

2020, pp. 185–190 (available in Czech at https://dml.cz/handle/10338.dmlcz/148358).

On behalf of the local organising committee,

Stanislav Hledı́k

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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Tidal deformability of ultracompact

Schwarzschild stars and their approach to the

black hole limit

Camilo Posada

Institute of Physics in Opava, Silesian University in Opava,

Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic

camilo.posada@physics.slu.cz

ABSTRACT

A well-known result in general relativity is that the tidal Love numbers of black holes

vanish. In contrast, different configurations of a black hole may have non-vanishing

Love numbers. For instance, it has been conjectured recently that the Love number

of generic exotic compact objects (ECOs) shows a logarithmic behaviour. Here, we

analyse the ultracompact Schwarzschild star, which allows the compactness to cross

and go beyond the Buchdahl limit. This Schwarzschild star has been shown to be

a good black hole mimicker. Moreover, it has been found that the Love number

of these objects approaches zero as their compactness approaches the black hole

limit. Here, we complement those results by showing that the Love number for

these configurations follows an exponentially decaying behaviour rather than the

logarithmic behaviour proposed for generic ECOs.

Keywords: Tidal deformability – interior solutions – black hole mimicker –

gravastar

1 INTRODUCTION

Black holes (BHs) are one of the most intriguing predictions of Einstein’s classical general

relativity (GR). Beyond their elegant mathematical structure (Chandrasekhar, 1985), they

are also the main candidates to explain most of the astrophysical observations (Celotti et al.,

1999). Nevertheless, besides their curvature singularity in the interior geometry, which is

believed will be “removed” by a consistent quantum theory of gravity, BHs present certain

paradoxes which remain puzzling. For instance, the interior geometry of mathematical

BHs shows some unphysical behaviour, such as the closed timelike geodesics in the Kerr

spacetime (Hawking and Ellis, 1973). On the other hand, the event horizon is at the root of

the so-called “information paradox”, which remains one of the central problems in black

hole physics (Wald, 2001).

As a consequence of the BH paradoxes, a number of models of “regular BHs” or “BH

mimickers” (also known as exotic compact objects (ECOs)) have been proposed in the

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.



2 C. Posada

literature (see, e.g. Cardoso and Pani (2019) and references therein). Regular BHs are

constructed with different non-singular interiors, but in such a way that they reproduce the

well-known geometries of BH solutions in GR. For instance, the gravitational condensate

star, or gravastar (Mazur and Mottola, 2001, 2004), is composed of a non-singular de Sitter

interior with negative pressure p = −ϵ, but with positive vacuum energy ϵ > 0, which

is matched to the exterior Schwarzschild solution with p = ϵ = 0. The “gluing” of both

geometries was done by introducing an infinitesimal thin shell of ultra-stiff matter.

In connection with gravastars, Mazur and Mottola (2015) revisited the well-known

Schwarzschild’s interior solution with uniform density, or Schwarzschild star (see e.g.

Glendenning (2000)). The Schwarzschild star manifests a divergence in the central pres-

sure when its compactness reaches the Buchdahl bound M/R = 4/9. The importance of this

limit relies on the fact that it is independent of the equation of state (EOS) of the configu-

ration, as shown by Buchdahl (1959), under the assumption of isotropic pressure, positive

energy density and monotonically decreasing with the distance r. Thus, the Schwarschild

star represents a toy model which saturates the Buchdahl bound and should be considered

as the limiting case of an ultra-stiff EOS; incidentally, configurations with compactness

higher than 4/9 have usually been assumed as unphysical.

Nevertheless, some interesting features become apparent when one considers the

Schwarzschild star beyond the Buchdahl limit, RS < R < (9/8)RS, where RS ≡ 2M. First

of all, the pole where the pressure is divergent moves out from the origin up to a surface of

radius R0 = 3R
√

1 − (4/9)(R/M) < R and a regular interior region with negative pressure

emerges naturally in the regime 0 < r < R0; meanwhile the pressure remains positive in

the region R0 < r < R. In the limit when R0 → R−
S
, from below, and R → R+

S
, from

above, the ultracompact Schwarzschild star becomes essentially the gravastar proposed by

Mazur and Mottola (2015). It is important to remark that the Schwarzschild star evades the

Buchdahl limit by having an anisotropic stress at the surface R0. In the limiting case when

R0 = R = RS, the interior static de Sitter is matched to the exterior Schwarzschild geometry

through a boundary layer located at their respective horizons RS = H, where H is related

to the de Sitter energy density by ϵ = 3H2/(8π). Furthermore, there is a discontinuity [κ]

in the surface gravities, which produces a surface tension τs = 1/(8πRS) and incidentally

a δ-function stress tensor which replaces the BH horizon.

Some of the physical properties and observational signatures of the ultracompact

Schwarzschild stars have been studied recently in the literature. For instance, a time-

dependent model was proposed by Beltracchi and Gondolo (2019). On the other hand,

these configurations seem to be stable against radial oscillations (Posada and Chirenti,

2019). The analysis of axial modes was carried out in Konoplya et al. (2019), where it

was found that the Schwarzschild stars are stable against axial perturbations. Moreover,

the Schwarzschild star can “mimic” very well the gravitational wave response of a BH

at l = 2 and higher multipoles because it approaches the Schwarzschild BH spectrum as

closely as possible. This is due to the fact that the null surface R0 provides the same

boundary conditions for the quasi-normal modes as for the case of a BH. An extension to

the anisotropic case using the minimal geometric deformation (MGD) was developed by

Ovalle et al. (2019).

An early model for a slowly rotating ultracompact Schwarzschild star was proposed by

Posada (2017) using the Hartle-Thorne framework (Hartle, 1967; Hartle and Thorne, 1968).
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However, the results reported there are marred by a wrong assumption in the regime be-

yond the Buchdahl limit after making a coordinate transformation. This proposal has been

surpassed recently by Beltracchi et al. (2021), where they developed a model for a slowly

rotating gravastar to second order in the rotation. These authors found that the exterior

metric to a slowly rotating gravastar is precisely that of the Kerr spacetime. Therefore, it

is impossible to tell a gravastar from a Kerr BH by any observation, such as accretion disk

processes or light ring images.

An alternative for, potentially distinguishing ECOs from BHs is through their tidal de-

formability. A compelling result in GR is that the tidal Love numbers of Schwarzschild

BHs are zero (Damour and Nagar, 2009; Binnington and Poisson, 2009; Hui et al., 2021;

Chia, 2021; Charalambous et al., 2021; Poisson, 2021). On the other hand, it has been

found that the Love numbers of general ECOs scale as k ∼ 1/ log ξ, where ξ is a pa-

rameter which measures how much the object deviates from the BH geometry (Cardoso

et al., 2017). Recently Chirenti et al. (2020) studied the tidal Love number of ultracompact

Schwarzschild stars, below and beyond the Buchdahl limit. These authors found that the

Love number of these configurations tends to zero as the compactness approaches the BH

limit. Thus, they concluded that the vanishing of the Love number is not a unique property

of BHs. Instead, it’s a consequence of the approach to the Schwarzschild limit.

In this paper, we will review the main results of the tidal deformability of ultracompact

Schwarzschild stars presented by Chirenti et al. (2020). As an addition to those results,

we will show that the tidal Love number k2 for ultracompact Schwarzschild stars does not

follow the 1/ log ξ proposed by Cardoso et al. (2017). Instead, we found that k2 decays

exponentially as a function of the compactness.

2 TIDAL DEFORMABILITY

2.1 General formulation

The tidal Love number quantifies the deformations of the quadrupole moments of a star in-

duced by external fields, which are connected through the relation (Hinderer, 2008; Damour

and Nagar, 2009)

Qi j = −
2k2R5

3
Ei j ≡ −Λ Ei j , (1)

where k2 is the Love number andΛ is the tidal deformability. It is conventional to introduce

the dimensionless tidal deformability

Λ̄ = Λ/M5 = 2k2/
(

3C5
)

, (2)

here C ≡ M/R denotes the compactness of the configuration. Following Damour and

Nagar (2009), the unperturbed spacetime of a nonrotating star is described, generally, by

the standard metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 , (3)
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and the even-parity metric perturbation H = H0 = H2 is governed by the following equation

d2H

dr2
+C1(r)

dH

dr
+C0(r)H = 0 , (4)

where the coefficients C1 and C0 are given by

C1(r) =
2

r
+ eλ

[

2m

r2
+ 4πr (p − ϵ)

]

, (5)

C0(r) = eλ
[

−
l(l + 1)

r2
+ 4π(ϵ + p)

dϵ

dp
+ 4π(5ϵ + 9p)

]

−
(

dν

dr

)2

. (6)

In order to simplify the form of the perturbation equation (4), it is conventional to introduce

the logarithmic derivative h(r) ≡ (r/H)dH/dr. Substituting h(r) into Eq. (4), we obtain

a Riccati-type equation in the form (Damour and Nagar, 2009)

r
dh

dr
+ h(h − 1) + rC1h + r2C0 = 0 , (7)

with the regular solution near the origin, h(r) ≃ l. Finally, the Love number k2 can be

determined using the following expression

k2(C, hR) =
8

5
(1 − 2C)2C5 [2C(hR − 1) − hR + 2] ×

{

2C
[

4(hR + 1)C4

+(6hR − 4)C3 + (26 − 22hR)C2 + 3(5hR − 8)C − 3hR + 6
]

+ 3(1 − 2C)2 [2C(hR − 1) − hR + 2] log(1 − 2C)

}−1

,

(8)

where hR is the value of h at the surface r = R.

2.2 Schwarzschild stars

In this section, we discuss the homogeneous configurations with constant density. Although

uniform-density stars are only an approximation for a realistic compact object, they are

useful toy models which are described by Schwarzschild’s interior solution (Glendenning,

2000). Moreover, there are various reasons to consider them in detail (see, e.g. Harrison

et al., 1965).

The tidal Love number for constant-density stars, or Schwarzschild stars, was studied by

Damour and Nagar (2009); Postnikov et al. (2010); Chan et al. (2015) and more recently

by Chirenti et al. (2020). The details of the computation were discussed in these papers, so

we refer the reader to those works.

The interior Schwarzschild solution describes a configuration of constant energy den-

sity ϵ. For convenience, it can be written in terms of the auxiliary function y (Chandrasekhar

and Miller, 1974; Posada and Chirenti, 2019; Chirenti et al., 2020) defined as

y2 = 1 −
(

r

α

)2

, with α2 =
3

8πϵ
≡

R3

RS

, (9)
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where R is the radius of the star and RS ≡ 2M is the Schwarzschild radius. The function

y is defined in the range [1, y1] where y1 ≡ y(R) is the corresponding value at the surface.

The interior metric functions are given by

eν =
1

4
(3y1 − y)2 and eλ =

1

y2
, (10)

which match continuously, at the surface r = R, with the exterior Schwarzschild solution.

The pressure p in the interior is found to be

p = ϵ

(

y − y1

3y1 − y

)

, (11)

which vanishes at the surface r = R. The central pressure diverges when the compactness

reaches the Buchdahl bound M/R = 4/9 (Buchdahl, 1959).

It is convenient to introduce a new coordinate x given by (Chandrasekhar and Miller,

1974)

x ≡ 1 − y = 1 −
√

1 −
(

r

α

)2

, (12)

which is defined in the range [0, x1] where x1 = 1 − y1 ≡ x(R), which depends on the

compactness. The interior metric functions (10) take the form

eν(x) =
1

4
(k + x)2, and eλ(x) =

1

(1 − x)2
, (13)

and the pressure (11) reads now

p = ϵ

(

1 − x − y1

κ + x

)

, (14)

where the constant κ is defined as

κ ≡ 3y1 − 1 . (15)

Note that κ > 0 when C < 4/9, and, −1 < κ ≤ 0 in the regime beyond Buchdahl. Note that

Eq. (14), has a regular singular point at x0 ≡ −κ. The careful analysis of this singularity

for the computation of the Love number was done in Chirenti et al. (2020), so we refer the

reader to that paper for more details.

The same singular point appears when one considers the extension of the ultracompact

Schwarzschild star to slow rotation, using the equations derived by Hartle (Chandrasekhar

and Miller, 1974; Posada, 2017). However, the results presented by Posada (2017) are

marred after assuming, wrongly, an absolute value of κ when the compactness goes beyond

the Buchdahl limit 1.

1 The author acknowledges Emil Mottola and Philip Beltracchi for calling his attention to this point.
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3 TIDAL DEFORMABILITY OF ULTRACOMPACT SCHWARZSCHILD

STARS

In this section, we summarise the results of the tidal deformability of ultracompact

Schwarschild stars reported by Chirenti et al. (2020). We used the transformation (12)

in the perturbation equation (7), which facilitates the computation when the compactness

goes beyond the Buchdahl bound. Profiles of the solutions to the perturbation equation

for certain values of the compactness are presented in Figs. 1 and 2 in Chirenti et al.

(2020). Of particular interest is the value of k2 at the Buchdahl limit, which was found to

be κBuch
2
= 0.0017103, which is in excellent agreement with the result reported by Damour

and Nagar (2009).

The value of k2 is computed in the following way; the structure equations (13)–(14) are

substituted into the coefficients (5) and (6), which consequently determine Eq. (7). Given

the condition at the origin h(r) = l, one solves numerically Eq. (7) for h(r)−, in the interior

of the star, from the center (or, rather, some cutoff value, r0 = 10−7), outwards up to the

surface r = R. Some care must be taken here regarding the constant density condition.

Note that Eq. (6) contains a term in the form (ϵ + p)(dϵ/dp) which vanishes in the limit

ϵ = constant. Given the discontinuity of the density at the surface, this term contributes

a δ− function which must be taken into account to obtain h+
R

(see the discussion in Damour

and Nagar (2009); Postnikov et al. (2010)). This correction is given by

h+R = h−R −
(

4πR3ϵ

M

)−

, (16)

which gives

h+R = h−R − 3 . (17)

In Fig. 1, we show the profile of the tidal Love number k2, as a function of the com-

pactness M/R, for Schwarzschild stars below and beyond the Buchdahl limit (Chirenti

et al., 2020). The inset shows a zoom of the region near the Buchdahl limit up to the

Schwarzschild radius. The results of k2 for C ≤ 4/9 are in very good agreement with those

reported by Damour and Nagar (2009). Note how k2 approaches continuously to zero as

the compactness approaches the Schwarzschild limit. Stars with compactness bigger than

4/9 show a region of negative pressure in the interval x ∈ [0, x0] with x0 = −κ. In the

limit when C → 1/2 from above, and x0 → x1 from below, the central region of neg-

ative pressure covers the whole interior of the star. Thus, in this limit, the ultracompact

Schwarzschild star becomes essentially the gravastar (Mazur and Mottola, 2015).

Note the striking “quenching”, in three orders of magnitude, of the tidal Love number,

for ultracompact Schwarzschild stars, from 0.75, for C → 0, to 0.0017103 at the Buchdahl

bound, and the subsequent approach to zero as the compactness approaches 1/2. This rapid

quenching of k2 clearly indicates that these configurations do not follow the logarithmic be-

haviour suggested by Cardoso et al. (2017) as a “generic feature” of ECOs with an exterior

geometry arbitrarily close to the BH geometry. To see this, in Fig. 2, we show the same

results shown in Fig. 1, but we also include the fit, which we model as an exponentially



Tidal deformability of ultracompact Schwarzschild stars 7
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0.8

k 2

0.42 0.44 0.46 0.48 0.50
M/R

0.000

0.002

0.004

0.006

k 2

Buchdahl limit

Figure 1. Tidal Love number k2, as a function of the compactness, for Schwarzschild stars below

and beyond the Buchdahl limit. Note how k2 approaches smoothly and continuously to zero, as the

compactness approaches the Schwarzschild limit (figure adapted from Chirenti et al. (2020)).

decaying function in the form

k2 = a
[

1 − e−b(C−0.5)
]

+ d, (18)

where the fitted coefficients are shown in the label of Fig. 2. We found that the R-squared

value for this fitting model is R2 = 0.999429, which shows that the exponentially decay-

ing model is a good one. Note that in reference Chirenti et al. (2020), this fitting was

overlooked, so here we are complementing those results.

Finally, in Fig. 3 we show in log-scale the tidal Love number as a function of the com-

pactness, and we also include the Post-Minkowskian (PM) expansion for constant density

stars introduced by Chan et al. (2015). Note that for configurations with low compactness

(Newtonian limit), the PM approximation is in good agreement with our results. However,

when the compactness approaches the Buchdahl limit, the differences between both results

increase. This difference is expected, considering that near the Buchdahl limit, we are en-

tering into the strong gravity zone. Thus, the PM expansion is not a good approximation; in

the strong gravity regime, we require the full general relativistic computation. In reference

Chirenti et al. (2020), figure 4 shows a similar log-scale for k2, together with the PM ap-
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0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 k2
fit: a=-0.046, b=5.749, b=-0.016

Figure 2. Same results as in Fig. 1, but we also present the fit in a black solid curve. We consider an

exponentially decaying model in the form: a
[

1 − e−b(C−0.5)
]

+ d. The corresponding coefficients are

shown in the label.

proximation. After the publication of that paper, the author found that the plot was marred

due to a typo in the PM expansion. However, this error does not affect the results of k2.

4 DISCUSSION

The Schwarzschild interior solution with constant density, or Schwarzschild star, remains

an interesting and simple example of an exact solution to Einstein’s equations for a perfect

fluid. One of the most remarkable features of this model only discovered recently, is that it

allows for compactness to cross beyond the Buchdahl limit. Moreover, these configurations

can approach arbitrarily close to the Schwarzschild radius, where they become essentially

the gravastar.

It has been found that the Love number k2 of the ultracompact Schwarzschild stars is

a smooth and continuous function of the compactness, and it approaches zero as the com-

pactness approaches the BH limit 1/2. Thus, one can conclude that the result k2 → 0 is not

an exclusive property of BHs but rather a consequence of the compactness approaching the

Schwarzschild limit.

We found that the Love number of ultracompact Schwarzschild stars does not follow

the logarithmic behaviour conjectured by Cardoso et al. (2017) for generic ECOs. Instead,
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0.0 0.1 0.2 0.3 0.4 0.5
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10 2
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100

k 2 Buchdahl limit

k2
PM expansion

0.46 0.48
10 7

10 5
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k 2

Figure 3. Same as Fig. 1, but in log-scale to emphasise the approach to the Schwarzschild limit. For

comparison, we also show the Post-Minkowskian approximation for constant density stars presented

in Chan et al. (2015). In the Newtonian limit, both approaches are in good agreement. In the strong

gravity zone, near the Buchdahl limit, the deviations start to grow as expected.

we found that k2 decreases rapidly with compactness, following an exponentially decaying

behaviour. Therefore, we believe that the conclusions drawn by Cardoso et al. (2017),

regarding the behaviour of k2 for ECOs, are too restrictive considering that they studied

only 4 types of ECOs, namely, thin-shell gravastar, boson stars, wormholes and some kind

of anisotropic stars.
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ABSTRACT

Large-scale magnetic fields pervade the cosmic environment where the astrophys-

ical black holes are often embedded and influenced by mutual interaction. In this

contribution, we outline the appropriate mathematical framework to describe mag-

netized black holes within General Relativity, and we show several examples of

how these can be employed in the astrophysical context. In particular, we examine

the magnetized black hole metric in terms of an exact solution of electro-vacuum

Einstein-Maxwell equations under the influence of a non-vanishing electric charge.

New effects emerge: the expulsion of the magnetic flux out of the black-hole horizon

depends on the intensity of the imposed magnetic field.

Keywords: Black holes – electromagnetic fields – general relativity

1 INTRODUCTION

Astrophysical black holes are cosmic objects that can be mathematically described by a

set of Einstein-Maxwell equations (e.g., Romero and Vila, 2014). Various formulations of

the Uniqueness Theorems express in a rigorous way the conditions under which the black

hole solutions exist, and they constrain the parameter space that is necessary to specify

different cases (Wald, 1984). It turns out that classical black holes are described by a small

number of such parameters, in particular, the mass, electric (or magnetic) charge, and an-

gular momentum (spin). Black holes do not support their own magnetic field except the

gravito-magnetically induced components in the rotating, charged Kerr-Newman metric.

However, astrophysical black holes are embedded in a magnetic field of external origin,

which then interacts with the internal properties of the black hole (Ruffini and Wilson,

1975). In the case of very strong magnetic intensity, the magnetic field even contributes

to the spacetime metric. In the present contribution, we examine the interesting properties

of such an electrically charged, magnetized, rotating black hole. To this end, we employ

the solution originally derived in the 1970s by means of Ernst magnetization techniques

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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(Ernst and Wild, 1976) and demonstrate its interesting features in terms of magnetic flux

threading different regions of the black hole horizon or an entire hemisphere (see Bičák and

Hejda (2015), and further references cited therein).

We limit our discussion to axially symmetric and stationary solutions. These are vacuum,

asymptotically non-flat solutions, where the influence of plasma is ignored, but the effects

of strong gravity are taken into account.

2 MAGNETIZED BLACK HOLES WITH SPIN AND CHARGE

We can write the system of mutually coupled Einstein-Maxwell partial differential equa-

tions (Chandrasekhar, 1983),

Rµν −
1
2
Rgµν = 8πTµν, (1)

where the source term Tµν is of purely electromagnetic origin,

Tαβ ≡ T
αβ

EMG
=

1

4π

(

FαµF
β
µ −

1

4
FµνFµνg

αβ

)

, (2)

T µν;ν = −Fµα jα, Fµν;ν = 4π jµ, ⋆Fµν;ν = 4πMµ, (3)

and ⋆Fµν ≡
1
2
εµν
ρσFρσ. We will consider the spacetime solutions for the metric that sat-

isfies the electro-vacuum case with a regular event horizon under the constraints of axial

symmetry and stationarity,

ds2
= f −1

[

e2γ
(

dz2
+ dρ2

)

+ ρ2 dϕ2
]

− f ( dt − ω dϕ)2 , (4)

with f , ω, and γ being functions of z and ρ only. Hereafter, instead of the canonical cylin-

drical form (4), we will also employ the spheroidal coordinates r and θ when convenient.

In the weak electromagnetic field approximation, the electromagnetic (test) field is sup-

posed to reside in the background of a rotating black hole, e.g., Kerr metric or a weakly

charged Kerr metric (e.g., Wald, 1984; Gal’tsov, 1986). As an example, in such an asymp-

totically flat spacetime, the axial Killing vector ∂ϕ(≡ ξ̃) generates a uniform magnetic field,

whereas the field vanishes asymptotically for the time-like Killing vector ∂t(≡ ξ). These

two solutions are known as the Wald’s field, i.e.

F =
1
2

B0

(

dξ̃ + 2J
M

dξ
)

(5)

in Wald (1974) notation. Magnetic flux surfaces are defined,

4πΦm =

∫

S

F = const. (6)

Magnetic and electric (Lorentz) forces are then given in terms of the particle’s mass m, its

four-velocity u, and magnetic and electric charges, qm and qe, respectively:

mu̇ = qm
⋆

F.u, mu̇ = qeF.u. (7)
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Magnetic field lines are determined by

dr

dθ
=

Br

Bθ
,

dr

dϕ
=

Br

Bϕ
, (8)

in a perfect analogy with classical electromagnetism. We will employ the above-given

quantities in our discussion further below.

Magnetic (electric) lines of force are defined by the direction of Lorentz force that acts

on electric (magnetic) charges,

duµ

dτ
∝ ⋆F

µ
ν uν,

duµ

dτ
∝ F

µ
ν uν. (9)

Therefore, in an axially symmetric system, the equation for magnetic lines takes a lucid

form,

dr

dθ
= −

Fθϕ

Frϕ

,
dr

dϕ
=

Fθϕ

Frθ

, (10)

that is in correspondence with eq. (8).

Let us now turn our attention to the case of a strong magnetic field, where we cannot ig-

nore its influence on the spacetime metric. The latter is not necessarily flat in the asymptot-

ical spatial region far from the black hole (Ernst and Wild, 1976; Karas and Vokrouhlický,

1991).

As an example, we can consider magnetized Kerr-Newman black hole metric expressed

in the form (García Díaz, 1985)

ds2
= |Λ|2 Σ

(

∆
−1 dr2

+ dθ2 − ∆A−1 dt2
)

+ |Λ|−2
Σ
−1A sin2 θ ( dϕ − ω dt)2 , (11)

where Σ = r2
+a2 cos2 θ, ∆ = r2−2Mr+a2

+e2, A =
(

r2
+ a2

)2
−∆a2 sin2 θ are functions from

the Kerr-Newman metric. The outer horizon is located at radius r≡r+ = 1+
(

1 − a2 − e2
)1/2

,

like in an unmagnetized case, and the horizon existence is restricted to the range of parame-

ters a2
+e2 ≤ 1. Let us emphasise that, in the magnetized case, the traditional Kerr-Newman

parameters a and e are not identical with the black hole total spin and electric charge, as

we will see further below. Moreover, because of the asymptotically non-flat nature of the

spacetime, the Komar-type angular momentum and electric charge (as well as the black

hole mass) have to be defined by integration over the horizon sphere rather than at radial

infinity.

The magnetization function Λ = 1 + βΦ − 1
4
β2E, in terms of the Ernst potentials Φ (r, θ)

and E (r, θ), reads

ΣΦ = ear sin2 θ − ie
(

r2
+ a2

)

cos θ, (12)

ΣE = − A sin2 θ − e2
(

a2
+ r2 cos2 θ

)

+ 2ia
[

Σ

(

3 − cos2 θ
)

+ a2 sin4 θ − re2 sin2 θ
]

cos θ. (13)
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Figure 1. The “butterfly diagram” shows the magnetic flux Φm of magnetized Kerr-Newman black

hole with a2
+ e2

= 1 as a function of the total electric charge QH. Solid curves correspond to

a constant value of the dimensionless magnetization parameter β = BM (β = 0 is the case of an

unmagnetized Kerr-Newman black hole). The area of the plot with ultra-strong magnetization is

bounded by β = 1 (red curve) and emphasized by yellow colour in the plot. The lines of a constant

ratio of a/e and varying β are also plotted (dashed; the cases of a/e = ±0.85 and 0 are shown); some

distinctive combinations of the parameters a, e are emphasized by colour points.

The corresponding components of the electromagnetic field can be written conveniently

with respect to orthonormal LNRF components,

H(r) + iE(r) = A−1/2 sin−1θΦ′,θ, (14)

H(θ) + iE(θ) = − (∆/A)1/2 sin−1θΦ′,r, (15)

where Φ′(r, θ) = Λ−1
(

Φ − 1
2
βE

)

. The total electric charge QH is

QH = − |Λ0|
2 ℑmΦ′ (r+, 0) , (16)

and the magnetic fluxΦm(θ) across a cap placed in an axisymmetric position on the horizon

is

Φm = 2π |Λ0|
2 ℜeΦ′

(

r+, θ̄
)

∣

∣

∣

∣

θ

θ̄=0
, (17)

where Λ0 = Λ(θ = 0). The adopted notation indicates subtraction of the Ernst potential

values Φ′
(

r+, θ̄
)

taken at θ̄ → θ and θ̄ → 0.
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At this point, it is interesting to mention that the span of the azimuthal coordinate in

the magnetized solution must be rescaled by the multiplication factor Λ0 in order to avoid

a conical singularity on the symmetry axis (Hiscock, 1981):

Λ0 =

[

1 + 3
2
β2e2
+ 2β3ae + β4

(

1
16

e4
+ a2

)]1/2
. (18)

This rescaling procedure effectively leads to the increase of the horizon surface area, and

thereby also magnetic flux across the horizon (Karas, 1988). In Figure 1, the magnetic

flux across the entire black hole hemisphere in Kerr-Newman strongly magnetized black

hole solution, Φm(θ = π/2), is shown as a function of electric charge on the horizon, QH

(additional details can be found in Karas and Budinová (2000); Karas et al. (2019)).

Cases of intersection of the β = const curves with F = 0 and non-zero charge, QH , 0,

correspond to the vanishing angular momentum of the black hole, J = 0. This property

is rather different from the behaviour of weakly magnetized black holes with only a test

magnetic field imposed on them. On the other hand, this exact solution does not allow us to

study the effects of the misalignment of the magnetic field with respect to the rotation axis,

which is so far possible only in the test-field approximation or by numerical techniques. Let

us also note that it may be interesting to consider the magnetic flux also in other spacetime

metrics for comparison and better understanding of the underlying processes (see, e.g.,

Gutsunaev and Manko (1988); Kovář et al. (2012); Khan and Chen (2023); Vrba et al.

(2023), and further references cited therein).

3 CONCLUSIONS

We discussed the magnetic flux across the event horizon of a magnetized rotating black

hole and the associated electric charge within the framework of the exact solution of mutu-

ally coupled Einstein-Maxwell equations. To this end, we adopted Ernst and Wild (1976)

spacetime, which represents an axially symmetric, stationary solution that corresponds, in

a straightforward manner, to the Wald (1974) solution of an asymptotically uniform mag-

netic field imposed on the background of Kerr metric. On the other hand, in the limit of

small black hole mass, zero angular momentum and strong magnetic intensity, the adopted

solution goes over to the cosmological solution of Melvin universe (Melvin, 1964). The

latter represents an asymptotically non-flat ‘geon’ that is maintained in the static configu-

ration by the gravitational effect of the magnetic field acting upon itself. In other words,

this means that our discussion is appropriate for the limit of ultra-strong magnetic fields

that might be possibly relevant in the conditions of early Universe (Beskin et al., 2015). On

the other hand, we think that this extreme situation does not bring any qualitatively new

phenomena into the discussion of the magnetic Penrose process, which has been recently

discussed in the context of weakly magnetized black holes (Karas and Stuchlík, 2023).

We elaborated a detailed graphical representation of magnetic flux which exhibits an in-

tricate structure as a function of the space-time parameters. This has allowed us to position

specific configurations, such as those with vanishing angular momentum or vanishing elec-

tric charge. The corresponding combinations of the model parameters are different from the

case of weak magnetic field limit because of strong-gravity effects. Let us note that ultra-

strong magnetic fields are expected to affect processes on molecular and atomic scales in
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the conditions when the magnetic energy density becomes comparable to the binding en-

ergy density (Lai, 2015).
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ABSTRACT

We explore the dynamics of test particles on perturbed circular orbits in the equato-

rial plane of a Schwarzschild black hole in search of resonant effects. The nonlinear

bond between radial and vertical oscillatory modes is given by Lorentz electromag-

netic force acting on charged particles in the uniform magnetic field. When the

perturbation of the circular orbit is large enough, strong, persistent 2:1 resonance

between radial and vertical modes develops.

Keywords: Black hole – resonances – particle dynamics – magnetic field

1 INTRODUCTION

The microquasars are binary systems composed of a black hole (BH) and a companion

(donor) star, and Quasi-Periodic Oscillations (QPOs) are periodic changes in X-ray photons

flux in these systems (Remillard and McClintock, 2006). QPOs cover a wide range of

frequencies, from low-frequency QPOs (∼ 30 Hz) to high-frequency QPOs (∼ 500 Hz).

The QPOs are still unresolved phenomena, but the connection to particle orbital frequency

at the innermost stable circular orbit (ISCO) (∼200 Hz for 10M⊙ BH) is frequently assumed

(Török et al., 2005). Most high-frequency QPOs in BHs are detected with twin peaks with

a frequency ratio ∼3:2; obviously, some resonance phenomena in the BH accretion disk

are present. In this proceeding, we will simulate accretion disk resonances using simple

charged test particle dynamics as a model for plasma around BH.

2 CHARGED PARTICLE DYNAMICS

We consider a BH of a mass M described by the Schwarzschild metric

ds2
= − f (r) dt2

+ f −1 (r) dr2
+ r2
(

dθ2 + sin2 θdϕ2
)

, f (r) = 1 − 2M

r
, (1)

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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Figure 1. Charged particle oscillations around circular orbit with very weak magnetic field influence

B = 10−5. We see particle trajectories in x-z plane (first column) with BH as a grey disk, projection in

x-z plane (second column) with dashed energetic boundary, Fourier spectra (third column) for radial

r and vertical θ coordinates with frequency ratios, dashed vertical lines pointing maxima, Poincaré

surface of section (fourth column) for equatorial plane crossing. The first row of figures is for small

perturbation △ = 0.01 from circular orbit, where only main frequencies are present, and the second

row is for larger perturbation △ = 0.1, where we can see higher harmonic in the spectra.

where f (r) is the lapse function. Let the BH be immersed into an external uniform magnetic

field, given by electromagnetic four-potential (Wald, 1974)

Aϕ =
B

2
r2 sin2 θ. (2)

Hereafter, we put M = 1, i.e., we use dimensionless radial coordinate r (and time coordinate

t).

The equations of motion for a charged particle with mass m and electric charge q can be

obtained using the Hamiltonian formalism

dxµ

dζ
=
∂H

∂πµ
,

dπµ

dζ
= − ∂H
∂xµ
, H =

1

2
gαβ
(

πα − qAα
)(

πβ − qAβ
)

+
m2

2
= 0, (3)

where the kinematical four-momentum pµ = muµ = dxµ/dζ is related to the generalized

(canonical) four-momentum πµ by the relation πµ = pµ + qAµ. The affine parameter ζ of

the particle is related to its proper time τ by the relation ζ = τ/m.

Due to the symmetries of the Schwarzschild spacetime (1) and the magnetic field (2),

one can easily find the conserved quantities that are particle energy and axial angular mo-

mentum and magnetic field parameters B

E = E

m
= −πt

m
= −gttu

t, L = L

m
=
πϕ

m
= gϕϕu

ϕ
+

q

m
Aϕ, B = qB

2m
, (4)
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Figure 2. Charged particle oscillations around circular orbit in stronger magnetic field influence

B = 0.1, similar to Fig. 1. In the first row of figures, the motion has complicated Fourier spectra, but

the main frequency peaks are in resonant ratio Ωr/Ωθ ∼ 1. The trajectory in the second row is close

to chaotic motion, but the main peak frequencies are still in resonant ratio Ωr/Ωθ ∼ 2, which appear

frequently in our numerical experiment.

which reflects a relative relationship between Lorentz and gravitational forces. Using such

symmetries, one can rewrite the Hamiltonian (3) in the form

H =
1

2
grr p2

r +
1

2
gθθp2

θ +
1

2
gttE2

+
1

2
gϕϕ
(

L − qAϕ
)2
+

1

2
m2. (5)

Energetic boundary for particle motion can be expressed from the equation (5)

E2
= Veff (r, θ) (for pr = pθ = 0) . (6)

We introduced effective potential for charged particles Veff(r, θ) by the relation

Veff (r, θ) ≡ −gtt

[

gϕϕ
(

L − q

m
Aϕ

)2

+ 1

]

. (7)

The effective potential Veff (r, θ) combines the influence of gravity potential (gtt term) with

the influence of central force potential given by the specific angular momentum L and

electromagnetic potential energy given by qAϕ.

A detailed description of charged particle dynamics around BH can be found for the

uniform magnetic field in Galtsov and Petukhov (1978); Karas and Vokrouhlicky (1990);

Frolov and Shoom (2010); Kološ et al. (2015); Kopáček and Karas (2018) or for more

realistic parabolic BH magnetosphere in Kološ et al. (2023).

If a charged test particle is slightly displaced from the equilibrium position located in

a minimum of the effective potential Veff (r, θ) at r0 and θ0 = π/2, corresponding to a stable
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Figure 3. Test particle orbital frequencies (first row), and the ratio of radial and vertical frequencies

(second row) with weak electromagnetic influence (B = −10−5). For small circular orbit perturbation

△ = 0.01, the numerically calculated frequencies (individual dots) from perturbed orbit exactly follow

the analytic frequencies (solid curves) given by effective potential minima. For large perturbation

△ = 0.5, the numerical frequencies are detached from the analytical one. Different resonant radii

(vertical dotted lines in the first row and horizontal dotted lines in the second row) are plotted, but no

clustering around them can be reported.

circular orbit, the particle will start to oscillate around the minimum realising thus epicyclic

motion governed by linear harmonic oscillations with the radial Ωr, vertical Ωθ, and axial

Ωϕ frequencies (Wald, 1984)

Ω
2
r =

1

2

f 2 (r)

E2 (r)

∂2Veff

∂r2
, Ω2

θ =
1

2

f (r)

r2E2 (r)

∂2Veff

∂θ2
, Ω2

ϕ =
L2 (r)

g2
ϕϕ

f 2 (r)

E2 (r)
. (8)

3 RESONANCES FOR PERTURBED CIRCULAR ORBIT

A thin Keplerian accretion disk model is given by a dense set of particles on a circular orbit

where gravity is perfectly compensated by centrifugal force. In our case of charged test

particles, the Lorentz force from an external uniform magnetic field will also be taken into

account. To simulate resonances in the accretion disk around BH, we randomly perturb all

particles on the circular orbits in radial δr and vertical direction δθ. For all different circular
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Figure 4. Charged particle orbital frequencies (first row) and the frequency ratio (second row) with

stronger magnetic field influence B = −0.1, similar to Fig. 3. When the circular orbit is only slightly

perturbed △ = 0.1, the numerical and analytical frequencies coincide for almost all the points with

only a few 2:1 resonant exceptions. The number of trajectories with a 2:1 resonant ratio grows with

circular orbit perturbation, reaching more than 50% for △ = 0.5 value.

orbits from the Keplerian disk, the total perturbation △ will remain the same

r = rcirc + δr, θ = π/2 + δθ, △ =
√
δr2 + δθ2. (9)

As it has been demonstrated in Fig. 3, when the perturbation δ is small, the main peak fre-

quency calculated from particle trajectory using Fourier transform coinciding with analyti-

cally calculated frequencies for small circular orbit perturbation (8). When the perturbation

is large enough and when the nonlinear electromagnetic bound between r and θ oscillatory

modes is present, the particle trajectory main frequency peaks are likely to be in resonant

ratios 2:1, see Fig. 4.

While resonant ratios between oscillatory modes might appear coincidental for a single

particle orbit, they become statistically significant when considering the dense set of cir-

cular orbits covering the entire Keplerian disk. When perturbed, the charged particles are

likely to orbit around BH in 2:1 resonance between Ωr : Ωθ modes as demonstrated in

Figs. 3 and 4.

The parametric resonance model (Abramowicz and Kluźniak, 2004) is given by formula

Ωr

Ωθ
=

2

n
, n = 1, 2, 3, . . . , (10)
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where the strongest resonances can be expected for small n. For the observed QPOs signal,

a 3:2 resonance has been reported and not a 2:1 resonance. However, this discrepancy could

be explained by the fact that we do not observe Ωr and Ωθ directly, but we observe their

combinations

Ωr : Ωθ = 2 : 1 → Ωr + Ωθ : Ωr = 3 : 2. (11)

We currently have no direct explanation for the 2:1 resonance and why we do not observe

stronger 1:1 or weaker 3:2 resonances, even though they are allowed in our model for

charged particle dynamics. The effective potential for a charged particle has a special shape,

it has Z2 symmetry (Veff (x, z) is the same above z > 0 and below z < 0 the equatorial plane),

which could be one of the possible explanations for the observed strong 2:1 resonance.

Another explanation could come from the Kolmogorov-Arnold-Moser (KAM) theorem. If

we can express our system as having the regular part H0 and a perturbative part Hp, with

perturbation parameter ϵ, then the Hamiltonian can be expressed as

H = H0 + ϵHp. (12)

According to the KAM theorem, only nonresonant tori will survive small ϵ perturbation,

while the resonant tori will be destroyed. For two degrees of freedom system, as is our

particle dynamics in an axially symmetric model, one will have

k1Ωr + k2Ωθ = 0, k1 + k2 < 4, (13)

and hence around the resonant elliptic point (minima in effective potential), we can not

construct Birkhoff normal form if k1 + k2 > 4 (Tabor, 1989). The condition (13) is correct

only for 1:1, 1:2, and 2:1 resonances but not 3 : 2 and could explain why 3:2 resonance

between Ωr and Ωθ is not observed in our model.

4 CONCLUSIONS

In our numerical experiment with charged particle dynamics around magnetized Schwarz-

schild BH, we have demonstrated the existence of 2:1 resonance, which could be related to

observed QPO within the parametric resonance model. It is still an open question, whether

these 2:1 resonances are unique to our test particle model, and if 2:1 will appear in other

systems. In the future, we would like to explore other nonlinear models, like string-loop,

spinning particle dynamics, and test particle motion in modified BH spacetimes.
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ABSTRACT

This work studies the dynamics of geodesic motion within a curved spacetime around

a Schwarzschild black hole, perturbed by a gravitational field of a far axisymmetric

distribution of mass enclosing the system. This spacetime can serve as a versatile

model for a diverse range of astrophysical scenarios and, in particular, for extreme

mass ratio inspirals as in our work. We show that the system is non-integrable by em-

ploying Poincaré surface of section and rotation numbers. By utilising the rotation

numbers, the widths of resonances are calculated, which are then used in establish-

ing the relation between the underlying perturbation parameter driving the system

from integrability and the quadrupole parameter characterising the perturbed metric.

This relation allows us to estimate the phase shift caused by the resonance during an

inspiral.

Keywords: Geodesic motion – black holes – chaos

1 INTRODUCTION

Even if the Kerr black hole solution of the Einstein field equation is a vacuum one (Kerr,

1963), astrophysical black holes are surrounded by matter distributions. Therefore, a curved

spacetime describing a Schwarzschild black hole perturbed by the gravitational field of a far

axisymmetric distribution is of interest since it can serve as a model for a diverse range of

physical scenarios. For instance, massive black holes located in the centres of galaxies

are often surrounded by dense nuclear star clusters and other molecular and dust struc-

tures (Genzel et al., 2010). Furthermore, alternative sources of external matter can come

from more exotic sources, such as dark matter or scalar fields (Hannuksela et al., 2020;

Ferreira et al., 2017).

In the close vicinity of these primary massive black holes, we expect that stellar com-

pact objects are trapped by the gravitational field of the primaries. While such a secondary

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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object orbits the primary one, it loses energy and angular momentum in the form of grav-

itational waves. This loss leads the secondary to inspiral towards the primary, creating an

extreme mass ratio inspiral (EMRI). These gravitational waves peak in the mHz frequency

band and are expected to be observed by the next generation of gravitational-wave obser-

vatories (Berry et al., 2019; Amaro-Seoane et al., 2017; Polcar et al., 2022).

The perturbation of a Schwarzschild black hole by the surrounding matter can have ob-

servational implications on the evolution of an EMRI. In particular, a key aspect of geodesic

motion in the Schwarzschild spacetime is its integrability. However, by perturbing the

spacetime, the system is no longer entirely symmetrical, which results in the loss of inte-

grals of motion. The insufficient number of integrals of motion leads to non-integrability,

which allows chaotic behaviour to emerge.

We focus mainly on resonances, parts of the phase space where two or more charac-

teristic frequencies of the system match in integer ratios. These regions are key parts of

the study of chaos because the chaotic behaviour emerges there. There are studies (see,

e.g., Lukes-Gerakopoulos and Witzany, 2022 and references therein) showing that such re-

gions can have an observational impact on the gravitational waves emitted during an EMRI

since a resonance crossing is expected to cause a dephasing of the gravitational wave-

forms. Hence, investigating the strength and the growth of the resonances is important for

the preparation of the gravitational waveforms needed to detect the signal from an EMRI

(Babak et al., 2017).

The article is organised as follows: in section 2, we introduce the properties of the studied

spacetime, some cardinal theoretical elements of non-integrable systems, and some tools

to study these systems. Section 3 showcases our numerical results obtained from the com-

putation of geodesic motion within the studied curved spacetime. Section 4 discusses our

main findings. Note that geometric units are employed throughout the article G = c = 1.

Greek letters denote the indices corresponding to spacetime. The metric signature is chosen

as (− + ++).

2 GEODESIC MOTION AND CHAOS

This work studies geodesic motion in curved spacetime introduced by Polcar et al. (2022),

who outlined its derivation. This metric expresses a spacetime around a non-spinning

black hole of mass M encircled by a rotating gravitating ring with mass Mr at a radius

rr ≫ M much larger than the black hole horizon. The gravitational field near the black

hole is influenced by the tidal effects caused by the presence of the ring. The resulting

spacetime is static and axisymmetric, while the multipole structure of the ring is truncated

to the leading quadrupolar order. In Schwarzschild-like coordinates (t, r, θ, ϕ), the resulting

metric is given by the line element:

ds2
r≪rr
= −

(

1 − 2M

r

)

(1 + 2νQ) dt2 +
1 + 2χQ − 2νQ

1 − 2M/r
dr2

+ (1 − 2νQ)r2
[

(1 + 2χQ) dθ2 + sin2 θ dϕ2
]

,

(1)
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νQ ≡
Q

4

[

r(2M − r) sin2 θ + 2(M − r)2 cos2 θ − 6M2
]

, (2a)

χQ ≡ QM(M − r) sin2 θ, (2b)

with Q ≡ Mr/r
3
r representing the quadrupole perturbation parameter. It should be noted

that metric (1) is valid only for r ≪ rr and assumes non-compact rings, i.e. Mr ≪ rr.

Especially, it neglects all terms starting from O

(

r−4
r

)

and O

(

M
2
r

)

.

The Hamiltonian function governing the geodesic evolution of the system is:

H = 1

2
gµνpµpν = −

1

2
m2, (3)

where m is the mass of the secondary body, while one of Hamilton’s equations reads

dpκ

dτ
= −∂H
∂qκ
= −1

2
gµν,κp

µpν, (4)

where τ is the proper time, and we utilised that the canonical momenta are independent of

the generalised coordinates; therefore, only the metric tensor will contribute to the deriva-

tive with respect to generalised coordinates. This implies that if the metric tensor is inde-

pendent of a particular generalised coordinate, the conjugate momentum associated with

that coordinate is conserved and considered an integral of motion. This observation corre-

sponds with Noether’s theorem, which states that symmetries of a system give rise to the

existence of integrals of motion. Furthermore, it implies the presence of a Killing vector

field in the differential geometry.

The initial system exhibits four degrees of freedom; however, if we examine the form of

the metric (1), we see that it does not depend on the time variable t and the azimuthal angle

ϕ. The conjugate momentum associated with the time coordinate is denoted as pt ≡ −E

and it has the meaning of the total energy, whereas the conjugate momentum related to

the azimuthal angle is denoted as pϕ ≡ L and it has the meaning of a angular momentum

(see, e.g. Misner et al., 1973). Both quantities are referenced with respect to an observer

standing at infinity. These symmetries allow us to reduce our system to a two-degrees-of-

freedom problem solely described by coordinates r and θ. The reduced Hamiltonian of this

system takes the following form:

H = 1

2

(

(pr)
2

grr

+
(pθ)

2

gθθ
+

E2

gtt

+
L2

gϕϕ

)

. (5)

Because of the Liouville-Arnold theorem (Arnold, 1989), in the reduced Hamiltonian sys-

tem of two degrees of freedom, the bounded motion takes place on a two-dimensional

invariant torus with two fundamental frequencies. We can distinguish the nature of the mo-

tion by the ratio of these fundamental frequencies ω = ω1/ω2. If ω is irrational, the motion

on the torus is quasiperiodic. In this case, the quasiperiodic orbit densely covers the torus

over an infinite amount of time and does not return to its initial state from where it started

within a finite period. If ω is rational, the torus is called resonant, and the motion is peri-

odic. For a detailed analysis of the resonance condition, we refer to Lukes-Gerakopoulos

and Witzany (2022).
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(a) ω1/ω2 = 4/5 (b) ω1/ω2 ≈ 0.8001

(c) ω1/ω2 ≈ 0.801 (d) ω1/ω2 ≈ 0.81

Figure 1. An illustration of a resonant (a) torus and three quasiperiodic ones (b,c,d) in a two-degree

of freedom system. The trajectories on the tori are depicted in blue, while the Poincaré surfaces of

the section are in red. Each trajectory undergoes calculations until the motion intersects the Poincaré

surface of the section for a total of 100 occurrences. The resonant trajectory, located in the upper left

plot, exhibits a resonant ratio expressed as ω1/ω2 = 4/5, representing the fundamental frequency of

the small circle over the large circle. In contrast, the remaining trajectories represent non-resonant

trajectories, characterised by ratios that deviate from the resonant ratio and are of an irrational nature.

Over time, the non-resonant trajectories asymptotically trace out the torus cross-section.

Let us consider an integrable system that undergoes perturbation, causing it to lose

its integrability enabling chaos to occur. The transition from integrable two degrees of

freedom systems to non-integrable ones is governed by two fundamental theorems: the

Kolmogorov-Arnold-Moser theorem (abbreviated as the KAM theorem) and the Poincaré-

Birkhoff theorem (for detailed references see Iro (2016)). According to the KAM theorem,

the non-resonant torus survives for small perturbations. These tori are called KAM tori.

Furthermore, Poincaré-Birkhoff’s theorem states that in spaces where there is a resonant

torus, an even number of periodic trajectories survive; half of them are stable and half

unstable.

To study the dynamics of a two-degree-of-freedom Hamiltonian system, the symplectic-

ity of the system allows us to reduce the 4-dimensional phase space to a two-dimensional

section in it, known as Poincaré surface of section. In order to achieve that, we have to find

a section through the tori foliation where the Hamiltonian flow is transverse. A schematic

of such a section is shown in Fig. 1, where it is shown how the motion on torii is mapped on

the surface of the section. In particular, Fig. 1(a) shows how a periodic orbit on a resonance

torus is mapped on the surface of the section, while Figs. 1(a)-(c) show how quasiperiodic

orbits on non-resonance tori are mapped on the surface of the section. To computation-

ally create a Poincaré section, one must integrate the equations of motion and identify the

constant of the motion that remains fixed, as well as the section condition that reflects
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Figure 2. The top figure displays a Poincaré surface of the section, while the bottom figure shows the

corresponding rotation curve computed along the pr/m = 0 line. The dominant resonances are promi-

nently marked in both figures, along with their ratios of fundamental frequencies. The parameters

taken are L = 4.0mM, E = 0.98m, θ [0] = π/2 and r [0] ∈ (6.298M; 50.098M) with step size 0.2M.
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the symmetries of the system. Only two remaining phase-space coordinates are recorded

once the trajectory passes through this section of the surface. After a sufficient number of

crossings have been recorded, the results can be plotted.

The system we study exhibits reflection symmetry along the equatorial plane; thus, in

order to ensure that the chosen section intersects the Hamiltonian flow perpendicularly, we

set the Poincaré surface of the section as the equatorial plane (i.e. θ ≡ π/2). Additionally,

we only consider points intersecting the surface of a section from a specific direction, which

we choose to be uθ > 0. Therefore, we are left with the two remaining phase coordinates,

r and pr, which we record (Fig. 2). The accessibility for the motion region on the Poincaré

surface of a section is determined by Eq. (5) (see, e.g., Polcar et al., 2019). We represent

the boundary curve of the accessible region as a thick magenta curve in Fig. 2.

Resonances are parts of the phase space where the non-integrable behaviour emerges.

Therefore, having methods to identify these zones effectively would be advantageous.

In systems with two degrees of freedom, we might take advantage of the Poincaré sur-

face of a section to evaluate the rotation number νϑ (for further details, see e.g. Lukes-

Gerakopoulos and Witzany, 2022; Voglis et al., 1990). Assuming we have already pro-

duced a Poincaré surface of a section of the system, we must first distinguish the centre of

the main island of stability, represented by a fixed point xs on the Poincaré section, around

which most invariant curves are nested. Next, we evaluate rotation angle, defined as the an-

gle between two vectors originating from xs and pointing towards two consecutive points

on the Poincaré surface of section:

ϑi := ang
[

(xi+1 − xc) ; (xi − xc)
]

. (6)

The angle value spectrum has to be restricted to a proper interval so there is no discon-

tinuity in the spectrum (Voglis et al., 1990). The rotation number is then obtained as the

average of these rotation angles as follows:

νϑ = lim
N→∞

1

2πN

N
∑

i=1

ϑi. (7)

In the limit, N → ∞, the calculated rotation number (7) corresponds to the ratio of two fun-

damental frequencies ω1/ω2. For finite N, the inaccuracy of calculations is approximately

equal to (Voglis et al., 1990):

δϑ =
∆

N
, where 0 < ∆ < 1. (8)

Hence, in order to obtain more precise values of rotation numbers, it is necessary to record

more rotation angles. Typically, we have calculated the trajectory for our numerical results

until 35000 rotation angles have been recorded.

The plot of rotation numbers νϑ as a function of distance from the main island’s centre

is referred to as a rotation curve. The rotation curve is strictly monotonic for integrable

systems as one advances away from the centre xs. In contrast, for perturbed non-integrable

systems, the curve maintains qualitative similarity to the unperturbed one, except in the

vicinity of the resonances where it exhibits significant changes. The resonance curve starts
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to fluctuate randomly in chaotic layers at the resonance (Fig. 2). Moreover, within the

Birhoff chain, stable regions known as islands of stability appear as plateaus with constant

values in the rotation curve (Fig. 2).

The width of a resonance is a useful measure as it can be related to the perturbation

parameter ϵ driving the system away from integrability. It can be shown that the relation

between the width of the resonance and the perturbation parameter of two degrees of free-

dom system, as provided by Lukes-Gerakopoulos and Witzany (2022) (further details are

given by Arnold et al., 2007) can be expressed as:

w := 4

√

α

β

√
ϵ, (9)

where w denotes the width of the resonance and α, β are positive parameters. By taking the

logarithm of the equation (9), we obtain:

log w (Q) =
1

2
log ϵ (Q) + log 4

√

α

β
, (10)

where we emphasise that on the right-hand side of the equation, only ϵ is dependent on Q

as α and β are positive parameters. Therefore, by plotting the width of the resonance with

respect to the quadrupole perturbation parameter on a logarithmic scale and performing the

linear regression, we are able to quantify the relation between ϵ and Q. The aforementioned

linear regression takes the following form:

log
w (Q)

M
= A · logQM2 + B. (11)

Thus, by comparing the equations (10) and (11), we obtain the following power law ex-

pression for the perturbation parameter:

ϵ = (QM2)2A. (12)

3 NUMERICAL EXAMPLES

In this section, we aim to employ the theoretical concepts introduced in the previous section

to examine the orbital resonances in the spacetime described by the metric (1). For our

numerical calculations, we kept fixed E = 0.98m, L = 4.0mM, and the initial conditions

were chosen along the pr/m = 0 line in the Poincaré surface of section.

Fig. 2 showcases the Poincaré section along with the corresponding rotation curve. In the

particular figure, it is evident that the presence of a chaotic layer is not negligible; therefore,

one must be cautious in using the widths of resonances in such cases. Namely, prominent

chaotic layers, in general, tend to distort the width of resonance since we depart from the

pendulum approximation used in establishing the relation 9; thus, these data points cannot

be used in the linear regression analysis. Nonetheless, Fig. 2 serves as a valuable example

wherein all four resonances are discernible.
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Figure 3. Logarithmic plot of widths of resonances with respect to the quadrupole perturbation pa-

rameter. The figure omits the error bars as their size is smaller than the plot symbols (the relative

error was maintained below 1%).

Resonance Parameter A Parameter B Power law

2/3 0.511 ± 0.002 2.91 ± 0.01 ϵ = QM2

4/5 1.038 ± 0.004 5.85 ± 0.03 ϵ = Q
2M4

8/11 2.491 ± 0.027 13.01 ± 0.16 ϵ = Q
5M10

12/17 3.880 ± 0.040 20.34 ± 0.23 ϵ = Q
8M16

Table 1. Results of resonance growth with respect to quadrupole perturbation parameter.

For several values of the quadrupole perturbation parameter, the widths of the four most

prominent resonances were recorded. The results can be seen in Fig. 3 where a linear re-

gression is applied. During the linear regression, certain data points were omitted (marked

in a particular figure with empty circles). This exclusion is due to those points correspond-

ing to the quadrupole perturbation parameter, where a prominent chaotic layer surrounds
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the particular resonance. Table 1 provides a summary of the power laws for the studied

resonances. We see from the table 1 that the relation between the quadrupole perturbation

parameter Q and the perturbation parameter ϵ is not uniform and differs for each resonance.

This is not in agreement with previous studies (Lukes-Gerakopoulos and Witzany, 2022;

Zelenka et al., 2020; Mukherjee et al., 2023), which indicated one single relation. There-

fore, we verified that the validity of such a relation is not necessarily global and can differ

from resonance to resonance in the phase space.

4 DISCUSSION

Apart from the energy and the L, in the Schwarzschild case, there is the total angular

momentum constant. The total angular momentum is not constant of motion after the

quadrupole perturbation is imposed. The absence of this constant drives the system away

from integrability. For small perturbation values, a total angular momentum-like quantity

should oscillate around an averaged value (Polcar et al., 2022; Kerachian et al., 2023).

We speculate that the order O(Qn) at which the Poisson bracket of this quantity with the

Hamiltonian departs from zero near each resonance should correspond to the value we are

finding. However, this speculation is yet to be investigated. What we can deduce from the

obtained results is that each resonance appears to be driven from a different order in the

perturbation. Moreover, it appears that the value of n in O(Qn) grows as the denominator

in the resonance ratio increases.

The values of the quadrupole perturbation parameter, like Q = 10−7M2, used in this work

were slightly exaggerated. Namely, by taking into account that the quadrupole perturba-

tion parameter is defined as Q ≡ Mr/r
3
r , the radius of the gravitating ring should be, for

instance, at rr = 100M and the mass of the ring should be Mr = 0.1M, which implies

that the mass of the accreting matter in the near vicinity of the primary black hole corre-

sponds to a significant fraction of its mass. However, the findings remain interesting, even

if they do not correspond to probable astrophysical scenarios, for which Q should be much

smaller since they provide an insight into the influence of the accreting matter on the reso-

nances. With respect to the perturbation parameter and Q relation, the only astrophysically

relevant resonance is 2/3, rendering the remaining resonances negligible. Thus, it is pos-

sible to utilise the linear relation between the perturbation parameter and the quadrupole

perturbation parameter in most regions of the phase space.
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ABSTRACT

Exoplanets were long anticipated, but the discovery of the first such planet in an

orbit around a pulsar came as a surprise. The only method for the detection of such

planets is the precise timing method, relying on pulsars being precise clocks. In anal-

ogy with auroral emission from planets in our solar system, we suggest that planets

around pulsars could also exhibit auroras. This would provide an additional method

for observation of pulsar planets and conditions in the pulsar wind through emis-

sions in visible wavelength (aurora) and cyclotron radiation in radio wavelengths.

We present the first setup for magnetohydrodynamic (MHD) simulations of star-

planet magnetospheric interaction for pulsar planets and the preliminary results.

Keywords: Magnetohydrodynamics – reconnection – energy dissipation – resistiv-

ity – numerical simulations – PLUTO – KORAL

1 INTRODUCTION

The first ever discovered exoplanets were found serendipitously, around the millisecond

pulsar PSR 1257+12 (Wolszczan and Frail, 1992): one with 0.02M⊕ and other two super-

Earth planets with 4M⊕ (Wolszczan, 1994). Only a 0.5% of known pulsars have a planetary

companion, which could be formed around a main sequence star and later captured by

a pulsar, or formed in the disk around the pulsar.

Because of their extremely stable rotation, the millisecond pulsars provide a very ac-

curate timing method, of the order of 10−18 s−1 (Lorimer, 2008) in the arrival time of the

pulses to the observer. Irregularities in the pulsar time profile are a measure of (one or

more) planet masses orbiting the pulsar.

Using our setup developed for star-planet magnetospheric interaction, which was used

for Solar system planets and exoplanets, we perform simulations for pulsar-planet systems.

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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Figure 1. Pulsar-planet system in our simulation with conducting planet surface. The density is

shown in a color scale and interplanetary magnetic field (IMF) with blue lines. Induced magnetic

field lines at the planet dayside, which form during the piling-up of the IMF lines, are shown with

cyan lines. The pulsar wind is shown with the violet lines, and its direction is indicated with an

arrow. The pulsar itself is not a part of the simulation. It is assumed beyond the outer boundary of

the simulation domain, which is inside the two intersecting bright circles.

Since the planetary magnetic field could be nonexistent or overwhelmed by the large pulsar

field, we investigate the cases of non-magnetic planets.

2 NUMERICAL SETUP

For our simulations, we use the PLUTO code (Mignone et al., 2007). Our setup, which is

almost identical to the setup presented in Varela et al. (2018), is presented in Fig. 1. The

only difference stems from the assumption of non-magnetic planets, as the conducting or

ferromagnetic planetary surface is set with the inner boundary specified in a slightly dif-

ferent, simpler way: we do not set a soft coupling region previously used atop the planet’s

surface to facilitate the flow towards the planet surface. The radial component of the mag-

netic field is set to zero, and the polar and azimuthal components are set to be smoothly

absorbed by copying the values from the last active zone to the boundary ghost zone. Also,

in the ferromagnetic case, the azimuthal component of the magnetic field changes the sign

at the inner boundary. We neglect the anticipated relativistic nature of the pulsar wind,

relegating it to future work.

We use a three-dimensional uniform spherical grid, with 128 radial cells, 48 cells in the

polar angle θ ∈ [0, π] and 96 cells in the azimuthal angle φ ∈ [0, 2π]. Our computational

domain is between two spherical shells around the planet, representing the inner Rin = 1

and outer boundary Rout = 20 of the computational domain, expressed in the units of the

planetary radius. We do not introduce physical resistivity so that the reconnection of the
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Table 1. Parameters used in pluto setup file pluto.ini in our simulations. The pulsar wind (PW)

(Speed, MagField, Dens and Temp) are setting the related initial values.

PWSpeed PWMagField PWDens PWTemp

(cm s−1) (G) (g cm−3) (K) )

1.0 × 109 3.0 1.0 × 10−17 2.0 × 105

Figure 2. The results with the conductive planetary surface. Left panel: magnetic field strength is

shown in the color grading, red solid lines represent the magnetic field lines, and green horizontal

lines represent the velocity. Right panel: Yellow lines show the electric currents, red lines are the

magnetic field lines connected to the planet, and green lines show the velocity streamlines of pulsar

wind. Magnetic field magnitude is shown in color grading.

magnetic field is driven by the numerical magnetic diffusivity, evaluated from numerical

experiments with the same grid resolution in a simpler setup. In Varela et al. (2018) it was

estimated to η ∼ 1012 cm2 s−1. Parameters used in our simulations are given in the Table 1,

with RNS ∼ 10 km. The PW(Speed, MagField, Dens, Temp) are our best estimates

for the largely unknown millisecond pulsar environment. The minimal density is set to

dens_min=0.01. The inner boundary of the system Rinb is set to unity.

3 RESULTS OF NUMERICAL SIMULATIONS

We present results in our simulations with pulsar planets without intrinsic planetary mag-

netic field. In Fig. 2, we show the result for the conducting, and in Fig. 3 for the ferromag-

netic planetary surface.

In the case of conducting planetary surface, the pulsar magnetic field lines are connected

with the planet surface, while in the ferromagnetic case, they envelop the planet, producing

a wider spread of the strong field region atop the planet. The results are shown in the left

panels of the Figs. 2 and 3.
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Figure 3. The results with the ferromagnetic planetary surface. The meaning of colors and lines is

the same as in Fig. 2.

For the conducting planet’s surface, electric current loops remain close to the planet’s

surface, while for the ferromagnetic planet’s surface, the currents show an extended dipolar

electric field structure, as shown in the right panels in the corresponding figures.

Anticipating the more violent environment, we set the magnetic field in the wind flow

meeting the planet’s surface to a much larger value than it would be in the Sun-like stars,

and the flow velocity is also much larger.

In the previous work by Varela et al., simulations were conducted with intrinsic plan-

etary magnetic field, so here we present the first attempt into the non-magnetic planets.

Nevertheless, the magnetospheric interaction with the planetary surface occurs, as it is the

obstacle in the magnetised flow with its induced field. The magnetotail is formed, but more

narrow than in the cases with planetary field.

4 CONCLUSIONS

In our numerical simulations, we obtain the first results for the magnetospheric interaction

of a millisecond pulsar and non-magnetized planets orbiting it. We find that in the cases of

conductive and ferromagnetic planetary surface interacting with the pulsar magnetic field,

the resulting flow near the planets shows different geometry of the induced electric field

and currents. The strength of the induced magnetic field is different in the two cases, so the

resulting radio emission from such objects would be different.

Here, we presented the concept of auroral emission from the vicinity of the millisecond

pulsar planets. The plasma outflowing from the vicinity of a millisecond pulsar is expected

to be lighter (electron-positron pairs instead of protons) and much faster than in the stellar

wind from the Sun-like stars. In future work, we will compute the emerging radio-emission

in the special-relativistic regime and assess the needed sensitivity for its observation from

Earth. Such measurements would provide a new window to pulsar wind and planets in such

extreme environments. It would be the first direct probe into the pulsar wind.
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MČ work in Opava is funded by the Czech Science Foundation (GAČR) grant No. 21-
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ABSTRACT

We explore the acceleration of charged particles in the combined gravitational and

magnetic field around a rotating Kerr black hole. We derive the energy spectrum

for ionized particles escaping to infinity, which can serve as injection spectrum for

observed ultra-high energy cosmic rays.

Keywords: Black hole – resonances – particle dynamics – magnetic field

1 INTRODUCTION

Rotating black holes (BHs) are likely the largest energy reservoirs in the Universe as pre-

dicted by BH thermodynamics, while cosmic rays (CRs) are the most energetic among

particles detected on Earth. Magnetic fields surrounding BHs combined with strong grav-

ity effects, thanks to the spacetime symmetries, turn the BHs into powerful accelerators of

charged particles (Kardashev, 1995). At the same time, in the age of multi-wavelength and

multi-messenger astronomy, BHs and their environments have not yet been probed with CR

messengers despite being observed across most of the electromagnetic spectrum, neutrino

and gravitational waves.

The production and acceleration mechanisms of ultra-high-energy cosmic rays

(UHECRs) of energy > 1020eV, beyond the GZK-cutoff limit remain unclear and point

to the exotic nature of the phenomena. Recent observations of extragalactic neutrinos may

indicate that the source of UHECRs is an extragalactic supermassive black hole (SMBH).

Tursunov et al. (2020) have shown that SMBH can efficiently accelerate UHECR protons

through the extraction of rotational energy of SMBH in the presence of an external mag-

netic field. Applying to a larger number of SMBH candidates in the centers of active galac-

tic nuclei (AGN) in the local universe, Tursunov et al. (2022) have found that the mean

energy of primary cosmic rays in most AGN sources is roughly of or above the order of

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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the spectral ankle – a flattening of the slope of the cosmic-ray spectrum measured around

1018.6 eV energy. Therefore, local SMBH can provide a sufficient contribution to the ankle

and observed all-particle spectrum, which necessitates further analysis of the model and

prediction of the energy spectrum of accelerated particles from SMBH, taking into account

the dynamic surroundings of AGN.

2 ELECTROMAGNETIC FIELD AROUND ROTATING BLACK HOLE

When the magnetic field surrounding a black hole is weaker than B≪ BG = 1019(M⊙/M) Gs,

its contribution to background spacetime geometry is negligible, and the geometry of the

rotating black hole is given the Kerr metric

ds2
= gttdt2

+ 2gtϕdtdϕ + gϕϕdϕ
2
+ grrdr2

+ gθθdθ
2, (1)

with the nonzero components of the metric tensor taking in the standard Boyer-Lindquist

coordinates the form

gtt = −

(

1 −
2Mr

Σ

)

, grr =
Σ

∆
, gθθ = Σ, gtϕ = −

2Mra sin2 θ

Σ
,

gϕϕ =

(

r2
+ a2
+

2Mra2

Σ
sin2 θ

)

sin2 θ, (2)

where Σ = r2
+ a2 cos2 θ, ∆ = r2 − 2Mr + a2. Here, M is the gravitational mass of the

black hole, and a is its spin parameter.

Due to the stationarity and axial symmetry of the Kerr black hole spacetime, the four-

vector potential of the weak magnetic field introduced by Wald (1974), which is the solution

of the vacuum Maxwell equations, takes the form

At =
B

2

(

gtϕ + 2agtt

)

, Aϕ =
B

2

(

gϕϕ + 2agtϕ

)

. (3)

The terms proportional to the rotation parameter a contribute to Faraday induction, which

generates an electric potential producing an induced electric field (Wald, 1974). The po-

tential difference between the horizon of a black hole and infinity takes the form

∆φ = φH − φ∞ =
Q − 2aMB

2M
. (4)

This causes a selective accretion of charged particles into the rotating black hole. The

process is similar to the field generated by the rotating conductor immersed in a magnetic

field.

Thus, the expressions (3) for the non-zero covariant components of the four-vector po-

tential have to be rewritten as (Tursunov et al., 2016)

At =
B

2

(

gtϕ + 2agtt

)

−
Q

2M
gtt, Aϕ =

B

2

(

gϕϕ + 2agtϕ

)

−
Q

2M
gtϕ. (5)

The process of selective accretion for astrophysical black holes surrounded by plasma oc-

curs in very short timescales, until the potential difference vanishes, which means that the
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Figure 1. Examples of ionized charged particle trajectories around magnetized rotating Kerr SMBH

(M = 108 M⊙, a = 0.5). The solid blue curves represent a projection of the particle’s trajectory into

the x-z plane, and the dotted lines show the boundaries of the motion given by the combined effect

of gravity and magnetic field. The black circle represents the BH horizon, and a cross-section of

the accretion torus is plotted with different shades of grey. If the electromagnetic field influence

(EFI) is small or comparable with gravity (B = 0.1 and B = 1), the charged particle is bounded by

the gravitational potential of BH. In this case, we observe a rich, chaotic dynamic; if EFI slightly

dominates over gravity (B = 10), the particle predominantly orbits along magnetic field lines; and

finally, if EFI is much stronger than gravity (B = 5 · 1010), the charged particle flies away with the

γ-factor proportional to the parameter B.

black hole acquires an induced electric charge QW = 2aMB. Despite the classical screen-

ing effect of plasma, it has been shown by Komissarov (2022) that the induced electric field

of a black hole cannot be shielded, at least within the ergosphere. The role of this charge

and its possible observational test were discussed by Zajaček et al. (2018) for the Galactic

centre SMBH. The value of the Wald charge QW = 2MaB ≤ 2M2B is

QW ≤ 1014

(

M

M⊙

)2 (

B

104Gs

)

statC, (6)

which is weak in the same sense as the external magnetic field, that is, it cannot modify the

background geometry of the black hole.

Despite the weakness of the electromagnetic field for spacetime curvature, in astrophys-

ical conditions, its effect is non-negligible for the motion of charged particles, such as

electrons and ions. The relative influence of magnetic and gravitational forces is governed

by the specific charge of the particle (ratio of the electric charge to mass of the particle)

and is of the order of (Frolov and Shoom, 2010)

b ∼ 4.7 × 107
(

q

e

)

(

m

mp

)−1 (

B

108Gs

)

(

M

10M⊙

)

, (7)
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where mp is the proton mass.

3 ENERGY SPECTRUM OF IONIZED ACCELERATED PARTICLES

Black holes can accelerate particles through the Penrose process (Penrose and Floyd, 1971),

where an initial particle splits in the ergosphere of the rotating Kerr black hole into two

fragments. If one of the secondary particles, after splitting, attains negative energy with

respect to an observer at infinity, it will inevitably be captured by the black hole. Thanks to

the energy conservation law, the second fragment gets a chance to escape to infinity with

energy greater than that of the initial particle. Such an energy gain occurs at the expense of

the black hole’s rotational energy. For neutral particles, the increase in energy per particle

is limited to η = 0.21. However, the inclusion of an electromagnetic interaction into the

Penrose process changes the situation dramatically (Wagh et al., 1985; Stuchlík and Kološ,

2016; Dadhich et al., 2018; Tursunov et al., 2021). In the magnetic Penrose process (MPP)

(Wagh et al., 1985), the charged particles can increase their energies by the factor even

exceeding η = 1012 (Tursunov et al., 2020; Tursunov and Dadhich, 2019; Tursunov et al.,

2022). Moreover, in contrast to the neutral version, in MPP, the acceleration zone goes

far beyond the ergosphere (a region with negative energy orbits of neutral particles) to an

effective ergoregion (a region with negative energy orbits of neutral particles).

In the MPP ionization process, a neutral particle 1 splits into two oppositely charged

particles – 2 and 3, with charges q2 and q3, respectively. The conservation of the electric

charge and canonical momentum gives

0 = q2 + q3 πα(1) = πα(2) + πα(3), (8)

where πα(i), i = {1, 2, 3} denotes the canonical momentum of 1st, 2nd and 3rd particles,

respectively. Due to the charge conservation, the momentum conservation from Eq. (8)

takes the form

pα(1) = pα(2) + q2Aα + pα(3) + q3Aα = pα(2) + pα(3). (9)

In physical scenarios, ionized particles are much more massive than electrons, i.e.,

m2/m3 ≫ 1, as in the case of ionization of neutral atoms. The time component of the

canonical momentum gives the energy of the particle with respect to the distant observer

E = −πt. As we can see from Eq. (8), the accelerated particle is gaining energy mostly

through qAt term, and if the electromagnetic interaction is strong enough, the particle’s

momentum can be neglected

E ∼ qAt(r, θ). (10)

One can estimate the maximal energy of an escaping particle (for example, a proton) from

supermassive BH with the realistic magnetic field

Ep = 1.7 × 1011 GeV

(

q

e

) (mp

m

) (

B

104Gs

)

(

M

109M⊙

)

(

a

0.8

)

, (11)
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Figure 2. Distribution of accelerated particles as a function of energy for cosmic rays accelerated by

SMBHs (M = 108 Msun) in a magnetic field with various strengths. The BH is rotating with a = 0.5

spin parameter, and the ionization probability is ϵ = 1 for the proton. Both models for particle

distribution in the Keplerian disk (left) and in the volume of the black hole’s environment (right) are

presented. The spectral index k is sensitive to the initial distribution of the particle. The sudden drop

in the number of particles with higher energies is caused by the truncation of the particle distribution

at the innermost edge of the accretion disk.

predicting energy of proton Ep exceeding 1011 GeV for M ∼ 109M⊙ and B ∼ 104Gs

(Tursunov et al., 2022). Presented MPP acceleration scenario for BHs, belong to “one-

shot” models as classified in Rieger (2022).

An example of charged particle trajectories can be found in Fig. 1, where the trajectory

for ultra-high energy particles is plotted. As one can see from Eq. 11, rotating supermassive

BHs can accelerate charged particles to the highest observed UHECR, or even higher. To

check the validity of UHECR production through MPP, one needs to find the UHECR en-

ergy spectrum, giving the number of particles N per energy E, that particle energy spectrum

N = N(E) (Rieger, 2022).

The toy model for the particle energy distribution function N(E) can be obtained from

the analogy of a black hole as a point charge Q accelerating test particle of charge q.

The electrostatic potential energy for such a system from a classical physics viewpoint

is proportional to both charges and inversely proportional to the distance E ∼ qQ/r. We

assume that the total number of particles in the volume of a radius r is proportional to the

number of accelerated ionized particles, so that N ∼ r3. One can write particle energy

spectrum

N = N0Ek, (12)

where the spectral index k is k = 3. For a rotating black hole in a magnetic field, a more

sophisticated model can be constructed, although the spectral index has to remain in the

range k ∈ (1, 3).
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Let us assume that the accretion disk of a black hole is located mostly in the equatorial

plane and that the probability of neutral particle ionization is proportional to the particle

density σ(r) and the temperature profile T (r) of the accretion disk. This gives

N(r) = ϵ r2 σ(r) T (r), (13)

where ϵ is a dimensional constant representing the probability of the ionization process.

The energy of a charged particle after the MPP ionization process is

E(r) ≈ qAt(r, π/2) ≈ −
q 2aB

r
, (14)

which is an electrostatic energy between the charge q of the particle and that of the Wald

charge 2aB.

In Fig. 3, we plotted the energy spectrum of accelerated particles in the MPP for the

constant density profile of the accretion disk, σ(r)=const, and for the temperature profile

T (r) = r3/4

(

1 −

√

rin

r

)1/4

, (15)

where rin is accretion disk inner edge. As we can see, the spectral index k for particle

energy spectrum from Eq. 12 is now k = 1.33. A more complex model with both energy

profile E = E(r, θ) and particle ionization profile N = N(r, θ) as a function of r and θ is

given in as preliminary results Fig. 3 (right).

We assume the number density of accelerated high energy particles to be proportional to

the total number density of particles in the accretion flow. The flux of high-energy particles

escaping the vicinity of a black hole can be assumed to be proportional to the accretion rate

of the black hole Ṁ if the particles are accelerated at the expense of the rotational energy

of the black hole.

4 CONCLUSIONS

In this contribution, we have shown that SMBH in AGN can serve as the primary UHECR

source. We calculate the distribution of accelerated particles in energy spaces, estimating

the initial energetic spectral index k for the MPP one-shot acceleration model in the range

k ∈ (1, 3). Our initial injection spectrum is expected to change during the propagation of

particles from the source to the detectors. More specific calculations of the spectrum taking

into account energy losses and their effect on the spectral index for different possible CRs

sources, including SMBH at the Galactic Center, are now in preparation.
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ABSTRACT

X-ray fluxes of low-mass neutron star binaries reveal rapid, nearly periodic changes
corresponding to frequencies in the order of hundreds of hertz. Two closely related
peaks often appear in the power spectral density and are designated as twin-peak
Quasi-Periodic Oscillations (QPOs). Some QPO models attribute the observed ef-
fects to the torus oscillating in the inner region of the accretion flow. Since the
observed variability is very strong, oscillations of a torus can be reflected in the ob-
served light curves either by modulation of an accretion flow and/or by a periodic
obscuration of a hot region on the neutron star surface. Applying a self-consistent
description of the oscillations and full relativistic ray tracing, we analyse how the
obscuration effect can affect the light curve detected by a distant observer. Within
the same paradigm, we also investigate a possible product of torus instability and the
implied signature of the Keplerian frequency in the light curve.

Keywords: Black hole – neutron star – X–ray binary – rapid variability

1 INTRODUCTION

Low-mass X-ray binaries (LMXBs) are among the most luminous sources in the X-ray uni-
verse. X-ray satellite observations on very short timescales showed that their luminosity
varies periodically (or quasi-periodically). Some of the variability has already been ex-
plained in terms of the spin of the neutron star (NS), while a complex variability posing
a broad phenomenology, the so-called quasi-periodic oscillations (QPOs), remains a mys-
tery (e.g., Van der Klis, 2006; Török et al., 2022, and references therein).

The observed flux of LMXBs can change very rapidly, and the fastest variability is at-
tributed to two distinguished frequency peaks in the power spectral density (PSD) of the
signal in the range of hundreds of hertz, sometimes reaching kHz frequencies, provided
that the binary contains a NS. In this case, in contrast to the black hole (BH) system obser-
vations, the two peaks are often clearly present simultaneously, which gave them the name

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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twin-peak QPOs (see, e.g., van der Klis, 1998; McClintock and Remillard, 2006; Motta,
2016).

In our recent paper Török et al. (submitted) (hereafter Paper I), we contribute to solving
the mystery of the rapid variability of LMXBs signal manifested by the twin-peak QPOs.
We follow the path outlined by the series of previous works of other authors, who suggested
that the changes in flux are caused by oscillations of an accretion torus in the innermost re-
gions of the binary, very close to the central compact object (Abramowicz and Kluźniak,
2001; Kluźniak and Abramowicz, 2001; Rezzolla et al., 2003a,b; Abramowicz and Kluź-
niak, 2004; Bursa et al., 2004; Montero et al., 2004; Bursa, 2005; Horák, 2005; Török et al.,
2005; Schnittman and Rezzolla, 2006; Abramowicz et al., 2007; Blaes et al., 2007; Ingram
and Done, 2010; Mazur et al., 2016; Parthasarathy et al., 2017; de Avellar et al., 2018;
Török et al., 2022, and references therein).

Oscillations of such torus can be reflected in the observed light curves either by the
modulation of the accretion flow, giving rise to changes of the source luminosity due to
a loss of energy of accreted matter reaching the NS, and/or by a periodic obscuration of
the hot region on the central star’s surface. The hot region corresponds to the boundary
layer (BL) on the surface of a temperature much higher than that of the star. The accreted
material, which reaches the star’s surface there, slowly spreads towards the poles, and its
temperature steadily drops towards the value on the surface. In principle, the amount of the
accreted material, thus the temperature and local emissivity, may depend on the distance
of the accretion torus to the star. For instance, when the torus is (radially) oscillating, the
emissivity should follow those oscillations, resulting in periodic changes of the flux from
the BL (Paczyński, 1987; Horák, 2005).

In this work, we follow our Paper I and consider two main scenarios. First, the modula-
tion is caused by obscuring the NS surface with a radially and vertically oscillating torus.
Second, the torus oscillates radially, but the other modulation is caused by the torus insta-
bility. In addition, we also compare these two scenarios to the consideration of radiating
hot spots orbiting in the inner accretion region. Our present Proceedings paper is primar-
ily intended as supplementary material for Paper I. We present here and discuss in more
detail the setup of the simulations we have performed, and, furthermore, we introduce and
analyse some results that did not fit the limited scope of Paper I.

2 MODELS, SIMULATIONS, AND THEIR SETUP

To validate the modulation model introduced in Paper I and to present its effects on the
observable signal, we simulate the propagation of photons in a strong gravitational field.
We use an analytical approximation for the inner accretion flow structure following the
“Polish doughnut” model of Jaroszyński et al. (1980).

2.1 Models

We consider the following three scenarios. The justification for their selection and related
references can be found in Paper I.
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Figure 1. Setup of the BL simulations. The local emissivity of a NS and the hot BL on it. Left:

Overall setup of our simulations. Middle: Maps showing the change in the BL local emissivity as the
torus oscillates radially. The figure shows what a distant observer would see if relativistic changes in
the photon energy were neglected (for the figure, we assume the g-factor g = ut

observer/u
t
emmitter = 1).

Right: Schematic profile of local emissivity of the star and BL system.

Model 1: Radially and vertically oscillating torus that periodically obscures the star’s sur-
face.

Model 2: Radially oscillating torus that is disrupted due to instabilities leading to the
formation of a gap. The torus fragment orbits the NS, periodically uncovering part of
its surface.

Model 3: A hot spot orbiting in the inner region of the equatorial accretion disk.

The first model considers a torus that oscillates radially and vertically and conceals the
hot region of a BL on the NS’s surface. This elaborate concept represents a continuation
of ideas introduced in a series of papers by Abramowicz and Kluźniak (2001); Kluźniak
and Abramowicz (2001); Abramowicz et al. (2007); Parthasarathy et al. (2017). The second
model considers a fragmented torus as a product of instability. A gap forms within it, which
orbits with the same (Keplerian) frequency as the original torus, periodically revealing the
luminous BL on the surface (Török et al., 2016, 2022).

We expect that such configurations assumed within the first and second models can cause
strong flux modulation with both radial and vertical (or orbital) frequencies. The third
model considers a standard scenario of a hot spot orbiting within a thin accretion disk
(Kluźniak et al., 1990; Karas and Bao, 1992; Stuchlík and Bao, 1992; Karas, 1999; Stella
et al., 1999; Stella and Vietri, 1999). Since it is known that this model rather fails to explain
the high amplitudes of QPOs, it is included merely for the sake of comparison.

To obtain light curves measured by a distant observer originating in a system with
a compact object, one needs to utilise a code that calculates the propagation of light in
a strong gravitational field (Cunningham and Bardeen, 1973; Karas et al., 1992; Beckwith
and Done, 2005; Schnittman and Rezzolla, 2006; Dexter and Agol, 2009; Vincent et al.,
2011; Chan et al., 2013; Bronzwaer et al., 2018; Prather et al., 2023). Within the context
of the QPO modeling, ray-tracing was pioneered by Bursa et al. (2004); Schnittman and
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Bertschinger (2004); Bursa (2005); Schnittman (2005); Schnittman et al. (2006b,a); Bakala
et al. (2014, 2015); Mishra et al. (2017).

Here, we use the LSD relativistic ray-tracing code developed by our colleague Pavel
(Bakala et al., 2015). In all examples in this contribution, except for those in Section 4, we
assume the inclination of the observer, i = 80◦, close to the equatorial plane.

2.2 Components of the system

The systems described by Models 1 – 3 consist of several components, which we describe
in more detail:

Model 1: NS, BL on its surface, and an oscillating torus.

Model 2: NS, BL on its surface, and a product of torus instability.

Model 3: NS and a thin equatorial disk with a hot spot orbiting within it.

Each of the components has specific properties, which are summarised below.

NS: A spherical star with homogeneous local emissivity from the surface; in the relative
units we use, the emissivity has a value of 0.001. Here, for simplicity, the NS does not
rotate (see Figure 1).

BL: An equatorial region where the hot accreted material would fall on the star’s surface.
The local emissivity peaks at the value of 75 in relative units and decreases towards the
poles to the value of the star’s emissivity. Furthermore, it changes with the radial posi-
tion of the nearby accretion torus centre, which reflects the accretion flow modulation by
torus oscillations (see Figure 1). The four-velocity of the material within the BL at the
equator corresponds to the Keplerian value of the specific angular momentum on the in-
nermost stable circular orbit. As the material approaches the poles, it converges towards
the four-velocity of the star’s surface, with the same profile as the emissivity (Suleimanov
and Poutanen, 2006; Gilfanov and Sunyaev, 2014). Thus, in our simplified case of a non-
rotating star, the material at the pole is completely decelerated (see also the middle panel
of Figure 4).

Torus: The torus configuration follows the setup developed by Bursa et al. (2004). The
centre of the torus oscillates as

r = r0 + δr sin(ωr,0 t) , z = 0 + δz sin(ωz,0), (1)

where δ r and δ z are the amplitudes in radial and vertical directions (in Model 2,
δ z = 0). Here, r0 is the radial coordinate around which the torus oscillates and the po-
sition of the torus centre. Frequencies ωr,0 and ωz,0 correspond to the radial and vertical
epicyclic frequencies of free test particles. The torus’ local emissivity in our relative units
is r0/r (torus emissivity integrated over the whole surface from a distant observer is con-
stant; see Figure 2). The four-velocity of the surface is given by the condition that the
specific angular momentum is constant (see Figure 4). In Model 2, we consider a product
of torus instability (e.g., Papaloizou and Pringle, 1984; Goldreich et al., 1986; Goodman
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Figure 2. Local emissivity maps of the oscillating torus (without a NS star in the centre). The images
show what a distant observer would see if relativistic changes in the photon energy were neglected.
However, the relativistic effects on the photon trajectory are taken into account. Therefore, we see the
characteristic relativistic shape of the torus with higher-order images. The local emissivity changes
that occur with the radial oscillations of the torus are also visible. Top: Torus oscillating in the
radial and vertical directions (Model 1). Bottom: Fragmented torus as a product of torus instability
oscillating in the radial direction (Model 2).

et al., 1987), that causes fragmentation of the torus and formation of one or more gaps. We
only model the case with one resulting fragment orbiting with the Keplerian frequency (see
the bottom line of Figure 2).

Keplerian thin disk: An infinitesimally thin disk on Keplerian orbits in the equatorial
plane, its local emissivity in relative units is proportional to (rms/r)3, where rms = 6.0M is
the innermost stable circular orbit.

Hot spot: A spot with the emissivity of a Gaussian distribution (with σ = 1/3M) around
its centre (see Figure 3). The spot oscillates in the radial direction. It has the same four-
velocity as its centre.

3 RESULTS

In each case, we place the torus centre (or the spot) at the same radius, r0 = 6.75 rg,
which is frequently assumed for processes close to the ISCO. At this radius, the radial and
vertical epicyclic frequencies are in a 3:1 frequency ratio (note that for a non-rotating NS,
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Figure 3. Local emissivity of the equatorial disk and a hot spot orbiting within the disk. Left and

Middle: Maps of the torus emissivity at different moments during the orbital motion. The meaning is
the same as in Figure 2. Right: Profile of the local emissivity of the spot and the equatorial disk in
relative units.

Figure 4. Maps of the g-factor illustrating the four velocities of the objects considered in our sim-
ulations. In the local system, the objects are green. The false colour scale corresponds to the human
eye perception.

vertical epicyclic frequency equals the Keplerian frequency). This can have importance
within the framework of QPO models considering resonances (Abramowicz et al., 2003).
Nevertheless, for our simulations, the frequency ratio is not of primary importance.

For the above setup, we present the results of a thorough analysis of the images and
light curves for a distant observer obtained from simulations of the previously described
systems (four velocities of relevant objects are compared in Figure 4). In Figure 5, we
show the synthetic light curves obtained for all models.

Apparently, it is possible to achieve significant amplitudes of variability of the measured
flux using the configurations of Models 1 and 2. On the other hand, only small variability
can be achieved using Model 3. The comparison of the intensity maps is illustrated in
Figure 6.
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Figure 5. Light curves for all three models compared to each other, showing one period of the
radial oscillations. Left: Model 1. Middle: Model 2. Right: Model 3. Note the different scales on
the vertical axes - in the right panel, it does not start from 0. In our case, the vertical, orbital, and
Keplerian periods have the same values but different physical meanings.

Figure 6. Intensity maps for all three models at different moments during the orbit. The config-
urations are the same as those corresponding to light curves presented in Figure 5. Top: Model 1.
Middle: Model 2. Bottom: Model 3.

4 DISCUSSION AND CONCLUSIONS

This proceeding paper is intended as supplementary material to Paper I, extending the de-
scription of the models and presenting additional results that were beyond the scope of
Paper I. We demonstrate how the torus, which periodically obscures the hot regions on the
star, can modulate the observed light curves, leading to much higher variability amplitudes,
usually absent in the other QPO models. The light curves of the two models (and the hot-
spot model for comparison) are shown in Figure 5. Clearly, models incorporating the BL
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Figure 7. Fraction of fluxes affected by a given oscillatory (or orbital) motion for different observer’s
inclinations. Fractions correspond to the difference between the highest and lowest flux normalised
to the highest flux value. The inclination angle increases from left to right.

obscuration into the modelling mechanism can potentially solve the problem of very high
amplitudes of the observed QPOs.

To support our statement further, we quantified the fractions of flux affected by the in-
dividual oscillatory motions. For this purpose, we performed simulations for the radial
and vertical oscillations separately. We also carried out an extra simulation for the non-
oscillating but fragmented torus. The resulting fraction of fluxes affected by the given
oscillatory motions for various observer’s inclinations are compared in Figure 7. Further-
more, we compared the case of the luminous NS with a BL to that of a BH scenario where
no radiation comes from the central object.

It is evident that a significant variability is induced in both Models 1 and 2 and almost
all assumed configurations. Figure 7 also shows that the fragmented torus model (Model
2) can generate comparably high amplitudes of both QPOs also in the BH case, which the
other models can reproduce only to a limited extent (see, e.g., Bursa et al., 2004).
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Abramowicz, M. A. and Kluźniak, W. (2004), Interpreting black hole QPOs, in P. Kaaret, F. K. Lamb
and J. H. Swank, editors, X-ray Timing 2003: Rossi and Beyond, volume 714 of American Institute

of Physics Conference Series, pp. 21–28, arXiv: astro-ph/0312396.



NS obscured by oscillating torus 63

Bakala, P., Goluchová, K., Török, G., Šrámková, E., Abramowicz, M. A., Vincent, F. H. and Mazur,
G. P. (2015), Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual
oscillation modes of accretion tori, A&A, 581, A35, arXiv: 1505.06673.
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Quasi-periodic oscillations from relativistic ray-traced hydrodynamical tori, MNRAS, 467(4), pp.
4036–4049, arXiv: 1510.07414.

Montero, P. J., Rezzolla, L. and Yoshida, S. (2004), Oscillations of vertically integrated relativistic
tori - II. Axisymmetric modes in a Kerr space-time, MNRAS, 354(4), pp. 1040–1052, arXiv:
astro-ph/0407642.

Motta, S. E. (2016), Quasi periodic oscillations in black hole binaries, Astronomische Nachrichten,
337(4-5), p. 398, arXiv: 1603.07885.
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ABSTRACT

We provide an extension of the analysis on whether an extended test body can

follow a geodesic trajectory given by Mukherjee et al. (2022). In particular, we

consider a test body in a pole-dipole-quadrupole approximation under the

Ohashi-Kyrian-Semerák spin supplementary condition moving in the Schwarzschild

and Kerr background. Using orbital setups under which a pole-dipole body can

follow geodesic motion, we explore under which conditions this can also take place

in the pole-dipole-quadrupole approximation when only the mass quadrupole is

taken into account. For our analysis, we employ the assumption that the dipole

contribution and the quadrupole contribution vanish independently.

Keywords: Mathisson–Papapetrou–Dixon equations – particle dynamics – black

holes

1 INTRODUCTION

The framework of an extended test body moving on a curved background, which we em-

ploy, dates back to the pioneering works of Mathisson (1937) and Papapetrou (1951). A sig-

nificant contribution to this framework was provided by Dixon (1970a,b, 1974), which re-

sulted in calling the respective equation of motion the Mathisson-Papapetrou-Dixon (MPD)

equations. These equations in the pole-dipole-quadrupole approximation, when only grav-

itational interactions are considered, read Steinhoff and Puetzfeld (2010, 2012)

Ṗµ = −1

2
R
µ

ναβ
UνS αβ − 1

6
Jαβγδ∇µRαβγδ, (1)

Ṡ µν = 2P[µUν] + 4

3
Jαβγ[µR

ν]
γαβ
, (2)

where R
µ

ναβ
is the Riemann tensor, S αβ is the spin tensor, Jαβγδ is the quadrupole tensor,

Pµ is the four-momentum and Uµ is the four-velocity, while the ‘dot’ defines a covariant

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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derivative with respect to the proper time. The MPD equations do not describe the evolution

of the quadrupole moment, which has to be determined by the matter structure of the body

(see, e.g., Steinhoff and Puetzfeld, 2012).

It is obvious from Eq. (1) that an extended body should, in general, deviate from a

geodesic trajectory even if Pµ||Uµ. Note that Pµ||Uµ is not in general the case for the MPD

equations. The question we tackled in Mukherjee et al. (2022) was whether these rules

can have exceptions on a black hole background, i.e. can extended bodies follow geodesic

trajectories? We have found some positive answers in the pole-dipole approximation but

failed to do so in the pole-dipole-quadrupole in the spin-induced quadrupole case.

In the present work, we restrict our analysis to the contribution of the mass quadrupole

moment Qβγ to the quadrupole term. Then, the quadrupole tensor reads

Jαβγδ = −3V[αQβ][γVδ], (3)

where V is a future-oriented time-like vector, which is employed to fix the centre of the

mass of the body by using the constraint

VµS µν = 0. (4)

This constraint is known in the literature as the spin supplementary condition (SSC). There

are several SSCs (see, e.g., Costa et al., 2018), but in Mukherjee et al. (2022) as in this work

we focus on the Ohashi-Kyrian-Semerák (OKS) one (Ohashi, 2003; Kyrian and Semerak,

2007). For this SSC, a vectorVµ = wµ is chosen so that ẇµ = 0 and wµwµ = −1.

This OKS choice leads to Ṡ µνwµ = 0, S̈ µνwµ = 0 and all the contractions of wµ with the

higher covariant derivatives of the spin tensor are also equal to zero. Hence, by contracting

Eq. (2) with wµ leads to

Pµ =
1

−wνUν
[(

−Pγwγ
)

Uµ + Kµδwδ
]

, (5)

where we have set Kµν = 4/3 Jαβγ[µR
ν]
γαβ

. It is straightforward that if there is no quadrupole

term, then the four-momentum and the four-velocity become parallel, which is a feature of

geodesic orbits. Mukherjee et al. (2022) have shown that this feature of OKS SSC can be

recovered even with the quadrupole term as long as

Kµγwγ = 0 (6)

holds.

In the cases that Pµ||Uµ, it is said that the hidden momentum vanishes, since Pµ can be

split in a part parallel P
µ

∥ to Uµ and to the hidden momentum part P
µ

hid
(Filipe Costa and

Natário, 2014) leading to

Pµ = P
µ

∥ + P
µ

hid
. (7)

The parallel part reads

P
µ

∥ = mUµ, (8)
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where the mass m := −PµUµ. In the MPD formalism, there is also another mass defined as

µ2 = −PµPµ. Note that µ and m in general do not coincide.

Our work concerns motion in a Kerr black hole background, for which the metric tensor

in the Boyer-Lindquist coordinates {t, r, θ, ϕ} reads

gtt = −
(

1 − 2Mr

Σ

)

, gtϕ = −
2aMr sin2 θ

Σ
, gϕϕ =

(

ϖ4 − a2∆ sin2 θ
)

sin2 θ

Σ
,

gθθ = Σ , grr =
Σ

∆
, (9)

with

Σ = r2 + a2 cos2 θ , ∆ = ϖ2 − 2Mr , ϖ2 = r2 + a2 , (10)

where M is the mass of the black hole and a corresponds to its angular momentum per

mass M. By setting a = 0 in Kerr’s metric tensor, we recover the spherically symmetric

Schwarzschild black hole metric tensor. To simplify some computations in Kerr (Carter,

1968) we can employ the following tetrad field

e(0)
µ =















√

∆

Σ
, 0, 0,−a sin2 θ

√

∆

Σ















, e(1)
µ =















0,

√

Σ

∆
, 0, 0















,

e(2)
µ =

(

0, 0,
√
Σ, 0

)

, e(3)
µ =

(

−a sin θ
√
Σ
, 0, 0,

r2 + a2

√
Σ

sin θ

)

. (11)

Having briefed the basic concepts and notions for our analysis. We will start our investi-

gation with the simpler Schwarzschild case and then move to the more complex Kerr one.

In both of these investigations, we make the assumption that the dipole and the quadrupole

contribution vanish independently. To address a more realistic scenario, this assumption

should be dropped. However, we believe that it allows an interesting insight into the prob-

lem. In the framework provided by this assumption, we can use the results of Mukherjee

et al. (2022) for the pole-dipole case and then deal with the quadrupole contribution to

the MPD equations. For the quadruple contribution, we first tackle the issue of whether the

hidden momentum vanishes, and then we explore under which condition a geodesic motion

is possible.

2 RADIAL MOTION IN THE SCHWARZSCHILD BACKGROUND

In the pole-dipole approximation, an extended body can move on a geodesic trajectory in

the Schwarzschild background if it follows a radial trajectory (Mukherjee et al., 2022).

The geodesic motion in this spherically symmetric background can be restricted to the

equatorial plane, i.e.,

Ut = −Ẽg, Ur = ±

√

Ẽ2
g − f

(

1 +
L̃2

z

r2

)

/

(

1 − 2M

r

)

, Uθ = 0, Uϕ = L̃z, (12)
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where Ẽg and L̃z denote the conserved specific geodesic energy and orbital angular

momentum,respectively. It is obvious that for the radial motion L̃z = 0. Because of the

OKS SSC, i.e. ẇµ = 0, the radial motion implies for the polar component of wµ that

dwθ

dτ
+
Ur

r
wθ = 0, (13)

i.e. rwθ = constant. By assuming for simplicity that this constant is zero, we get wθ = 0.

On a radial trajectory, the azimuthal component of wµ obeys a similar equation to Eq. (13),

which allows us also to have wϕ = 0 for simplicity.

Let us now discuss whether the hidden momentum vanishes for the radial trajectory, i.e.

if the Eq. (6) is satisfied. By applying wθ = 0 on Eq. (3) for the OKS SSC we get

Ktr =Kθϕ = 0,

Ktθ =
9M

2r2
(

2M − r2
)

{

wr
(

Qθrwt − Qθtwr
)

+ r (2M − r) wϕ
(

Qθϕwt − Qθtwϕ
)}

,

Ktϕ =
9M

2r2
(

2M − r2
)

{

wr
(

Qϕrwt − Qϕtwr
)

+ wϕ
(

Qrtwr − Qrrwt
)

+r (r − 2M) Qθθwtwϕ
}

, (14)

Krθ =
9M

2r4

{

r3wϕ
(

Qθrwϕ − Qθϕwr
)

+ (2M − r) wt
(

Qθrwt − Qθtwr
)}

,

Krϕ =
9M (2M − r)

2r4

{

wt
(

Qϕrwt − Qϕtwr
)

+ wϕ
(

Qttwr − Qtrwt
)}

− 9Mr3Qθθwrwϕ

2r4
.

Taking the above relations into account when calculating Kµνwν does not allow the contrac-

tion to vanish identically. Only if we assume wϕ = 0 along with wθ = 0 leads to Kµνwν = 0.

Once the latter holds, we have a vanishing hidden momentum, allowing Pµ||Uµ. Since we

want the body to be on a geodesic trajectory, i.e. U̇µ = 0, then Ṗµ = ṁUµ. However, as we

show below, we can achieve the same result without setting wϕ = 0 under our assumption

of independently vanishing dipole and quadrupole terms.

The MPD equations in the case of geodesic motion reduce to

ṁUµ = −1

2
RµνκλUνS κλ + Fµ, (15)

Ṡ µν = Kµν, (16)

where Fµ = −1/6 Jαβγδ∇µRαβγδ. Since on the radial trajectory for the pole-dipole the spin

curvature coupling vanishes and Ṡ µν = 0 (Mukherjee et al., 2022), then we have that:

a) Ṡ µν = 0 implies because of Eq. (16) that Kµν = 0 and b)

ṁUµ = Fµ. (17)

We see that assuming independent vanishing of the dipole and quadrupole contributions,

we are led to Kµνwν = 0 without necessarily setting wϕ = 0.
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For Kµν = 0, under the reasonable assumptions that in general wr
, 0 and wt

, 0,

Eq. (14) boils down to

Qtr =
1

2wtwr

(

Qrr
[

wt
]2
+ Qtt [wr]2

)

+
rQθθ

2 (r − 2M) wtwr

{

− (r − 2M)2
[

wt
]2
+ r2 [

wr]2
}

,

Qtθ =
Qrθwt

wr
, Qθϕ =

Qrθwϕ

wr
, (18)

Qtϕ =
Qrϕwt

wr
+

wϕ

2wt [wr]2



















Qtt [wr]2 − Qrr
[

wt
]2
−

rQθθ
[

r2 (wr)2 + (2M − r)2 (

wt
)2
]

2M − r



















.

By substituting the above relations Eq. (18) into Fµ, we obtain

Fr =
3M

[

r2 (wr)2 − (r − 2M)2 (

wt
)2
]

2r4 (wr)2

[

{

Qrr + (2M − r) Qθθ
} (

wϕ
)2

+
(

Qϕϕ − Qθθ
)

(wr)2 − 2Qrϕwrwϕ
]

, (19)

and F t = Fθ = Fϕ = 0. The latter implies that ṁ = 0, which in turn implies that Fr = 0

resulting in the additional constraint

Qϕϕ =
1

[wr]2

[

Qθθ
(

[

wr]2
+ (r − 2M)

[

wϕ
]2
)

+ wϕ
(

2Qrϕwr − Qrrwϕ
)

]

. (20)

To sum up, we have imposed geodesic motion in the Schwarzschild spacetime to a pole-

dipole-quadrupole body under OKS SSC, assuming that only the mass quadrupole con-

tributes to the quadrupole tensor. Moreover, we have assumed that the dipole and the

quadrupole contributions to the MPD vanish independently. This setup led us to the con-

straints Eq. (18) and Eq. (20), which are coupling components of the mass quadrupole

tensor Qµν and the components of the reference vector wµ. The MPD equations do not

prescribe an evolution equation for the quadrupole tensor and so from this point of view,

there is no evolution equation for the mass quadrupole tensor. However, for the reference

vector, we have ẇµ = 0, hence the constraints Eq. (18) and Eq. (20) dictate the way the

mass quadrupole tensor evolves under OKS SSC, if the pole-dipole-quadrupole body is set

to follow a geodesic trajectory.

2.1 Equatorial motion in the Kerr background

In this section, we discuss under which conditions a pole-dipole-quadrupole body can fol-

low an equatorial geodesic trajectory in the Kerr background. As in Section-(2), we discuss

the case for which the mass quadrupole is the only component of the quadrupole moment

(Eq. (3)). On the equatorial plane, Eq. (13) holds also for Kerr (Harms et al., 2016). Hence,

we can set wθ = 0 for simplicity, which in turn implies that w(θ) = 0. The Kµν expressed in
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the tetrad field frame reads

K(t)(r) =K(θ)(ϕ) = 0,

K(t)(θ) =
9M

2r3

{

w(r)
(

Q(t)(θ)w(r) − Q(r)(θ)w(t)
)

+ w(ϕ)
(

Q(θ)(ϕ)w(t) − Q(θ)(t)w(t)
)}

,

K(t)(ϕ) = − 9M

2r3

{

w(r)
(

Q(r)(ϕ)w(t) − Q(t)(ϕ)w(r)
)

+ w(ϕ)
(

Q(t)(r)w(r) − Q(r)(r)w(t)
)

+Q(θ)(θ)w(t)w(ϕ)
}

,

K(r)(θ) =
9M

2r3

{

w(t)
(

Q(t)(θ)w(r) − Q(r)(θ)w(t)
)

+ w(ϕ)
(

Q(θ)(ϕ)w(r) − Q(r)(θ)w(ϕ)
)}

, (21)

K(r)(ϕ) = − 9M

2r3

{

w(t)
(

Q(r)(ϕ)w(t) − Q(t)(ϕ)w(t)
)

+ w(ϕ)
(

Q(t)(t)w(r) − Q(t)(r)w(t)
)

+Q(θ)(θ)w(r)w(ϕ)
}

.

The above equations imply that on the equatorial plane K(µν)w(ν) does not vanish if we

just set w(θ) = 0, we need to set also w(ϕ) = 0 to achieve it. However, since Mukherjee

et al. (2022) showed that the spin curvature coupling for a pole-dipole body vanishes for

equatorial trajectories satisfying the relation L̃z = aẼg, by following the same procedure

as in Section-(2), i.e. by assuming that the dipole and quadrupole contribution vanishes

independently, we end up with K(µ)(ν) = 0. This results in K(µ)(ν)w(ν) = 0 and Eq. (21)

provides the following relations between the components of the quadrupole moment tensor:

Q(t)(r) =

Q(r)(r)
[

w(t)
]2
+ Q(t)(t)

[

w(r)
]2
+ Q(θ)(θ)

(

−
[

w(t)
]2
+

[

w(r)
]2
)

2w(t)w(r)
,

Q(t)(θ) =
Q(r)(θ)w(t)

w(r)
, Q(θ)(ϕ) =

Q(r)(θ)w(ϕ)

w(r)
, (22)

Q(t)(ϕ) =
Q(r)(ϕ)w(t)

w(r)
+

w(ϕ)

2w(t)[w(r)]2

{

Q(t)(t)
[

w(r)
]2
− Q(r)(r)

[

w(t)
]2

+Q(θ)(θ)
(

[

w(t)
]2
+

[

w(r)
]2
)}

.

If we now substitute the above relations into F(µ), we find that

F(r) =
9M
√
∆

r5
[

w(r)
]2

(

[

w(t)
]2
−

[

w(r)
]2
) [

Q(θ)(θ)
(

[

w(r)
]2
+

[

w(ϕ)
]2
)

+w(ϕ)
(

2Q(r)(ϕ)w(r) − Q(r)(r)w(ϕ)
)

− Q(ϕ)(ϕ)
[

w(r)
]2
]

and F(t) = F(θ) = F(ϕ) = 0. The latter result implies because of Eq. (17) that ṁ = 0 and

hence, from F(r) = 0, we obtain the following relation

Q(ϕ)(ϕ) =
1

[

w(r)
]2

[

Q(θ)(θ)
(

[

w(r)
]2
+

[

w(ϕ)
]2
)

+ w(ϕ)
(

2Q(r)(ϕ)w(r) − Q(r)(r)w(ϕ)
)

]

. (23)
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The interpretation we give to the constraints Eq. (22) is the same as in Section-(2).

Namely, in order for the pole-dipole-quadrupole body to follow a geodesic trajectory the

parallel transported along the geodesic reference vector w(µ) has to dictate the evolution of

the mass quadrupole through these constraints.

3 CONCLUSIONS

Using trajectories of the pole-dipole body that coincide with geodesics on a black hole

background, we explored under which condition a pole-dipole-quadrupole body obeying

OKS SSC can follow these trajectories as well when the mass quadrupole tensor is the

only component of the quadrupole tensor. To achieve these conditions, we have used the

not-so-realistic assumption that the dipole and quadrupole contributions to the MPD van-

ish independently. We showed that there are constraints between the components of the

mass quadrupole tensor and the reference vector wµ, which have to be obeyed in order for

the body to follow the aforementioned trajectories. Since the reference vector is parallel

transported along a geodesic, these constraints, in a sense, substitute the missing evolution

equations for the quadrupole moment from the MPD equations.
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ABSTRACT

We investigate the effect of a reflective firewall surrounding the Kerr black hole. For

a perfect fluid torus model, we construct a specific intensity map and corresponding

specific intensity profile for impact parameter β = 0. We show that the “mirror”

creates additional multi-ring structures in the image area below the photon orbit.

We quantitatively show this effect in terms of the profile of the specific intensity

Iν0 (α, β = 0) and show that the visibility of this multi-ring structure depends on the

reflection efficiency of the mirror.

Keywords: Kerr black-hole – perfect fluid torus – raytracing – radiative transfer

equation

1 INTRODUCTION

In the late ’70s, Stephen Hawking’s semi-classical treatment of black hole evaporation

(Hawking, 1975) showed that black holes do radiate, which raised the still unresolved issue

of so-called black hole information loss problem (Hawking, 1976). It exposes the conflict

between quantum theory and general relativity. Gauge/gravity duality gives evidence that

all information swallowed by a black hole is carried away by Hawking radiation. Now, it

is believed that an external observer sees this information emitted by complex dynamical

processes in close vicinity of the horizon, while the in-falling observer sees nothing special

there. Almhein, Marolf, Polchinski, and Sully (AMPS) pointed out that the local quantum

gravity, unitarity and “no drama” (assumption in-falling observer sees nothing special at the

horizon) cannot be consistent with each other (Almheiri et al., 2013). They suggest giving

up the “no drama” assumption, replacing it with the assumption that an in-falling observer

should be terminated when hitting the so-called firewall. It is usually expected that firewalls

lie on the black hole event horizons, however, in quantum mechanics, the boundaries are

blurry, and the position of the horizon is uncertain up to fluctuations of the order of Planck

length. In fact, a firewall may lie slightly inside the event horizons. In this case, it will fall

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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down to physical singularity faster than the black hole size can shrink. However, it is sup-

posed that a new firewall will be dynamically created on each fast-scrambling timescale. If

the firewall lies inside of the horizon, it will be undetectable if one assumes that a firewall’s

location is determined by the past history of the Hawking evaporating black hole spacetime

and is near where the event horizon would be if the evaporation rate were smooth, without

quantum fluctuations. One can then show that quantum fluctuations of the evaporation rate

in the future can migrate the event horizon to the inside of the firewall location and make

the firewall naked and possibly detectable (Chen et al., 2016).

In this short contribution, we discuss the possible effect of reflecting mirror, whose exis-

tence is motivated by the firewall hypothesis, on the optical effects associated with the radi-

ation emission of marginally stable torus orbiting central body generating Kerr spacetime

with a horizon covered by the firewall (mirror). We start by introducing the mathematical

formulation of the model. We present simulation results and make concluding remarks on

calculated results.

2 THE MODEL

The gravitational field of a rotating compact object is modeled by Kerr spacetime defined

by the dimensionless spin parameter |a| ≤ 1. The mass of the black hole M is set to unity in

what follows unless stated explicitly. In the Boyer-Lindquist coordinates (t, r, θ, ϕ) it takes

the usual form (Kerr, 1963; Bardeen et al., 1972)

ds2 = −
(

1 −
2r

Σ

)

dt2 +
Σ

∆
dr2 + Σdθ2 +

A sin2 θ

Σ
dϕ2 − 4a r sin2 θ

Σ
dtdϕ, (1)

where is Σ = r2+a2 cos2 θ, ∆ ≡ r2−2r+a2, and A = (r2+a2)2−a2∆ sin2 θ. The coordinate

singularity, following from ∆ = 0, reveals the existence of the event horizon located at

rh = 1 +
√

1 − a2. (2)

We envelope it with a reflective mirror that reflects infalling radiation with efficiency

0 ≤ η ≤ 1, and we call it a "firewall". The firewall is located at the spacelike surface,

orthogonal to ∂/∂r vector. The radius of that surface is

r f ≡ rh (1 + ϵ) , (3)

where is the parameter ϵ > 0.

The source of the radiation is perfect fluid, marginally stable torus. The pressure and

density equipotential surface coincides with the potential (Kozłowski et al., 1978)

W (r, θ) =
1

2
log



















∆[a2 (1 + cos 2θ) + 2r2]2 sin2 θ

4Σ
[

l2
d

(

∆ − a2 sin2 θ
)

− sin2 θ (A − 4a ld r)
]



















, (4)

where ld = const is the fluid angular momentum per unit mass. An element of the torus at

given coordinates (r, θ) orbits the center with angular velocity (Kozłowski et al., 1978)

Ω (r, θ) =

(

2ar sinθ +a2ld cos2 θ
)

+ ld (r − 2) r

sin2 θ
[

(

A − a2∆ cos2 θ
)

sin2 θ − 2ald r
] . (5)
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Now, the outer surface of the torus is determined by W(r, θ) = W0. We assume that the

specific emissivity profiles also coincide with equipotential surfaces of constant W, and we

specify it as

jν(r, θ) ≡ j0 exp

[

−
1

σ2

(

W −Wc

W0 −Wc

)]

for W < W0 and 0 elsewhere. (6)

We introduced, here, the value of W = Wc corresponding to the highest pressure/density

being the local minimum of W.

The radiation follows null geodesics, identified by impact parameters l and q, in the Kerr

spacetime. We divide the integration into two parts. First, there is a radial turning, we

integrate the system of ordinary differential equations (Schee et al., 2023)

d2u

dλ2
=

1

2Σ2

(

dU

du
− 2Σ

dΣ

dλ
ku

)

, (7)

d2m

dλ2
=

1

2Σ2

(

dM

dm
− 2Σ

dΣ

dλ
km

)

, (8)

dIνo

dλ
= g2 jν. (9)

Second, there is no turning point, a photon heads toward the collision with the “firewall”,

and we solve the set of differential equations (Schee et al., 2023)

d2m

du2
=

1

2U2

(

dM

dm
− U

dU

du

dm

du

)

, (10)

dIνo

du
=

1

ku
g2 jν. (11)

Here we introduced effective potentials U ≡ 1 + u2(a2 − l2 − q + u(2((a − l)2 + q) − a2qu))

and M ≡ q + m2(a2 − l2 − q − a2m2) and new coordinates u ≡ 1/r and m ≡ cos(θ) and

ku = du/dλ. The frequency shift, g, of photon emitted at particular fluid element of torus

reads (Fanton et al., 1997)

g =

√

1 − 2r(1 − aΩ sin2 θ)2/Σ − (r2 + a2)Ω2 sin2 θ

1 − lΩ
. (12)

In the no-turning point case, the photon hits the firewall and is reflected. We reflect that

photon in locally non-rotating frames (LNRF) in such a way that k
(0)
r = k

(0)

i
, k

(1)
r = −k

(1)

i
,

k
(2)
r = k

(2)

i
, and k

(3)
r = k

(3)

i
; here the subscripts r and i represents the tetrad before and after

reflection respectively. Now, the transformation of photon 4-momentum components from

LNRF to coordinate frame reads k(a) = Λ
(a)
µ kµ, in particular k(1) = Λ

(1)
r kr and therefore we

obtain the reflection in terms of components relative to coordinate basis in the form kt
r = kt

i
,

kr
r = −kr

i
, kθr = kθ

i
, and k

ϕ
r = k

ϕ

i
.

3 SIMULATION PARAMETERS AND RESULTS

We choose to illustrate the effect of the firewall on the specific intensity map of a marginally

stable torus with the outer surface W(r, θ) = W0 = −0.05, angular momentum
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Figure 1. Meridional cross-section of the torus (red equipotential curves), firewall (black thick dashed

line), ray with a turning point (black dotted line), and ray with no turning point (impacting segment

dashed line and reflected segment black solid line).

ld = 3 orbiting the Kerr black hole with spin parameter a = 0.95. The meridional cross-

section of this configuration is in Fig. 1. The projection plane coordinates ranges are

(α, β) = ([−20M, 20M], [−20M, 20M]) . Observer is located at (uo, θo) = (10−4M−1, 15◦),

(10−4M−1, 45◦), and (10−4M−1, 80◦). For each point (α, β) we determine impact parameters

(l, q) from formulas l = α
√

1 − m2
o and q = β2+m2

o(α2−a2), and we integrate null geodesics

using (7) -(9) in case there is a radial turning point or (10)-(11) in case there is no radial

turning point. In the second case, the geodesics are parametrized with u, and we integrate

them down to u = 1/r f . If a firewall is present, the ray is reflected, and we integrate null

geodesics outward to u = 1/(1.5rout) where rout is the outermost radius of the torus.

The simulation results in Iνo(α, β) map presented in Fig. 2, where are nine density plots

of torus image for three representative values of efficiency parameter η = 0 (left column),

0.4 (middle column), 1.0 (right column), and three representative values of observer in-

clination θo = 15◦ (top row), 45◦ (middle row) and 80◦ (bottom row). In each row, the

observed specific intensity is normalised by the maximum of the observed specific inten-

sity in case η = 0 (black hole). In this set of figures, we clearly see that the additional image

structure in the region inside of the photon sphere is present, and its intensity relative to

maximal intensity decreases with the observer inclination due to the strong enhancement

of the Doppler effect becoming stronger for higher inclinations.

This effect is quantitatively illustrated in the β = 0 profiles of Iνo(α, β) plotted in

Figs 3. In each figure there are three plots designated A (for η = 0), B (for η = 0.4),

and C (for η = 1.0). The presence of the firewall (mirror) is revealed in the form of addi-

tional peaks in the region between the main peaks, which is also present in the black hole

case. The amplitude is proportional to the reflection efficiency parameter η as expected.
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Figure 2. Illustrative examples of Iν0 maps of disk image around a black hole (left) and firewall (right)

with spin 0.95. The observer inclination is θo = 15◦ (top), 45◦ (middle), and 80◦ (bottom).

The intensity of reflected images does not depend on the firewall radius in the case of a

stationary structure.

However, in the case of a system of temporal variability of emissivity, the deeper the

radius of the firewall, the longer the time it takes a photon to reach the firewall, reflect,

and climb out of the potential well. The effect of radiation echo takes place here, and the

changes in the direct image of the disk intensity are observed before the changes in reflected

images with a time delay corresponding to the depth of potential well (Hensh et al., 2022).

4 CONCLUSIONS

We presented a toy model of firewall a mirror with reflection efficiency η and radius

r f = rh(1 + ϵ) and simulated the specific intensity image maps and their α profiles,

Iνo(α, β = 0). We showed that additional images of the torus appear in the region below

the photon spherical orbit and that their intensity is proportional to the mirror reflection
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Figure 3. Profiles of Iν0(α, β = 0) in case of spin parameter a = 0.95 and observer inclination

θo = 15◦,45◦, and 80◦.

efficiency. We find that the observed specific intensity does not depend on the radius of the

mirror. The visibility of the firewall depends strongly on the mirror reflection efficiency.
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ABSTRACT

We investigate the fate of a collapsing stellar core, which is the final state of evolu-
tion of a massive, rotating star of a Wolf-Rayet type. Such stars explode as type I b/c
supernovae, which have been observed in association with long gamma-ray bursts
(GRBs). The core of the star is potentially forming a black hole, which is embed-
ded in a dense, rotating, and possibly highly magnetized envelope. We study the
process of collapse using General Relativistic MHD simulations, and we account
for the growth of the black hole mass and its spin, as well as the related evolu-
tion of the spacetime metric. We find that some particular configurations of the
initial black hole spin, the content of angular momentum in the stellar core, and
the magnetic field configuration and its strength are favoured for producing a bright
electromagnetic transient (i.e., a gamma-ray burst). On the other hand, most of the
typical configurations studied in our models do not lead to a transient electromag-
netic explosion and will end up in a direct collapse, accompanied by some residual
variability induced by changing accretion rate. We also study the role of self-gravity
in the stellar core and quantify the relative strength of the interfacial instabilities,
such as Self-Gravity Interfacial (SGI) instability and Rayleigh-Taylor (RT), which
may account for the production of an inhomogeneous structure, including spikes
and bubbles, through the inner radii of the collapsing core (inside ∼ 200 rg). We find
that in self-gravitating collapsars, the RT modes cannot grow efficiently. We also
conclude that transonic shocks are formed in the collapsing envelope, but they are
weaker in magnetized stars.

Keywords: Accretion–black hole physics – gravitation – magnetohydrodynamics
– massive stars – gamma-ray bursts

1 INTRODUCTION

Long gamma-ray bursts (GRBs) originate from the collapse of massive, rotating stars.
Some of the GRBs exhibit much stronger variability patterns in the prompt GRB emis-

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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sion than the usual stochastic variations. We discuss the mechanisms of these variations in
the frame of the self-gravitating collapsar model.

Our computations confirm that gravitational instability can account for flaring activity
in GRBs and the variations in their prompt emission. Rapid variability detected in the
brightest GRBs, most likely powered by spinning black holes, is consistent with the self-
gravitating collapsar model, where the density inhomogeneities are formed. The transonic
shocks may also appear, but their effect should be weakened by the magnetic field.

We calculate the time evolution of the collapsing massive star using the General Rela-
tivistic Magneto-Hydrodynamic (GR MHD) scheme. We have developed a new version of
the code HARM-METRIC, upgraded from that presented in Janiuk et al. (2018). The evo-
lution of the space-time Kerr metric is accounted for by the increasing mass and changing
spin of the black hole. We also added new terms that describe the self-gravity of the star
and are changing at every time step during dynamical simulation.

In our formulation, the black hole has already been formed in the centre of the collapsing
stellar core and its initial mass in of 3M⊙. Our computational grid size is 1000 rg, which
makes it smaller than a compact C-O core of a Wolf-Rayet star or a presupernova. There-
fore, our model is compact enough to address the problem of self-gravitating gas close
to the horizon of a newly formed black hole, but we do not address any prior or ongoing
supernova explosion.

Depending on the rotation of the star, the ultimate outcome might be either a direct col-
lapse or the formation of a mini-disc inside the core, that is, a collapsar which may lead
to an electromagnetic transient. At the onset of the GRB, the collapsar consists of a black
hole, a stellar envelope composed of accreting shells with decreasing density, and a rota-
tionally supported disc formed at the equatorial region. At any chosen radius above the
horizon, the gas is subject to gravity force induced by the Kerr black hole, the centrifugal
force due to envelope rotation, and in addition, it feels the perturbative force due to the
self-gravity of the matter enclosed within a given radius.

2 NUMERICAL CODE AND SETUP

We use the general relativistic MHD code called high-accuracy relativistic magnetohydro-
dynamics (HARM), originally published by Gammie et al. (2003) and further developed by
various groups. Our code version, HARM-METRIC, includes the Kerr metric evolution,
as first described in Janiuk et al. (2018).

The code introduces a conservative, shock-capturing scheme with low numerical vis-
cosity to solve the hyperbolic system of partial differential equations of GR MHD. The
numerical scheme uses the plasma energy-momentum tensor, with contributions from mat-
ter (gas) and electromagnetic field. For the GR MHD evolution, two fundamental equations
are solved for the mass and energy-momentum conservation

(ρuµ);µ = 0, T
µ
ν;µ = 0, (1)

T
µν

(m) = ρhuµuν + pgµν, (2)
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Physical Geometrical cgs
quantity units units

Length rg =
GM

c2
4.44 × 105 cm

Time Tunit =
rg

c
1.38 × 10−5 s

Table 1. Conversion units between numerical code and physical scale of the collapsar.

T
µν

(em) = bkbkhuµuν +
1
2

bkbkgµν − bµbν, (3)

T µν = T
µν

(m) + T
µν

(em). (4)

An additional constraint is given by the Equation of State (EOS). In the current project, we
used an analytic form of adiabatic EOS that relates gas pressure with density. This scale,
with a power of 4/3, is adequate for a relativistic gas of degenerate particles

p = Kργ, γ =
4
3
. (5)

The HARM code works in dimensionless units of G = c = 1. Conversion coefficients can
be found in 1, where the black hole of 3 Solar masses is assumed. Notice that in the plots
below, we use geometric units to express distance, while physical units are used to express
time.

2.1 Initial conditions

Initial conditions for our collapsing stellar core are given by the quasi-spherical distribution
of gas endowed with small angular momentum, concentrated at the equatorial plane (Król
and Janiuk, 2021). The distributions of density and radial velocity are obtained from the
Bondi solution, integrated numerically below and above the sonic point. The sonic point is
a parameter of our model, and here it is assumed at 80rg. Below this point, matter flows
into a black hole supersonically and reaches the speed of light at the horizon.

We illustrate the initial condition in Figure 1, left panel. The density of the gas is nor-
malised to physical units (given in cgs on the plot), assuming that the collapsing star has
the initial mass of 25 Solar masses. This mass is enclosed within our computational do-
main with an outer radius of a Rout = 1000rg. The plot shows only the innermost region of
100 rg. Most mass of the core is located very near to the center, as it represents the evolved
state of stellar evolution with a compact (iron) core formed.

In the initial conditions, we also introduce a small angular momentum imposed on the
spherically distributed gas. The specific angular momentum is normalised by the parameter
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S , with respect to that at the innermost stable circular orbit (ISCO). In addition, the rotation
velocity scales with the polar angle to be maximal at the equator, θ = π/2.

l = S liscor2 sin2 θ, (6)

with

lisco = uφ,isco =
r

1/2
isco − 2a/risco + a2/r

3/2
isco

√

1 − 3/risco + 2a/r
3/2
isco

. (7)

Notice that the radius rISCO in Kerr geometry depends on the black hole spin. In this
proceeding, we show results obtained for the value of initial black hole spin a0 = 0.5. We
use several values of rotation parameter, as denoted on the plots in the next sections.

After the onset of collapse, the rotation of gas induces the formation of a mini-disk,
i.e. toroidal structure, located at the equatorial plane. The density distribution becomes no
longer spherical. Also, the radial velocity is decreased as the gas is subject to a centrifugal
barrier. Flow is falling into the black hole with supersonic speed from the poles, while at
the equator, the speed is subsonic.

The map on Figure 1, right panel, shows the flow distribution at time t=0.089 s for the
model normalized with rotation parameter S=1.4. This means that the specific angular
momentum is above a critical value (S=1), which allows for the formation of a rotationally
supported torus. The sonic surface, Mach=1, is plotted with a solid line and marks the
location of a transonic shock at the equatorial region.

3 IMPACT OF SELF-GRAVITY ON THE COLLAPSE

In our new simulations, both the mass and angular momentum accreted onto the event hori-
zon – and used to update the Kerr metric coefficients – are now modified by the perturbation
acting on the metric in the region above the horizon due to the self-gravity force that the
gas feels at a given distance from the horizon. These perturbative terms are calculated from
the stress-energy tensor. Therefore, in addition to the two equations governing the growth
of black hole mass and spin via the mass and angular momentum transfer through the hori-
zon, as given below, (Król and Janiuk, 2021), we now add perturbative terms to mass and
angular momentum, computed at every radius above the event horizon.

ṀBH =

∫

dθdφ
√
−g T r

t, (8)

J̇ =

∫

dθdφ
√
−g T r

φ, (9)

δMBH(t, r) = 2π
∫ r

rhor

T r
t

√
−gdθ, (10)
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δJ(t, r) = 2π
∫ r

rhor

T r
φ

√
−gdθ, (11)

δa =
J + δJ(r)

MBH + δMBH(r)
− ai, (12)

ai = ai−1 + ∆a. (13)

The terms computed in addition to mass and angular momentum changes (Janiuk et al.,
2018) as these self-gravity perturbations are integrated at each grid point in the radial di-
rection and at each time. They affect the change of Kerr metric coefficients, which are
sensitive to the mass and spin updates. The dimensionless black hole spin, a, evolves as
a result of black hole mass and angular momentum changes due to the accretion of mass
under the horizon and is additionally changed due to the self-gravity of the collapsing core.
The numerical method has been described in detail in Janiuk et al. (2023). Below, we com-
pare the results of self-gravitating collapsar models to the runs without self-gravity in order
to emphasize the difference and to investigate the role of self-gravity in collapsar physics.

As shown in Figure 2, the results are strongly sensitive to the adopted self-gravity effects
and also weakly sensitive to the rotation of the collapsing envelope. The latter is normalized
with respect to the critical angular momentum, for which the flow is circularized at the
innermost stable orbit, ISCO (Król and Janiuk, 2021). In addition, the rotation velocity
scales with the polar angle so that at the equator, the rotation of the star is maximal. We
notice that the larger the initial rotation magnitude, the longer it takes for the black hole
mass to evolve. The non-SG simulations end with very different final black hole mass,
depending on the rotation parameter.

In contrast, the self-gravity of the envelope can speed up the evolution of the collapsing
stellar core significantly. Also, the accretion rate and its fluctuations are of much higher
amplitude when self-gravity effects are taken into account. Without self-gravity, there are
longer time intervals where there is considerably less fluctuation of the accretion rate; in
this case, there exist only some small oscillations in the accretion rate during some time
intervals (around 0.2 s for S=1.4, and 0.4-0.5 s for S=2).

3.1 Instabilities on the collapsing core

As an effect of self-gravity, we observe density inhomogeneities and formation of the accre-
tion shocks in all our models, regardless of the initial black hole spin or rotation parameter
of the collapsar. First, there appears an equatorial outflow of matter, which reaches radii of
up to about 80 rg and is then stalled in the transonic shock. The small inhomogeneities in
the pressure and density at the chosen time intervals are visible in more detail in the plots
below, in Figure 3 and in Figure 4, respectively.

We quantify the inhomogeneities in the collapsar by computing the radial derivatives
of density and pressure at specific times and locations. We identify the mechanism for
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Figure 1. Left: Density distribution at the onset of core collapse. Arrows represent the velocity field
(normalised length). Density distribution and velocity field after the onset of collapse. The model
is parameterized with rotation parameter S=1.4. The thick white line represents the sonic surface,
Mach=1. Right: Density distribution at the onset of core collapse. Arrows represent the velocity
field.

Figure 2. Left: Black hole mass changing as a function of time during the collapse. We start from 3
Solar mass black hole. Models including and excluding self-gravity are plotted by the thick and thin
curves, respectively. Three colors refer to different amounts of angular momentum in the collapsing
star: S=1.0 (blue), S=1.4 (red) and S=2.0 (green). Middle: Evolution of accretion rate through
the horizon for self-gravitating and non-self-gravitating collapsars, shown with thick and thin lines,
respectively. The different colors refer to various amounts of angular momentum in the collapsar,
the same as in the left plot. Right: Evolution of the black hole dimensionless spin parameter during
the collapse. We start from an oderately spinning black hole with a=0.5. Models including and
excluding self-gravity are plotted by the thick and thin curves, respectively. Three color refer to
different amounts of angular momentum in the collapsing star, the same as in the left and middle
plots.
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their creation as the SGI instability (Self-Gravity Interfacial instability), and we compare
its strength with another well-known hydrodynamical instability, the Rayleigh-Taylor (RT)
instability. Their growth rates are given as below (Kifonidis et al., 2003; Hunter Jr et al.,
1997)

σRT =

√

−
p

ρ

∂lnρ

∂r

∂lnp

∂r
, (14)

σSGI =

√

2πG(ρ2 − ρ1)2

(ρ2 + ρ1)
. (15)

The RT and SGI instabilities result in very similar configurations at density snapshots.
However, they have their own characteristics, which allows us to differentiate between
them. As self-gravity has no ‘preferred’ direction, it is destabilizing across all density in-
terfaces, while an interface is RT-unstable only if the heavy fluid is on top of the light fluid.
It has also been confirmed that RT instability is characterized by dense spikes penetrating
the tenuous fluid, whereas the SGI develops with tenuous spikes streaming into the denser
fluid.

We find that SGI instability seems to dominate over RT instability and produces the in-
homogeneities. In particular, we checked that the growth rates of RT are having imaginary
values, as computed at radii between 20 and 25 rg, around the mixing boundary.

Finally, we investigated the formation of transonic shocks in the collapsars. In Figure 5,
we present radial profiles of Mach number at some specific time snapshots for models with
S = 2 and a0 = 0.5. The left panel shows the profiles in the self-gravitating case, while the
plot in the right panel shows those of the self-gravitating magnetized case (we introduced
a weak vertical magnetic field in the initial condition). For the sake of more visibility, we
provide zoomed-in inset panels representing the inner regions. We observe the sonic front
expansion and also some transient shock formation during the collapse. At early times, the
small transonic shocks appear around 100 rg, and they present a moderate density contrast
(pre-shock to post-shock density ratio R = ρ1/ρ2 ∼ 10). Such shocks also appear at later
times. Their formation is enhanced by the self-gravity effects. We find that the magnetic
field does not make any significant difference in the shock expansion timescales, but it
affects the strength of the shock, consistently with previous studies (Komissarov, 1999).

4 CONCLUSIONS

In this work, we show numerical models of the collapsing stellar core where we account
for the dynamical evolution of central black hole mass and its spin. The related coefficients
of the Kerr space-time metric are evolved accordingly, at every time step. In addition, we
calculate the self-gravity of the stellar envelope, and we add the relevant perturbative terms
to the dynamical evolution of the black hole spin parameter.

The last modification of the model turned out to have an impact on the global evolution
of the collapsing star and produce dramatic fluctuations in the accretion rate at the initial
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Figure 3. Left: Pressure profile for the model with rotation parameter S=2 and initial black hole
spin A0 = 0.5, taken at time t=0.118 s., at which largest accretion rate fluctuations appear. Middle:

Pressure profile at time t=0.133, for the same model as in the left plot. Strong inhomogeneity regions
are visible. Right: Pressure profile at a later time of the simulation for the same model as in the
left and middle plots. Inhomogeneities are the same, and at this time, accretion rate fluctuations are
smoothed as well. The map is zoomed out to a larger radius.

Figure 4. Left: Density profile at t=0.118, for the same model as above. Middle: Density profile
at t=0.133, for the same model as above. Right: Density profile at late time, t=0.665, for the same
model as above.

Figure 5. Left: Mach number profile at three different times, t=0.118, t=0.133, and t=0.148 s, for
the model with S = 2.0. Right: Mach number profile at three different times for the same model
with a magnetic field.
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phase of collapse. More importantly, it also plays a crucial role in the development of the
SGI interfacial instability in its specific regions. We identified inhomogeneities in density
and pressure distributions which arise due to self-gravity, and we concluded that the SGI
instability dominates over the RT, as its growth rate is positive in the regions of mixing
boundaries.
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ABSTRACT

We study charged fluid tori with vanishing conduction current orbiting in the back-

ground given by a Schwarzschild black hole immersed in a parabolic magnetic field

introduced in the context of the Blandford-Znajek process. In our study, we focus

on the off-equatorial charged tori that could be related to the creation of jets due to

the Blandford-Znajek process.

Keywords: Black holes – parabolic magnetic field – general relativity

1 INTRODUCTION

Accretion disks orbiting a central black hole are assumed as engines of active galactic

nuclei with central supermassive black holes, or microquasars in binary systems contain-

ing a stellar-mass black hole (Abramowicz and Fragile, 2013a). The extraordinary energy

outputs observed in such objects are related to the radiation of the disks and the related

jets. Basically, accretion disks are modeled as geometrically thin Keplerian accretion disks

governed mainly by the spacetime circular geodesics (Novikov and Thorne, 1973), or as ge-

ometrically thick accretion disks governed by the Euler equation and the related effective

potential reflecting the interplay of the gravitational and inertial forces with the pressure

gradients (Kozlowski et al., 1978; Stuchlík et al., 2000). Closed equipotential surfaces

of the effective potential govern equilibrium tori, accretion (excretion) tori are governed

by self-crossing equipotential surfaces; open equipotential surfaces govern jets. Complex

equatorial toroidal structures, named ringed accretion disks, orbiting Kerr black holes and

describing simultaneously relatively counter-rotating tori were introduced in Pugliese and

Stuchlík (2015, 2016, 2017, 2018); Pugliese and Stuchlik (2019). The jets are usually

modeled in the framework of the Blanford-Znajek process that involves electromagnetic

fields external to the black hole and generated by electric currents in the accretion disks

(Blandford and Znajek, 1977).

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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The electromagnetic fields external to the central black hole are generally very impor-

tant both for the behavior of the accretion disks and the creation of related jets. Recently,

it has been demonstrated that the external magnetic field strongly influences ionized Kep-

lerian disks, causing their transformation to thick disks or leading, in extreme cases, to their

destruction Kološ et al. (2015); Stuchlík and Kološ (2016); Tursunov et al. (2016); Pánis

et al. (2019); Stuchlík et al. (2019). In complex general-relativistic magneto-hydrodynamic

approach Gammie et al. (2003); Komissarov (2004); Tchekhovskoy et al. (2008) describ-

ing simultaneously the disks and the jets, fluid plasma structures are usually studied in

the force-free approximation corresponding to infinite conductivity – for recent comments

on the relation of the Blandford–Znajek process and the magnetic Penrose process (see

Dadhich et al. (2018); Stuchlík et al. (2020)).

Existence of non-equatorial charged-particle circular orbits in the external magnetic

fields around black holes (Kovář et al., 2008; Kovář et al., 2010; Kopáček et al., 2010)

inspired idea of charged "non-conducting (more precisely: with vanishing conduction cur-

rent)" fluid structures treated in an approximation of zero conductivity, representing a di-

rect of usually used approximation of infinite conductivity. The model of charged non-

conducting tori was introduced in Kovář et al. (2011) and further developed in Slaný et al.

(2013); Cremaschini et al. (2013); Kovář et al. (2014); Kovář et al. (2016); Trova et al.

(2018); Schroven et al. (2018). Such tori can be equatorial, but also can be off-equatorial,

levitating outside the equatorial plane due to the electromagnetic interaction of the fluid

charge with the magnetic field.

The magnetic field external to the black hole can be an external galactic magnetic fields

amplified in the black hole’s strong gravity, or a black hole can be immersed in the ex-

tremely strong magnetic field of a magnetar (Kovář et al., 2014). Of course, the accretion

disk itself is constituted of conducting plasma that can create electric flows that can gener-

ate a magnetic field external to the black hole, as assumed in the Blandford-Znajek process.

The basic and simplest approximation of the magnetic fields is the uniform magnetic

field introduced by Wald (Wald, 1974). The charged non-conducting tori were studied in

the Kerr (Schwarzschild) black hole spacetimes and the uniform or dipole external mag-

netic fields (Slaný et al., 2013; Kovář et al., 2014), moreover, the off-equatorial tori having

sufficiently low density can be considered as collision-less plasma (Cremaschini et al.,

2013).

However, of special interest is the possibility of the existence of the off-equatorial non-

conducting charged tori in the magnetic fields generated in the accretion disks, creating jets

due to the Blandford-Znajek process that are thus also of direct astrophysical relevance.

The split-monopole magnetic field generated by currents in thin accretion disks introduced

in the first treatment of the Blandford-Znajek process (Blandford and Znajek, 1977), and

confirmed as physically relevant by magneto-hydro-dynamic models (Komissarov, 2004),

has been studied for the off-equatorial charged tori in Stuchlík et al. (2022).

Here, we focus attention on the possible existence of the off-equatorial charged tori in

the parabolic magnetic field treated as a second possibility for the generation of jets in

Blandford and Znajek (1977). The relevance of the parabolic field in the vicinity of the

black holes is supported by recent numerical general relativistic magneto-hydrodynamic

models of thick accretion disks, indicating that the evolution of the tori immersed initially
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in any magnetic field results in a final state with a parabolic field located outside the torus

near the rotation axis of the system (Tchekhovskoy et al., 2008).

We first present basic ideas of the model of the charged non-conducting fluid structures

and then investigate the existence and properties of the charged tori around Schwarzschild

black holes surrounded by the parabolic magnetic field that can be considered as a simple

but realistic approximation of the electromagnetic fields. We use the geometric unit with

c = G = 1.

2 MODEL OF CHARGED FLUID TORI

We assume a stationary and axisymmetric background field composed of gravitational, gαβ,

and electromagnetic, Fαβ = ∇αAβ − ∇βAα, parts. Test configurations of a perfect fluid with

charge density qρ, energy density ϵ and pressure p allowing their orbiting in the fixed back-

ground. The considered background fields and the charged configurations have a common

axis. Under the presented assumptions, the equilibrium charged fluid configurations are

determined by the general energy-momentum conservation law

∇βT
αβ
= 0, (1)

where the energy-momentum tensor T αβ = Tαβ + T
αβ
em with its parts

Tαβ =(ϵ + p)UαUβ + pgαβ, (2)

T
αβ
em =

1

4π

(

F αγF
βγ −

1

4
FγδF

γδgαβ
)

, (3)

describes charged fluid with negligible viscosity and heat conduction. The general electro-

magnetic part of this tensor is related to the Faraday tensor having two parts,

F αβ = Fαβ + F
αβ

self
, where the background and the self electromagnetic components

satisfy the Maxwell equations

∇βF
αβ
= 0, ∇βF

αβ

self
= 4πJα, (4)

with the four-current density field of the charged fluid Jα satisfying the general Ohm law

Jα = qρU
α
+ σFαβUβ. (5)

Usually, the so-called force-free model assumes that the conductivity σ→ ∞ is applied for

the description of the phenomena around the black holes (see, e.g., Blandford and Znajek,

1977). The dynamics of the charged matter is then governed by the force-free relation

FαβUβ = 0, and the inertia of the matter is fully abandoned. Then, the first term of the right-

hand side of the Ohm law is not considered. In the model of non-conducting charged fluids,

assuming σ→ 0, the situation is inverse, and the second term in the Ohm law is abandoned

– in this approach, it is thus supposed that the electric charges are fixed to the rotating

matter. The assumption of vanishing conductivity is necessary for the self-consistency of

the axial symmetry of the model of charged fluid tori, as a non-zero conductivity implies
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due to the Ohm law existence of radial electric flows – for details see Kovář et al. (2016)

(of course, the inclusion of both the terms in the right-hand side of the Ohm law implies

complex configurations including the conducting electric flows and possible strong self-

electromagnetic fields). The charged non-conducting fluid tori are then governed by the

so-called “master equation” (Kovář et al., 2011)

∇βT
αβ

fluid
= F

αβ
extJβ, (6)

where F
αβ
ext denotes the background electromagnetic field that can be of internal origin being

related directly to the black hole as in the case of the Kerr-Newman (Reissner–Nordström)

backgrounds, or can be of external origin being related to the Kerr (Schwarzschild) gravi-

tational backgrounds as is the case of our study; the basic differences between the internal

and external fields are discussed in Stuchlík et al. (2019). The master equation determines

the balance equations of the orbiting charged non-conducting fluid. In the following we

simplify notation to F
αβ
ext = Fαβ.

2.1 Balance equations of the equilibrium fluid configurations

The basic features of the charged fluid model can be summarized as follows. The elemen-

tary charges in the fluid are adherent to the fluid elements, i.e. we assume σ = 0; the

charged elements are uniformly rotating in the azimuthal direction with the four-velocity

field Uα = (U t, 0, 0,Uϕ) and Uα , Uα(t, ϕ). Moreover, presuming the electromagnetically

test fluid, F
αβ

self
≪ Fαβ, the general energy-momentum conservation law (1) reduces to the

final form (Kovář et al., 2011)

∇βT
αβ
= FαβJβ, (7)

governing the orbiting charged non-conducting fluid. The related fluid-flow pressure bal-

ance equations take the form

∂r p = − (p + ϵ)R◦ + qρR
∗ ≡ R,

∂θp = − (p + ϵ)T◦ + qρT
∗ ≡ T. (8)

The right-hand sides of the equations governing the pressure gradients guaranteeing the

fluid balance are denoted as R = R(r, θ) and T = T(r, θ), and are separated them into two

parts – the hydrodynamical, and the additional electro-magneto-hydrodynamical that are

given by the relations

R
◦
=∂r ln |Ut | −

Ω∂rℓ

1 −Ωℓ
, R∗ = U t∂rAt + Uϕ∂rAϕ,

T
◦
=∂θ ln |Ut | −

Ω∂θℓ

1 −Ωℓ
, T∗ = U t∂θAt + Uϕ∂θAϕ.

The standard fluid models of toroidal configurations (Kozlowski et al., 1978; Stuchlík et al.,

2000) are governed by the pure hydrodynamical parts R◦ and T◦.
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The specific angular momentum profile of the rotating fluid, ℓ = −Uϕ/Ut, and the angular

velocity related to the static distant observers, Ω = Uϕ/U t, are related by the formula

Ω = −
ℓgtt + gtϕ

ℓgtϕ + gϕϕ
. (9)

The profile of the time component of the four-velocity Ut can be expressed as

(Ut)
2
=

g2
tϕ − gttgϕϕ

ℓ2gtt + 2ℓgtϕ + gϕϕ
=

g2
tϕ − gttgϕϕ

gtt + 2Ωgtϕ + Ω
2gϕϕ

. (10)

The axial component of the four-velocity field is then given by the relation Uϕ = −ℓUt.

Derivation of the pressure equations (8) can be found in Kovář et al. (2011); Kovář et al.

(2014); Kovář et al. (2016); their uncharged limit qρ = 0 corresponds to the Euler equation

describing a rotating electrically neutral perfect fluid (Kozlowski et al., 1978; Abramowicz

et al., 1978a; Stuchlík, 2005; Stuchlík et al., 2009).

The specific angular momentum ℓ profile, the angular velocity Ω profile, and the charge

density profile are linked due to the relation

∂θR + T∂pR = ∂rT + R∂pT, (11)

i.e., the integrability condition of the pressure balance equations (8); the profiles

qρ = qρ(r, θ) and ℓ = ℓ(r, θ) (Ω = Ω(r, θ)) have to be adjusted to each other in accord

with this condition. To close the system of equations, we assume perfect fluid governed by

the polytropic equation of state, with the polytropic energy density, rest energy density and

pressure related by equations

p = κρΓ, ϵ = ρ +
1

Γ − 1
p, (12)

where κ and Γ denote the polytropic coefficient and exponent.

2.1.1 Intergal analytical solution of the pressure balance equations

For the charged non-conducting fluids, we can make a significant simplification, enabling

even analytic integration of the balance pressure equations. By introducing the charge

density transformation

K =
qρ

ϵ + p
Uϕ, (13)

and the pressure transformations

∂rw =
∂r p

(p + ϵ)
, ∂θw =

∂θp

(p + ϵ)
, (14)

and the electromagnetic vector time component transformation relations

∂rat = Ω
−1∂rAt, ∂θat = Ω

−1∂θAt , (15)
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we arrive to the transformed pressure balance equations

∂rw = −∂r ln |Ut | +
Ω∂rℓ

1 −Ωℓ
+K∂rA,

∂θw = −∂θ ln |Ut | +
Ω∂θℓ

1 −Ωℓ
+K∂θA, (16)

where ∂rA = ∂rat + ∂rAϕ and ∂θA = ∂θat + ∂θAϕ, enabling a unification. That is, if the

barotropic fluid is considered, having ϵ = ϵ(p) guaranteed by the chosen polytropic equa-

tion of state (12), the fluid rotation regime and charged density chosen so that Ω = Ω1(ℓ),

Ω = Ω2(At) and K = K(A), we can join the system of equations (16) into the unified

integral form

∫ w

0

dw = − ln
∣

∣

∣

∣

Ut

Utin

∣

∣

∣

∣

+

∫ ℓ

ℓin

Ωdℓ

1 −Ωℓ
+

∫ A

Ain

KdA , (17)

with the solution written in the form

w =

∫ w

0

dw = −W +Win . (18)

The function W(r, θ) is the effective potential (variable part of the right-hand side of equa-

tion (17)), and the subscript ‘in’ represents the inner edge of the orbiting fluid structure at

r = rin for θ = θin, whereas for a function X = X(r, θ), we denote Xin = X(rin, θin) governing

the constant of integration Win .

Due to pressure transformation relations (14) integrated to give

∫ w

0

dw =

∫ p

0

dp

p + ϵ
, (19)

the equipressure surfaces, p = const, determining the topology of the orbiting fluid struc-

ture coincide with the equipotential surfaces, W = const. It is well known that the effective

potential governs all relevant aspects of the behavior of the stationary and axisymmetric

fluid configurations both for uncharged fluids (Abramowicz et al., 1978b; Stuchlík et al.,

2009) and for charged non-conducting fluids (Kovář et al., 2014; Kovář et al., 2016).

3 BLACK HOLES SURROUNDED BY PARABOLIC MAGNETIC FIELD

We focus here on the charged, non-conducting fluid circling in the background given by

the static Schwarzschild black hole immersed in the parabolic magnetic field considered

as a test field that is not influencing the spacetime. The Schwarzschild black holes are

represented by the vacuum geometry with the line element taking the form (in the geometric

units c = G = 1)

ds2
= gttdt2

+ grrdr2
+ gθθdθ

2
+ gϕϕdϕ

2, (20)

where

gθθ = r2 , gϕϕ = r2 sin2 θ , gtt = − f (r) , grr =
1

f (r)
, (21)
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and the lapse function

f (r) = 1 −
2M

r
. (22)

M denotes the black hole mass. For simplicity, we will use, in the following, the dimen-

sionless coordinates (r = r/M, t = t/M, s = s/M) that are equivalent to using M = 1.

The parabolic magnetic field was introduced in Blandford and Znajek (1977) for mod-

eling the creation of jets in the magnetosphere of the rotating black holes in the regions

close to their horizon. The physical relevance of such a special kind of magnetic field

was confirmed by numerical, fully general relativistic models of magneto-hydrodynamic

processes around black holes, where it has been demonstrated that evolution of a thick ac-

cretion disk (toroid) under influence of various external magnetic fields (uniform, dipole,

parabolic) always results in a final configuration having the magnetic field exterior to the

toroidal configuration and close to the rotation axis of the black hole and torus system of

the parabolic character (Tchekhovskoy et al., 2008).

For completeness, we also add the case of parabolic magnetic field as magneto-hydro-

dynamic fluid models of thick accretion disks orbiting a black hole demonstrate the final

creation of a parabolic magnetic field near the rotation axis of the orbiting matter inde-

pendently of the original configuration of the external magnetic field (Nakamura et al.,

2018). The parabolic magnetic field predicted by some magnetohydrodynamic simulations

is determined by the four-vector electromagnetic potential (Nakamura et al., 2018).

In the static Schwarzschild vacuum spacetimes, the parabolic magnetic field is static and

axially symmetric, it thus has not the spherical symmetry of the Schwarzschild spacetime as

is the case of the split monopole magnetic field; its f our− vector electromagnetic potential

has thus the only non-zero component

Aµ = (0, 0, 0, Aϕ), (23)

and the axial component reads

Aϕ =
g

2
r (1 − cos θ) + 2M (1 + cos θ) [1 − ln (1 + cos θ)] , (24)

where the parameter g governs the intensity of the magnetic field and is directly related

to the intensity of the electric current generating the magnetic field – for details as the

asymptotic behaviour at the horizon and weak-field limit see Blandford and Znajek (1977).

Commonly used approximation to Eq. (24) is given by Crinquand et al. (2020); McKin-

ney and Narayan (2007a,b)

Aϕ =
g

2
rk (1 − | cos θ|) , (25)

where k ∈ [0; 1.25] is declination of magnetic field lines. The split monopole solution

(Blandford and Znajek, 1977; Stuchlík et al., 2022) corresponds to k = 0 and Blandford-

Znajeck paraboloidal model to k = 1 .Mostly used value for the black hole magnetosphere

in the jet funnel is k = 3/4 (Nakamura et al., 2018; Stuchlík et al., 2019).
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BH R

Z

Figure 1. Scheme of a parabolic magnetic field in cylindrical coordinates given by Eq. (37).

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

n = -10

n = -1

n = 0

n = 1

n =
 1

.6

n = 2

n
max 

= 10

k = 0.1

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

g2 = -0.3

g2 = 0

g 2 
= 0

.7

g2 = 2

g2 ∞

nmax = 4/3 , k = 3/4

Z

R

Figure 2. Left: Regions supporting minima of potential W under monomial ℓ =const. model.

Parameter n spans from -10 to nmax ≡ 1/k, i.e. the maximal value of this parameter consistent with

physical potential (∂W/∂r → 0 as r → ∞). Right: Regions supporting minima of polynomial

potential W under polynomial ℓ =const. model. In the figures, we have depicted the behaviour of

parameter nmax ≡ 1/k. We see that regions supporting the existence of minima are generally enlarged

due to the non-zero g2 constant. Also, that minima can now go under R = 6. We also see strange

effects. For negative values of g2, equatorial structures are suppressed. For thick discs, the model is

relevant only above the dashed line, but for thin disks, it is relevant everywhere.
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4 CHARGE TORI AROUND BLACK HOLES IN PARABOLIC

MAGNETOSPHERE

In the Schwarzschild spacetimes, the four-velocity components satisfy the relations

U t
= gttUt ,U

ϕ
= gϕϕUϕ and the relation for the energy of the orbiting element simpli-

fies to

(Ut)
2
=
−gttgϕϕ

ℓ2gtt + gϕϕ
= −

f (r)r2 sin2 θ

ℓ2 f (r) − r2 sin2 θ
. (26)

The condition (Ut)
2 > 0 requires ℓ2gtt + gϕϕ > 0, implying the restriction on the acceptable

values of the specific angular momentum in the form

ℓ2 <
r3 sin2 θ

r − 2
≡ l2ph(r, θ). (27)

The function l2
ph

(r; θ = π/2) governs the motion of photons in the equatorial plane, and for

l2 = 27 we obtain the circular photon orbit at r = 3 that represents the innermost limit on

the position of circular geodesics.

Due to the simple form of the vector potential (23), the transformed pressure balance

equations (16) reduce to the form

∂rw = − ∂r ln |Ut | +
Ω∂rℓ

1 −Ωℓ
+ K∂rAϕ,

∂θw = − ∂θ ln |Ut | +
Ω∂θℓ

1 −Ωℓ
+ K∂θAϕ, (28)

whereas we require Ω = Ω(ℓ) and K = K(Aϕ) for the integrability. Thus, the solution can

be written in the form

w = − ln
∣

∣

∣

∣

Ut

Utin

∣

∣

∣

∣

+

∫ ℓ

ℓin

Ωdℓ

1 −Ωℓ
+ g

∫ Aϕ

Aϕin

K dAϕ = −W +Win. (29)

Below we demonstrate the existence of the off-equatorial tori, with their centers, possibly

located at (rc, θc), corresponding to local minima of the effective potential W (maxima of

the pressure p). Thus, these locations must satisfy the necessary conditions

∂rW | r = rc

θ = θc

= 0, ∂θW | r = rc

θ = θc

= 0, (30)

and, moreover, the sufficient conditions

∂2
θθW | r = rc

θ = θc

> 0, detH| r = rc

θ = θc

> 0, (31)

where

H =





















∂2
rrW ∂

2
rθ

W

∂2
θr

W ∂2
θθ

W





















, (32)



102 M. Blaschke et al.

[t]

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

n = -10

n = -1

n = 0

n = 1

n
max 

= 10

k = 0.1

Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10
Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10
Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10
Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10
Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10
Z

R

 0

 5

 10

 15

 20

 0  2  4  6  8  10

n = -1

n = 1

n = 1.5

nmax = 2

k = 0.5

Z
R

Figure 3. Regions supporting minima of potential W under monomialΩ = ℓ2/K model. Parameter n

spans from -10 to nmax ≡ 1/k, i.e. maximal value of this parameter consistent with physical potential

(∂W/∂r → 0 as r → ∞). For thick discs, the model is relevant only above the dashed line, but for

thin disks, it is relevant everywhere.

is the Hessian matrix. We survey a couple of rotation regimes of the fluid, particularly

the case ℓ = const. and two cases ℓ , const. satisfying the condition Ω = Ω(ℓ), and the

distribution of the charge density given by the monomial profile of the functionK = K(Aϕ),

integrated as

∫

K dAϕ = grkn (1 − cos θ)n , (33)

for n , 0, relaxing the integration constants. For simplicity’s sake, we consider cases n = 0

as a limiting case to avoid explicit logarithmic functions.

We also survey Polynomial regimes in the form

∫

K dAϕ = grkn (1 − cos θ)n
+ g2rk(n−1) (1 − cos θ)n−1 , (34)

for n , 0 and n , 1 to again avoid explicit logarithmic functions.

4.1 Rotation regime ℓ = const.

The rotation regime ℓ = const is a unique one, representing the marginally stable distribu-

tion of ℓ that is able to govern the basic properties of general acceptable equilibrium tori

(Abramowicz and Fragile, 2013b). The potential given by Eg. (29), governing the toroidal

configurations, takes under our assumptions form

W = ln |Ut | − grkn (1 − cos θ)n , (35)
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where we neglect the integration constant and consider the upper plane only, i.e.

θ ∈ [0, π/2] .

The necessary conditions (30) implying the set of equations (for any n)

g =
cos θc

(

rk
c sin2 θc

2

)−n

3 − rc + (3 − rc + k(rc − 2)) cos θc
,

ℓ2 =
r3

c sin2 θc

(rc − 2)2
(

1 − k cot θc tan θc
2

) . (36)

These equations determine regions where a minimum of W exists. For picturing these

regions and corresponding potentials W, it is more convenient to use cylindrical coordinates

R = r sin θ , Z = r cos θ . (37)

Regions are depicted in the left part of Fig. 2 where we have depicted the regions supporting

minima of potential W under monomial ℓ =const. model. Here the parameter n spans

from -10 to nmax ≡ 1/k, i.e. the maximal value of this parameter consistent with physical

potential (∂W/∂r → 0 as r → ∞). The model is only relevant for thick discs above the

dashed line but for thin disks everywhere.

4.2 Polynomial potential

In the last section, we have seen that monomial potential might be too simple to support the

effect on broad ranges of parameter k. Since we are interested in the minima of the potential

W, let us introduce the polynomial character to it in the hope that a more complicated

function would bring more minima points in the potential.

Therefore, let us explore the potential W in the polynomial form:

W = ln |Ut | − grkn (1 − cos θ)n − g2rk(n−1) (1 − cos θ)(n−1) , (38)

where g2 is another constant.

The example behaviour of this potential can be seen in the right part of Fig. (2). Here,

we can see that the constant g2 generally enlarges the areas where the potential W admit

the existence of minima.

4.3 Rotation regime Ω = const.

Let us consider another very elemental regime with constant Ω. The potential is given by

the relation

W = ln |Ut | + ln |1 −Ωℓ| − grkn (1 − cos θ)n . (39)

Here ℓ is given by Eq. (10) and it is equal to

ℓ = Ω
r2 sin2 θ

f (r)
. (40)
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Due to the necessary conditions (30), in the centers of the toroidal structures, the constant

Ω takes value

Ω
2
c =

1

r3
c sin θc

(

sin θ − k cos θ tan θ
2

) (41)

and the constant g takes the same form as was given in the previous case by Eq. (36).

However, putting all these conditions into effective potential, we can see that for any

profile of the function K , there are no possible centres of the toroidal structures. This

result is consistent with findings in Stuchlík et al. (2022).

4.4 Rotation regime Ω ∼ ℓ2.

The integrability condition Ω(ℓ) restricts possible choices of angular velocity. The choice

Ω =
ℓ2

K
, (42)

where K is an arbitrary non-zero constant, is equivalent via eq. (10) to

ℓ = K
f (r)

r2 sin2 θ
, (43)

usually supports the existence of an off-equatorial minimum in potential W. The potential

is given by the relation

W = ln |Ut | + ln

∣

∣

∣

∣

∣

∣

1 −
K2 f 3(r)

r6 sin6 θ

∣

∣

∣

∣

∣

∣

− grkn (1 − cos θ)n . (44)

The center is given by the same g as in eq. (36) and by

K =
r

5
2
c sin3 θc

f 2(rc)

√

1 − k cot(θ) tan
(

θ
2

)

. (45)

The example behaviour of this potential can be seen in Fig. (3), where we have depicted

the regions supporting minima of potential W under the monomial Ω = ℓ2/K model. Here,

the parameter n spans from -10 to nmax ≡ 1/k, i.e. the maximal value of this parameter

consistent with physical potential (∂W/∂r → 0 as r → ∞). For thick discs, the model is

relevant only above the dashed line, but for thin disks, it is relevant everywhere.

5 CONCLUSIONS

In modeling jets created by the Blandford-Znajek process, the one of assumed magnetic

field has the character of the parabolic field.

We have demonstrated the existence of nonconducting charged tori located off the equa-

torial plane for properly chosen parameters governing their location and structure; namely,

the distribution of the specific angular momentum, and the electric charge density.
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We conclude that we were able to demonstrate clearly existence of nonconducting

charged tori created by heavy particles located off the equatorial plane that could be, under

the properly chosen condition on the charged matter, its distribution, and distribution of the

specific angular momentum governing their equilibrium configurations, allowed to occur

near the symmetry axis of the magnetized black hole. The charged tori is located near the

symmetry axis could represent a possible obstacle for the matter of the jets that should

probably interact with such configurations–the accelerated electrons should collide with

heavy particles constituting the charged tori. Interactions of extremely accelerated elec-

trons of the jet with the equilibrium tori created by heavy particles should lead to specific

effects that could be observed and maybe to some modifications of the Blandford–Znajek

process. Clearly, the phenomenon of charged nonconducting tori located near the symme-

try axis would be a serious challenge for future research in the field of accretion disks and

related jets.
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Kopáček, O., Karas, V., Kovář, J. and Stuchlík, Z. (2010), Transition from Regular to Chaotic

Circulation in Magnetized Coronae near Compact Objects, ApJ, 722(2), pp. 1240–1259, arXiv:

1008.4650.
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ABSTRACT

General-relativistic magneto-hydrodynamical (GRMHD) simulations of accreting

black holes suggest that the accretion flows form toroidal structures embedded in

a large scale component of magnetic field, which becomes organized on length-

scales exceeding the gravitational radius of the central black hole. Magnetic field

grows gradually until a Magnetically Arrested Disc (MAD) develops that dimin-

ishes or inhibits further accretion. We study an outflow that develops in the MAD

state in 3D GRMHD simulations. We show that the outflow can be accelerated to

relativistic velocities and persist over the course of our simulation. We compare the

properties of the outflow from MAD discs with those launched by orbiting secondary

at close orbit. The main difference is that the orbiting body launches a more coher-

ent, quasiperiodic ultrafast outflow at lower velocities (v < 0.5c) while the outflow

launched in the MAD state (without the body) has a stochastic behaviour and has an

approximately flat velocity distribution between lower anf higher outflow velocities,

0.2c < v < 0.3c and v > 0.5c.

Keywords: Accretion discs – black holes – Active Galactic Nuclei – MHD simu-

lations – outflows

1 INTRODUCTION

In the course of the recent decade, high-resolution data brought compelling evidence that

the electromagnetic variability of accreting black holes has its origin in the hot plasma

orbiting on event-horizon scales (Gravity Collaboration et al., 2018; Event Horizon Tele-

scope Collab. et al., 2019). Despite these observational breakthroughs, the precise factors

that determine the accretion rate as well as the origin of the outflows, flares, and oscillations

seen in these systems remain largely unknown. With the upcoming missions aiming to ob-

serve black hole systems at ever-increasing sensitivity and resolution (e.g. LSST, Athena,

ESO Extremely Large Telescope), an improvement in understanding of these dynamical

processes is of prime importance.

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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In a recent study (Suková et al., 2021), we focused on the observable effects that can be

caused by repetitive transits of perturbers through accretion flows near supermassive black

holes (SMBHs). We have modified the GRMHD HARMPI code (Ressler et al., 2015) to as-

sume a rigid body moving along geodesics in a hot accretion flow. An important outcome

of this study is the existence of quasiperiodic ultrafast outflows from the central region

launched by the transit of the perturber through the accretion disc. The body penetrates

through the disc and kicks off blobs of magnetized plasma into the empty, but strongly

magnetized funnel region. This material moves at a mildly relativistic speed ∼ (0.1–0.5)c

along the boundary between the funnel and the accretion torus. One of the possible ob-

servational effects could be quasiperiodic absorption events if the blobs cross our line of

sight and the partially ionized gas can absorb a fraction of the X-ray emission of the un-

derlying accretion flow. Moreover, when the body is large enough and sufficiently close to

the SMBH, the accretion rate can be significantly influenced by the close fly-by, yielding

periodic changes to the luminosity and the spectral shape of the source.

Recently, a previously quiescent galactic nucleus in a nearby galaxy (z = 0.056) went

into outburst and regular monitoring of the source revealed absorption events with quasiperi-

odically changing column density (Pasham et al., 2023). These absorption events can be

interpreted as an outflow with the velocity of ∼ 0.3c, whose column density varies by

approximately one order of magnitude with a period of 8.5 days. Due to the fact, that

the achieved velocity is about one order of magnitude larger than the usual stellar wind,

such highly ionized absorbers are called an ultra-fast outflow (UFO; Pounds et al., 2003;

Tombesi et al., 2010). Under an assumption of one absorption event per orbit and in com-

bination with the mass estimate of the central SMBH, log(M/M⊙) = 7.5± 0.5, this gives us

the characteristic orbital distance of the perturber rper ∼ 90M 1. Several possible scenarios

explaining these observations are discussed in detail in Pasham et al. (2023), showing that

the perturber-induced outflow is a viable mechanism to produce such an outcome. If such

an observational pattern could be unambiguously classified as a large mass-ratio binary sys-

tem, high-cadence, large field-of-view X-ray surveys will help to identify more candidates

for close binaries in active galactic nuclei (AGN).

Binaries, in which at least one of the components is an SMBH are the main extragalac-

tic targets for the upcoming European space-based GW observatory LISA (Klein et al.,

2016; Babak et al., 2017). The targeted binaries can have various objects as the other

component, ranging from stellar-origin black holes or neutron stars (SOBHs/NSs) through

intermediate-mass black holes (IMBH), to other SMBHs. In all cases, the GW emission

causes a gradual degradation of the orbit up to the merger. If and when such events are

seen by LISA, it will be of the utmost scientific interest to localize the host galaxy, which

would make it a multi-messenger standard siren for cosmology (Holz and Hughes, 2005;

Tamanini et al., 2016).

In this paper, we will focus on the competing possible mechanism causing the quasiperi-

odic UFOs, in which the UFOs originate in the magnetic reconnection events in the inner-

most region of the so-called magnetically arrested accretion disc (MAD disc). By means

1 We work in the geometrized unit system with G = c = 1, hence velocities become dimensionless and times

and lengths can be measured in terms of M (using standard SI or cgs units, gravitational radii are defined as

rg = GM/c2 and gravitational times as GM/c3).
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of GRMHD simulations, we will compare the properties of the outflow launched by the

motion of the perturber and that emanating from the temporal variability of the MAD disc

stemming from the interchange instability of the plasma near the horizon. We will show

that even though the 2D simulations of MAD discs yield strong periodic flares with larger

amplitudes in the accretion and outflow rates, relaxing the axial symmetry assumption in

3D simulations leads to much less fierce evolution with rather stochastic variability. More-

over, the velocity of the outflow originating in the inner ∼ 10–20 gravitational radii achieves

higher values than observed in the above-mentioned system.

In summary, the accretion in the MAD disc state does not seem to explain the observed

features of the UFO better than the perturber-induced-outflow scenario.

This contribution is structured as follows. In Section 2, we introduce the numerical setup

of the GRMHD simulations. The results are presented in Section 3 and we conclude with

Section 4.

2 NUMERICAL SETUP

We study the behavior of the plasma numerically using the general relativistic magnetohy-

drodynamical code HARMPI (Ressler et al., 2015; Tchekhovskoy et al., 2007), which is

based on the HARM code (Gammie et al., 2003). The code, which we have equipped with

our own modifications, is 3D and parallelized. The perturber is moving along a geodesic

trajectory in Kerr spacetime, assuming the accreting gas has a negligible gravitational field

with respect to the central SMBH. The effect of the gravitational wave losses or the hydro-

dynamical drag on the secondary body can be omitted because they are negligible in such

a setup during the time span of our simulation (covering tens to hundreds of orbits). Its dy-

namical effect on the gas is simulated assuming that all gas within the sphere of influence

of the orbiting body characterized by the radius R is comoving with the body. The details

of the numerical procedure are given in Suková et al. (2021).

The simulations proceed in two steps. In the first step, we spontaneously evolve the

initial accretion torus, which is obtained as the exact solution of a magnetized torus with

a non-constant angular momentum profile in equilibrium (Witzany and Jefremov, 2018).

We omit the equilibrium toroidal magnetic field, instead, we equip the torus with poloidal

magnetic loops, so that the MRI starts working shortly after the beginning of the simulation

and the torus starts to accrete. After an initial transient time, a quasi-stationary accretion

state is achieved.

We use two different configurations of the initial magnetic field. First, the magnetic field

lines follow the isocontours of the density of the torus, forming one big magnetic loop

over the whole torus. Such initial conditions are known to be prone to quick formation

of the MAD state, in which the magnetic pressure close to the horizon balances the gas

pressure, the accretion is shut down and proceeds only via the interchange instability when

small blobs of matter accrete onto the black hole during the reconnection of the magnetic

field lines (Bisnovatyi-Kogan and Ruzmaikin, 1974, 1976; Narayan et al., 2003). The other

initial condition consists of several smaller loops with alternating polarity, which leads to

a so-called SANE (standard-and-normal evolution) state.
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Figure 1. An instant from the 2D GRMHD numerical simulation of the accretion flow in the MAD

state. The density, the Lorentz factor, and the outflowing rate density is shown in the first row, the

time dependence of the accretion rate (blue), and the outflowing rate directed upward (purple) and

downward (green) are shown in the bottom panel. In the two-dimensional simulation, the pressure of

the accumulated organized large-scale vertical magnetic field balances the gas pressure, the accretion

is halted and proceeds only intermittently via the interchange instability close to the horizon, which

results in the simultaneous accretion event and ejection of relativistic outflow to both directions.

After achieving the quasi-stationary accretion state (see Fig. 1), we restart the simulation.

At that point, we can regrid our simulation domain from 2D to 3D in such a way, that we

copy the 2D slice into all φ directions, introducing a ∼ 1% random perturbation in density

to relax the axial symmetry and enable the evolution in the φ-direction (axial symmetry is

preserved by the numerical scheme). At this point, we can also turn on the motion of the

perturber.

With two 3D GRMHD simulations, we aim to show the distinctive nature of the outflow

launched by the magnetic reconnection yielding the magnetic flux eruptions in the MAD

accretion state (run 3D-MAD) and the outflow driven by the transiting body through the ac-

cretion flow (run 3D-star). We also provide long-term evolution of the 2D-MAD simulation

for comparison (see Table 1 for the overview of the runs).

3 RESULTS

For our study of the MAD state, we have chosen one slice from a 2D simulation of a MAD

accretion torus. At first, we continue this 2D simulation for 40 000M (run-2D-MAD). In

the first row of Fig. 1, we show panels with the density in logarithmic scale, the Lorentz

factor, and the outflow with v > 0.5c. In the bottom, the three panels show the time
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Figure 2. Time dependence of the accretion rate for all three runs shown in the time interval

[0, 5 000]M.

profile of accretion rate Ṁ and outflowing rate Ṁout(v > 0.5c) directed into the upper or

lower part of the funnel. We can see the time-correlated large-amplitude quasi-periodic

flares in accretion rate and outflows upwards and downwards persisting during the whole

simulation.

Starting with the same initial conditions as run-2D-MAD we initialize a 3D run (run-3D-

MAD) with a total duration of 5 000M. In Fig. 2, we show the comparison of the accretion

rate for all the runs. We can notice that in the 3D simulation, the disc still completes

one cycle similar to the ones seen in the 2D simulation (due to our regrid procedure), but

after the axisymmetry is completely lost, the accretion proceeds in a much more steady

regime, the large peaks and dips are smoothed. This is due to the fact that in 3D, the

individual gaseous blobs are accreting from different directions, following the magnetic

reconnection events, therefore, the averaged accretion rate is more steady and does not

show large-amplitude flares. Instead, smaller blobs are expelled during the accretion, which

are getting stretched in the azimuthal direction, forming long dense filaments on a helical

run a resolution tmax R[M] i e

run-2D-MAD 0.9 384 x 192 40 000M — —

run-3D-MAD 0.9 384 x 192 x 96 5 000M — —

run-3D-star 0.5 384 x 256 x 96 4 370M 2 65.5◦ 0.19

Table 1. Table of the performed GRMHD runs. In the columns, we list the name of the run, the

SMBH spin a, the resolution of the grid, the total duration of the run, and in case of binary simulation,

the influence radius R of the secondary and the inclination and eccentricity of the orbit.
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3D-MAD 3D-star

Figure 3. In the first row, we show the time profiles of the ultrafast nuclear outflow measured at

r = 100M. On the left, we show the case corresponding to run-3D-MAD, while on the right, we

show run-3D-star. With different colors, the outflow rates in 4 different velocity bins are depicted.

The second row shows the total outflow in the upward (black) and downward (red) directions during

the simulation in the four bins.

trajectory (see the left panel in Fig. 4). This finding is in agreement with a recent particle-

in-cell simulation of reconnection-driven flares by El Mellah, I. et al. (2023). During the

duration of run-3D-MAD, the accretion rate or the outflowing rates do not show prominent

quasi-periodicity. However, to probe the periodicity on the time scales of about 2 000M

(reported e.g. in Curd and Narayan, 2022) up to about 6 000M, which corresponds to the

observed variability, a longer 3D run is needed, which is currently beyond the scope of this

contribution.

In run-3D-star, due to the computational cost of 3D simulations, we need to put the orbit-

ing perturber on a tighter orbit than the derived characteristic distance rpert = 90M for the

above-mentioned source so that we are able to cover several consecutive revolutions of the

body. The orbit is inclined with i = 65.5◦ from the equatorial plane and slightly eccentric

(e = 0.19), with pericenter rp = 10M and apocenter ra = 14.68M. The fundamental peri-

ods in r, θ, φ directions (Fujita and Hikida, 2009) are Pr = 370M, Pθ = 273M, Pφ = 270M

(i.e. about 20x shorter than the measured period). Hence, the total duration of the simu-

lation (4370M) covers about 16 orbits of the body, which is in line with the observed 13

peaks during the outburst of the aforementioned galactic nucleus (Pasham et al., 2023).

While the accretion rate, shown in Fig. 2, does not show strong periodicity correlated

with the motion of the perturber, when looking at the corresponding time profiles of the
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Figure 4. Snapshots from 3D simulations showing the slowly moving gas (with γ < γthr in the blue

color scale) and fast outflowing gas (with γ > γthr and positive radial velocity) in the yellow-red-

black color scale. On the left, we show run-3D-MAD with γthr = 1.05, while on the right, we show

run-3D-star with γthr = 1.02.

outflowing rates, we do notice a qualitative difference. In Fig. 3 we show the outflow rates

evaluated at r = 100M in 4 different velocity bins, i.e. 0.2c < v < 0.3c, 0.3c < v < 0.4c,

0.4c < v < 0.5c, v > 0.5c. We can see prominent quasiperiodicity corresponding to

the motion of the perturber for the outflow velocity in the range of 0.2c < v < 0.5c.

Furthermore, while the total outflowing mass in each velocity bin is rapidly decreasing

for the run-3D-star, in the case of the MAD accretion flow, the outflow with v > 0.5c is

larger than the outflow in three lower-velocity bins (see Fig. 3, second row). As a result,

a much higher amount of mass with v > 0.3c is expelled than in the perturber-induced

outflow model, which can serve as a distinguishing factor between the MAD-driven nuclear

outflows and the perturber-driven outflows.

4 CONCLUSIONS

We have performed two 3D GRMHD simulations, which correspond to the advection-

dominated, hot accretion flow in the MAD state and the one perturbed by an orbiting body.

The simulations have shown the different nature of the outflow induced by the magnetic

reconnection events near the horizon in the MAD state and the outflow expelled by the

transits of the secondary body through the accretion flow. The main difference lies in the

more coherent periodicity of the outflows caused by the orbiting perturber on the one hand

and the higher speed reached by the outflow launched by the MAD disc on the other hand.
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ABSTRACT

We present1 a generalization of the Rezzolla-Zhidenko theory-agnostic parametriza-

tion of black-hole spacetimes to accommodate spherically-symmetric Lorentzian,

traversable wormholes (WHs) in an arbitrary metric theory of gravity. By applying

our parametrization to various known WH metrics and performing calculations in-

volving shadows and quasinormal modes, we show that only a few parameters are

important for finding potentially observable quantities in a WH spacetime.

Keywords: Wormholes – theory-agnostic parametrization – wormhole shadows –

quasinormal modes

1 INTRODUCTION

Wormholes (WHs) are hypothetical tunnel-like spacetime structures that connect two dif-

ferent regions of our Universe and can even be envisaged as bridges between different

universes (Visser, 1995). The concept of a WH emerged as early as 1916 in the work

by Flamm (1916), and also in the works of Einstein and Rosen (1935) and Wheeler (1955),

however, these WHs were non-traversable. The first examples of exact solutions in GR

corresponding to traversable WHs sourced by a phantom scalar field have been obtained

in Bronnikov (1973); Ellis (1973). A significant rekindling of interest in the subject came

about with the work of Morris and Thorne (1988).

As the work of Morris and Thorne and subsequent studies have revealed, traversable

WHs typically come with a number of problems, such as the requirement of exotic forms

of matter to support the throat from collapsing (Morris and Thorne, 1988), and/or dynam-

ical instabilities (Bronnikov and Grinyok, 2001; Gonzalez et al., 2009; Bronnikov et al.,

2011, 2012; Bronnikov, 2018; Cuyubamba et al., 2018). To date, there is no known fully

satisfactory model for a traversable, Lorentzian WH that has been proven to be both free

of the necessity for exotic mater for its existence and at the same time corresponding to

a dynamically stable configuration. As a consequence, a general theory-agnostic approach

1 Talk given by the author at RAGtime 23, Opava, Czech Republic, based on Bronnikov et al. (2021).

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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to parametrizing a WH geometry in such a way that can be constrained by current and

upcoming observations could provide a solution. For a recent review on the search for

astrophysical WHs in our Universe, the reader is directed to Bambi and Stojkovic (2021).

In the case of black hole (BH) geometries, a general theory-agnostic parametrization that

can be constrained from observations has been proposed by Rezzolla and Zhidenko (2014)

(RZ). This method is similar in spirit to the parametrized post-Newtonian formalism, al-

beit with validity that is not limited to the weak-field regime but rather covers the whole

spacetime outside the event horizon of the BH. The RZ BH metric is defined in terms of

a compact radial coordinate and a continued fraction expansion involving an infinite tower

of dimensionless parameters. Due to the rapid convergence properties of the continued

fractions, however, in practice, only the first few of the expansion parameters are dominant

and important for describing observable quantities in a BH background. Inspired by the

above, in Bronnikov et al. (2021), we proposed a modification of the RZ BH metric that

allows for the parametrization of WH geometries in a theory-agnostic way.

This article is structured as follows. In Sec. 2, we discuss in general terms some features

of asymptotically flat WH spacetimes. In Sec. 3, we provide a brief overview of the RZ

BH parametrization and then introduce our extended parametrization for WH. In Sec. 4 we

obtain parmetrizations for examples of known WH metrics. Section 5 is dedicated to the

study of shadows and quasinormal modes on the parametrized WH backgrounds as tests

for the accuracy of our method. We conclude in Sec. 6.

2 WORMHOLE SPACETIMES: GENERAL CONSIDERATIONS

2.1 Asymptotically flat, traversable Lorentzian wormholes

The line element for an arbitrary four-dimensional static, spherically symmetric geometry

can be written as

ds2
= − f (r)dt2

+
1

h (r)
dr2
+ K2 (r)

(
dθ2 + sin2 θ dϕ2

)
. (1)

Out of the three metric functions f (r), h(r), K(r) in the above ansatz, only two are inde-

pendent, and upon appropriately transforming the radial coordinate, any metric can be cast

in the form where K(r) = r, however, this might not always be feasible analytically. In

general, the area of the sphere at radial coordinate r is A(r) = 4πK2(r). A WH structure is

characterized by a minimum radius r0 called the throat (the narrowest part of the tunnel)

for which the surface area is minimized, namely

A′(r0) = 0→ K′(r0) = 0 . (2)

The metric functions f (r) and h(r) are regular and positive in a range of r containing the

throat and values of r on both sides from the throat such that K(r) ≫ K(r0). It is then said

that the metric (1) describes a traversable, Lorentzian WH. Furthermore, a WH is classified

as being asymptotically flat if, for r tending to some r = r∞, the following conditions are

satisfied

f (r)→ 1 , h(r)

(
dK(r)

dr

)2

→ 1 . (3)
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2.2 The Morris-Thorne frame

A very commonly used frame in the literature where WH metrics are written is the one

introduced by Morris and Thorne (1988) (MT)

ds2
= −e2Φ(r)dt2

+

(
1 − b (r)

r

)−1

dr2
+ r2dΩ2. (4)

There are two arbitrary metric functions in the above line element. The first, Φ(r), is

often called the redshift function, and the absence of event horizons (WH traversability)

requires that it should be finite everywhere. The second, b (r), is called shape function, and

indirectly determines the spatial shape of the WH in its embedding diagram representation.

In the MT frame, r0 is determined by the condition

h(r) =

(
1 − b (r)

r

)
= 0, (5)

while eΦ(r0) > 0 is required, and the radial coordinate is defined for r ∈ [r0,∞). The

shape function should satisfy the so-called flair-out conditions on the throat, b(r0) = r0

and b′(r0) < 1 while b(r) < r for r , r0. In the framework of GR, Morris and Thorne

(1988) showed that WHs require the presence of some sort of exotic matter that violates the

null energy condition. For recent developments regarding traversable WHs without exotic

matter in Einstein-Dirac-Maxwell theory see Blázquez-Salcedo et al. (2021); Bolokhov

et al. (2021); Konoplya and Zhidenko (2022b).

2.3 Wormhole shadows

In this section, we outline the method for the computation of shadows in an arbitrary

static spherically symmetric and asymptotically flat spacetime Synge (1966); Perlick et al.

(2015). Starting with the general metric ansatz (1), it is convenient to introduce the function

w2(r) ≡ K2(r)

f (r)
. (6)

The photon-sphere radius rph, corresponds to the minimum of w2(r) and is thus determined

as a solution to

dw2(rph)

dr
= 0 . (7)

The angular radius of the shadow (associated with the outermost photon sphere), as seen

by a distant static observer located at rO, is then obtained by means of (6) as

sin2 ash =
w2(rph)

w2(rO)
. (8)

Under the assumption rO ≫ r0, where r0 is a characteristic length scale that can be identi-

fied with the radius of the WH throat or the BH event horizon depending on the nature of

the compact object under consideration, we have that

f (rO) ≃ 1 , K2(rO) ≃ r2
O , (9)
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and thus, one finds that the radius of the shadow is given by

Rsh ≃ rO sin ash ≃ w(rph) =
K(rph)
√

f (rph)
. (10)

3 CONTINUED-FRACTION PARAMETRIZATION FOR WORMHOLES

3.1 The Rezzolla-Zhidenko parametrized black-hole metric

Let us begin this section by briefly reviewing the parametrization of spherically symmet-

ric BHs suggested in Rezzolla and Zhidenko (2014) (RZ), and subsequently, we will see

which modifications of this approach are required when going over to WH geometries.

The RZ parametrization is based on a dimensionless compact coordinate (DCC) that maps

[r0,∞)→ [0, 1] according to

x(r) ≡ 1 − r0

r
, (11)

where r0 is the location of the outer event horizon of the BH determined via the condition

f (r0) = 0. If K2(r) = r2, then r0 is also the radius of the outer event horizon. In terms

of (11), the following parametrization equations are introduced:

f (r) = Ã (x) , (12)

1

h(r)
=

B̃ (x)

Ã (x)
, (13)

where the parametrization functions Ã(x) and B̃(x) are defined as

Ã (x) ≡ x

1 − ϵ (1 − x) + (a0 − ϵ) (1 − x)2
+

a1

1 + a2 x

1+
a3 x

...

(1 − x)3

 , (14)

B̃ (x) ≡

1 + b0 (1 − x) +
b1

1 + b2 x

1+
b3 x

...

(1 − x)2



2

. (15)

The above parametrization involves two families of parameters. The first family consists

of three “asymptotic” parameters (ϵ, a0, b0), which are determined via the expansions of

the parametrization equations at spatial infinity (x = 1), while the second family consists

of the remaining parameters (a1, a2, . . . , b1, b2, . . .) i.e. the “near-field” parameters which

are determined at the location of the event horizon (x = 0). For the axially-symmetric

generalization of the RZ metric see Konoplya et al. (2016), while for its higher-dimensional

extension see Konoplya et al. (2020b). More recently, an extension of the parametrization

to non-asymptotically flat cases has been proposed in Konoplya and Zhidenko (2022a,

2023).
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3.2 The parametrized wormhole metric

To construct our WH parametrization, we consider the radial coordinate compactification

according to (11), with r0 interpreted in this context as the location of the WH radius2.

Then, we may parametrize the metric functions according to Bronnikov et al. (2021)

f (r) = f0 + x

(1 − f0) − (ϵ + f0) (1 − x) + (a0 − ϵ − f0)(1 − x)2
+

a1(1 − x)3

1 + a2 x

1+
a3 x

...

 , (16)

h(r) = h0 + x


(1 − h0) − (b0 + h0) (1 − x) +

b1(1 − x)2

1 + b2 x

1+
b3 x

...

 . (17)

Being an extension of the RZ parametrization, it is no surprise that our parametrized WH

metric shares several appealing properties with its BH predecessor, to which it reduces in

the limit ( f0, h0) → (0, 0). Quite importantly, it is valid for all space (x ∈ [0, 1]), not only

near x = 0 or x = 1, and the continued-fraction expansions, endow the parametrization with

quick converge properties3. The n−th order approximation of a given metric can be easily

obtained by setting the (n + 1) − th near-field parameters (an+1, bn+1) equal to zero, thus

removing all the higher-order parameters from the expressions of the metric functions. The

metric (16)-(17) involves once again two families of parameters, the asymptotic (ϵ, a0, b0),

which are determined at (x = 1) and the set ( f0, h0, ai, bi) which are determined near the

throat of the WH (x = 0), in analogy to the BH case discussed in the previous section.

3.3 Observational constraints on the asymptotic parameters

Given that the parametrization is developed in a theory-agnostic way, i.e. independently of

the underlying theory of gravity, there are no precise constraints to be imposed on the metric

functions f (r) and h(r). However, general constraints on the asymptotic parameters can be

imposed via the parameterized post-Newtonian (PPN) expansions (Will, 2006, 2014). To

this end, consider the expansions of our parametrized metric (16)-(17) at x = 1

f (r) = 1 − (1 + ϵ) (1 − x) + a0 (1 − x)2
+ O

(
(1 − x)3

)
, (18)

1

h(r)
= 1 + (1 + b0) (1 − x) + O

(
(1 − x)2

)
. (19)

It is then straightforward, by comparison with the PPN expansions, to associate the asymp-

totic parameters (ϵ, a0, b0) with the PPN parameters β and γ in the following way

ϵ =
2M

r0

− 1 , a0 =
2M2

r2
0

(β − γ) , (20)

2 For alternative definitions of the DCC and its optimization see Bronnikov et al. (2021).
3 These properties, allow for the parametrization to also be utilized for the analytic representation of numerical

WH solutions along the lines of the analyses performed for BH spacetimes, see e.g. Younsi et al. (2016); Kokkotas

et al. (2017); Hennigar et al. (2018); Konoplya and Zhidenko (2019); Konoplya et al. (2020a).
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and

b0 = γ
2M

r0

− 1 ⇒ b0 = γ (ϵ + 1) − 1 . (21)

Since β and γ are constrained as |β − 1| ≲ 2.3× 10−4, and |γ − 1| ≲ 2.3× 10−5 , it follows

that in our parametrization, astrophysically viable WHs must be characterized by a0 ≃ 0

and b0 ≃ ϵ. This is to be contrasted with the PPN constraints on the BH parametrization for

which one finds a0 ≃ 0 and b0 ≃ 0 (Rezzolla and Zhidenko, 2014; Bronnikov et al., 2021).

4 EXAMPLES OF PARAMETRIZATION

In this section, we consider various exact WH geometries and obtain the parametrizations

for the first few orders in the continued-fraction expansion. This will provide a means to

test the adequacy of the proposed method in providing accurate approximations for WH

geometries in terms of only a few coefficients of the expansion. For more details and ex-

amples of WH parametrizations the interested reader is referred to Bronnikov et al. (2021).

4.1 The Bronnikov-Kim II braneworld wormhole solution

In the context of the so-called Randall-Sundrum II braneworld model (Randall and Sun-

drum, 1999), by solving the Shiromizu-Maeda-Sasaki modified Einstein equations on the

brane (Shiromizu et al., 2000), Bronnikov and Kim in Bronnikov and Kim (2003) have ob-

tained a large class of static, spherically symmetric Lorentzian wormhole solutions. Here,

we consider one of those solutions corresponding to a two-parametric family of spacetimes,

with a line element given by

ds2
= −

(
1 − α

2

r2

)
dt2
+

(
1 − α

2

r2

)−1 (
1 +

C − α
√

2r2 − α2

)−1

dr2
+ r2dΩ2,

= −
(
1 − α

2

r2

)
dt2
+

(
1 − α

2

r2

)−1
1 −

√
2r2

0
− α2

2r2 − α2



−1

dr2
+ r2dΩ2 , (22)

where in the second line we have used the condition (5) for the determination of the location

of the WH throat r0, in order to write C = α −
(
2r2

0
− α2

)1/2
. The above line element is one

with a zero Schwarzschild mass and exhibits black-hole and wormhole branches. For the

WH branch, the absence of horizons implies f (r) ≡ −gtt(r) > 0∀ r ∈ [r0,∞) and so the

following condition between the parameters is established

f (r0) =

1 −
α2

r2
0

 ⩾ 0⇒ r0 ⩾ α . (23)

The threshold between the WH and BH branches of the solution corresponds to α = r0,

where in this case, r0 is identified with the location of the (double) BH event horizon. The

WH/BH threshold is of special importance for testing the accuracy of the parametrization
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in the case of WHs that deviate only slightly from a BH geometry, thus corresponding to

BH mimickers, see e.g. Damour and Solodukhin (2007); Churilova and Stuchlik (2020);

Bronnikov and Konoplya (2020). For the metric function f (r) the parametrization is exact4

with the values of the expansion parameters (EPs) being

ϵ = −1 , a0 = −
α2

r2
0

, f0 = 1 − α
2

r2
0

, ai = 0 ∀i ⩾ 1 . (24)

On the other hand, the parametrization of h(r) is not exact, the first few EPs are

b0 =

√
1 − α

2

2r2
0

− 1 , h0 = 0 , b1 = b0 +
α2

α2 + 2r2
0

, (25)

b2 =
2α4 (1 + b0) − α2 (7 + 8b0) r2

0
+ 8b0r4

0

b1

(
α2 − 2 r2

0

)2
− 3 . (26)

According to results presented in Table 1, the first-order approximation, provides a very

accurate description of the metric (22) with an absolute relative error (ARE) less than 1%

for the majority of the parametric space, i.e. for p ≲ 0.6, but becomes less accurate as the

WH/BH threshold is approached (p→ 1). However, it is also evident that the parametriza-

tion converges very quickly and as a consequence, the error is significantly reduced once

the second-order correction is taken into account even at the WH/BH threshold (Bronnikov

et al., 2021).

Table 1. The maximum ARE in percents between the exact metric h(r) and its approximation at vari-

ous orders in terms of the dimensionless parameter p ≡ α/r0 ⩽ 1. The WH/BH threshold corresponds

to p = 1.

order p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.8 p = 0.99

1 0.00063 0.05460 0.49509 2.53408 5.39226 31.12707

2 0.00010 0.00840 0.07270 0.34042 0.67203 2.49612

3 0.00001 0.00118 0.00829 0.02370 0.02622 0.13332

4 O(10−8) 0.00004 0.00093 0.00883 0.02312 0.12947

4.2 The Simpson-Visser geometry

In Simpson and Visser (2019) (SV), an interesting geometry has been introduced as a toy-

model via a one-parameter deformation of the Schwarzschild metric. Written in terms of

the quasiglobal coordinate, the SV line element reads

ds2
= −

(
1 − 2 m
√

r2 + α2

)
dt2
+

dr2

(
1 − 2 m√

r2+α2

) +
(
r2
+ α2

)
dΩ2 . (27)

4 Note that, whenever a metric function has a polynomial form, the parametrization is, by construction, always

exact at a finite order. This holds true for both the original RZ (14)-(15) and our (16)-(17) parametrized metrics.
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The above line-element has been generalized to axial symmetry by Mazza et al. (2021),

while the field sources for the SV metric have been obtained recently by Bronnikov and

Walia (2022). Depending on the value of the dimensionless parameter p ≡ α/m, the SV

metric describes a traversable WH for p > 2, an extremal regular BH for p = 2 (thus this

value of p defines also the WH/BH threshold), for p < 2 a black-bounce state is obtained

(see Simpson and Visser, 2019)5, while for p = 0 the Schwarzschild geometry is recovered,

see also Fig. 1.

-10 -5 0 5 10

-0.5

0.0

0.5

1.0

r

f(r)

Figure 1. The f (r) metric function of the Simpson-Visser geometry (27) corresponding to

a traversable wormhole (blue curve, for p ≡ α/m = 2.9), an extremal regular BH (red curve, for

p = 2), a black bounce (black curve, for p = 1.2), the Schwarzschild BH limit (dashed curve, for

p→ 0).

Notice that the metric (27) is not in the Morris-Thorne frame (4) since K2(r) , r2. To

this end, one may perform the coordinate transformation r → r̃ : r̃2
= r2
+ α2 , in order to

recast the metric to the MT frame where it is written as

ds2
= −

(
1 − 2 m

r̃

)
dt2
+

(
1 − 2 m

r̃

)−1 (
1 − α

2

r̃2

)−1

dr̃2
+ r̃2dΩ2. (28)

Then, one may proceed with the parametrization in terms of (11) and (17). The condi-

tion (5), which determines the location of the WH throat r0 in the MT frame, yields the

following equation in the case of the SV wormhole

h(r) ≡
(
1 − 2 m

r̃

) (
1 − α

2

r̃2

)
= 0. (29)

There are two roots to the above equation, which are located at r̃ = 2m and r̃ = α. The

former root, is not a suitable choice for a WH throat because, in this case, f (r̃0) = 0, and an

event horizon emerges. Thus, the WH branch corresponds to the region in the parametric

5 See also Bronnikov and Fabris (2006); Bronnikov et al. (2007); Bolokhov et al. (2012).
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space defined by α > 2m. Since the metric functions in (28) are of polynomial form, the

parametrization is exact with the EPs given by

ϵ =
2m

α
− 1 , a0 = 0 , f0 = 1 − 2m

α
, ai = 0 ∀i ⩾ 1,

b0 =
2m

α
− 1 , h0 = 0 , b1 = −

2m

α
, bi = 0 ∀i ⩾ 2. (30)

A general parametrization for WH metrics in non-MT frames by means of (16) and (17)

is also possible upon appropriate modification of the DCC. In particular, for the line-

element (27), the optimized version of the DCC6

x(r) = 1 −

√
R2

0

R2
0
+ r2
, R0 = α

√
3

2
, (31)

yields a parametrization for the SV metric with the first few EPs given by

ϵ =
2m

R0

− 1 , a0 = 0 , f0 = 1 − 2m

α
, a1 = 2ϵ + 3 f0 − 1 +

2mR2
0

α3
,

a2 =
3

2a1

4ϵ + 5 f0 − 3a1 − 1 +
2mR4

0

α5

 . (32)

5 SHADOWS AND PERTURBATIONS OF TEST FIELDS

In this section, as gauge-invariant tests for the accuracy of the parametrization, we consider

shadows and perturbations of test fields in the background of the approximate WH metrics

obtained by considering various orders in the continued-fraction expansion and compare

them with the corresponding values obtained when the exact metric expressions are used.

5.1 Shadows of the anti-Fisher wormhole

In the context of GR with a massless minimally-coupled scalar field, a solution containing

a naked singularity has been found (Fisher, 1948). When the kinetic term of the scalar

field has the opposite sign, a solution emerges which has a WH branch and has been called

anti-Fisher solution (Bronnikov, 1973). The metric functions for the latter solution assume

the following form

f (r) = h(r) = e2u(r), K2(r) = e−2u(r)
(
r2
+ α2

)
, u(r) ≡ m

α

(
arctan

r

α
− π

2

)
. (33)

Substitution of (33) in the general expression (10), yields the shadow radius for the anti-

Fisher WH

Rsh = e−2 u(rph)
√

4m2 + α2, (34)

6 For more details on the DCC optimization see Bronnikov et al. (2021).
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where rph = 2m is the photon sphere radius which has been determined via (7). The first

few EPs for the parametrization of f (r) in this case are given by

ϵ = 1, a0 = 2, f0 = e2u(m), a1 = f0

(
3 +

2m2

α2 + m2

)
− 1,

a2 =
6 f0 − 4a1 − 2

a1

, a3 = −
f0

[
2m4

3(α2+m2)
2 − 10

]
+ a1 [10 + a2 (5 + a2)] + 4

a1a2

. (35)

By considering various orders in the approximation of f (r) via (16) and (35), we once

again compute the shadow radius by means of (10) and compare the result order-by-order

with the exact value given in Eq. (34). Our findings (Bronnikov et al., 2021) are presented

in terms of the dimensionless parameter p ≡ α/m in Table 2. The high accuracy of the

approximation already at the first order and the quick convergence are evident.

Table 2. The percentage of absolute relative error between the exact value of the shadow radius (34)

and its value as obtained via Eq. (10) for various approximation orders of the metric function f (r).

order p = 0.01 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6

1 1.04775 0.95530 0.83863 0.67406 0.46096 0.19918

2 0.02753 0.03339 0.04295 0.06093 0.09281 0.14633

3 0.00304 0.00387 0.00570 0.01061 0.02367 0.05883

4 0.00011 0.00019 0.00034 0.00063 0.00112 0.00186

5.2 Shadows of the Simpson-Visser wormhole

As a second example for shadows in a wormhole background, we consider the SV metric

in the non-Morris-Thorne frame i.e. (27), for which we obtain the exact expression for the

shadow radius

Rsh = 3
√

3m. (36)

Notice that the value of Rsh is independent of the parameter α and it is identified with the

shadow radius of the Schwarzschild BH, for detailed discussions see Tsukamoto (2021);

Lima et al. (2021). Subsequently, by considering various orders for the approximate metric

according to (32), we compute once again Rsh and compare it with the exact result (36).

The range of values for the dimensionless parameter p ≡ α/m that is relevant for the

analysis here is p ∈ [2, 3] where the lower bound corresponds to the WH/BH threshold and

the upper bound corresponds to the maximum value of p for which the spacetime under

consideration exhibits a photon sphere. Our findings (Bronnikov et al., 2021) are displayed

in Table 3.
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Table 3. The percentage of absolute relative error between the analytic value of the shadow and its

value for various approximation orders of the metric.

order p = 2.01 p = 2.1 p = 2.4 p = 2.5 p = 2.7 p = 2.99

1 0.54727 0.47968 0.25291 0.18463 0.07285 0.00009

2 0.01973 0.01568 0.00544 0.00329 0.00076 O(10−8)

3 0.00278 0.00200 0.00046 0.00023 0.00003 O(10−11)

4 0.00060 0.00039 0.00005 0.00002 O(10−6) O(10−13)

We observe that already with the first-order approximation of the metric, the error is less

than 1% for all values of p, and it is monotonically decreasing from the WH/BH threshold

all the way to the no-photon sphere limit. Furthermore, one can see the quick convergence

of the series where the error is reduced by approximately one order of magnitude with each

additional term in the expansion that is taken into account.

5.3 Quasinormal modes

Let us now consider the fundamental quasinormal modes (QNMs) of the electromagnetic

field propagating in a WH background. QNMs are characteristic frequencies of a compact

object which are independent of the initial conditions of perturbations and are completely

determined by the parameters of the compact object under consideration (Kokkotas and

Schmidt, 1999; Berti et al., 2009; Konoplya and Zhidenko, 2011). The real part of a QNM

represents a real oscillation frequency, while the imaginary part is proportional to the damp-

ing rate. For a non exhaustive list of works where QNMs in WHs backgrounds have

been studied, see Konoplya and Zhidenko (2010); Bronnikov et al. (2012); Taylor (2014);

Cuyubamba et al. (2018); Völkel and Kokkotas (2018); Aneesh et al. (2018); Konoplya

(2018); Kim et al. (2018); Dutta Roy et al. (2020); Churilova et al. (2020); Jusufi (2021);

Biswas et al. (2022). An electromagnetic field obeys the general covariant Maxwell equa-

tions

1
√−g
∂µ

(
Fρσgρνgσµ

√−g
)
= 0. (37)

Here Fρσ = ∂ρAσ−∂σAρ and Aµ is a vector potential. For the spherically-symmetric space-

time (1), one may introduce the “tortoise coordinate” r∗, in terms of the metric functions

f (r) and h(r) as

dr∗ =
dr

√
f (r)h(r)

. (38)

Then, after separation of variables, Eq. (37) assumes the following wave-like form

d2
Ψ

dr2
∗
+

(
ω2 − V(r)

)
Ψ = 0, (39)

and the effective potential reads as

Vem(r) = f (r)
ℓ(ℓ + 1)

r2
. (40)
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Even though the effective potential depends on the gravitational background only via

the metric function f (r), the QNMs will depend on both f (r) and h(r) implicitly via the

tortoise coordinate (38). The boundary conditions for finding QNMs in a WH background

correspond to purely outgoing waves at both infinities r∗ → ±∞ (Konoplya and Molina,

2005). The values of QNMs obtained for the Bronnikov-Kim II and Simpson-Viser WHs

both of which have been discussed in the previous sections, are displayed in Tables 4 and 5

respectively (Bronnikov et al., 2021).

Table 4. Fundamental quasinormal modes (ℓ = 1, n = 0) of the electromagnetic field for the

Bronnikov-Kim II wormhole.

order C = −0.01 C = −0.3 C = −0.7

exact 0.64306 − 0.20529i 0.70322 − 0.03991i 0.73338 − 0.09961i

1st 0.65899 − 0.19306i 0.70232 − 0.03741i 0.73304 − 0.09836i

2nd 0.64093 − 0.20593i 0.70332 − 0.04009i 0.73345 − 0.09969i

Table 5. Fundamental quasinormal modes (ℓ = 1, n = 0) of the electromagnetic field for the Simpson-

Visser wormhole (m = 1/2).

order α = 1.01 α = 1.25 α = 1.4

exact 0.51125 − 0.13311i 0.55491 − 0.03299i 0.56858 − 0.05986i

1st 0.50899 − 0.13211i 0.55394 − 0.03297i 0.56770 − 0.05982i

2nd 0.51241 − 0.13405i 0.55520 − 0.03286i 0.56885 − 0.05969i

As it can be seen, the QNMs obtained with the first two orders in the continued-fraction

expansion of the background metric approximate very accurately the values obtained in

terms of the exact metric.

6 CONCLUSIONS

Building upon the Rezzolla and Zhidenko (2014) theory-agnostic parametrization of BH

spacetimes, we have introduced an extension that allows for general Lorentzian, traversable,

static and asymptotically-flat WH metrics to be accommodated in this parameterized frame-

work (Bronnikov et al., 2021). The parametrization is based on a continued-fraction ex-

pansion in terms of a compactified radial coordinate, exhibits rapid convergence properties,

and is valid in all of spacetime.

We have obtained the parametrizations for various examples of known wormhole ge-

ometries and studied the shadows and perturbations of test fields in these gravitational

backgrounds for different orders in the expansion. Quite importantly, by considering ge-

ometries that interpolate continuously between a BH and a WH, we have demonstrated that

the parametrization is very accurate, (already at the first and in some cases second-order in

the expansion), even at the WH/BH threshold and this is relevant for WHs that act as BH

mimickers.
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Our analysis demonstrates that when a WH metric changes relatively slowly in the ra-

diation zone, the observable effects in the wormhole background depend only on a few

parameters and the following approximation for the line-element is sufficient (Bronnikov

et al., 2021)7

ds2
= − f (r)dt2

+
1

h(r)
dr2
+ r2dΩ2 , (41)

f (r) = 1 − r0 (1 + ϵ)

r
+

r3
0

(a1 + f0 + ϵ)

r3
−

r4
0

a1

r4
, (42)

h(r) = 1 − r0 (1 + ϵ)

r
+

r2
0

(b1 + h0 + ϵ)

r2
−

r3
0

b1

r3
. (43)
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ABSTRACT

The magnetic field through the magnetic reconnection process affects the dynamics

and structure of astrophysical systems. Numerical simulations are the tools to study

the evolution of these systems. However, the resolution, dimensions, resistivity, and

turbulence of the system are some important parameters to take into account in the

simulations. In this paper, we investigate the evolution of magnetic energy in astro-

physical simulations by performing a standard test problem for MHD codes, Orszag-

Tang. We estimate the numerical dissipation in the simulations using state-of-the-art

numerical simulation code in astrophysics, PLUTO. The estimated numerical resistiv-

ity in 2D simulations corresponds to the Lundquist number ≈ 104 in the resolution

of 512 × 512 grid cells. It is also shown that the plasmoid unstable reconnection

layer can be resolved with sufficient resolutions. Our analysis demonstrates that in

non-relativistic magnetohydrodynamics simulations, magnetic and kinetic energies

undergo conversion into internal energy, resulting in plasma heating.

Keywords: Magnetohydrodynamics – magnetic energy dissipation – resistivity –

numerical simulations – PLUTO

1 INTRODUCTION

The evolution of magnetic fields has a significant impact on the dynamics and structure of

astrophysical systems, ranging from stars and planets to galaxies and even the large-scale

structure of the universe. Magnetic reconnection is believed to be a responsible mecha-

nism of magnetic field evolution. Magnetic reconnection can explain the heating and ac-

celeration of particles or plasmoids which are observed in high energy ejections like solar

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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flares (Giovanelli, 1946; Jiang et al., 2021), magnetic substorms in the Earth magnetosphere

(McPherron, 1979; Akasofu, 1968), jets, and relativistic ejections from the accretion discs

of compact objects (Ripperda et al., 2020, 2022).

In this study, we conduct the Orszag-Tang (OT; Orszag and Tang, 1979), a well-known

test problem in numerical magnetohydrodynamics (MHD) simulation codes, used to exam-

ine the dissipation of magnetic energy and substructure formation in magnetized plasma.

We estimate the numerical resistivity by employing a resistive MHD (Res-MHD) module

in the PLUTO code (Mignone et al., 2007), and we find a resolution sufficient for investi-

gating the system’s properties. Subsequently, we investigate the energy conversion in MHD

simulations.

This paper is structured into the following sections: In Section 2, we present the MHD

equations, describe the initial and boundary conditions of the OT test problem, and detail

the numerical setups. Section 3 is dedicated to the discussion of simulation results, in-

cluding the estimation of numerical resistivity and analysis of energy conversion. The final

section provides the conclusions.

2 NUMERICAL APPROACH AND PROBLEM CONDITIONS

2.1 Magnetohydrodynamics (MHD) method

The MHD method is based on the equations of conservation of mass, momentum, and

energy, and Maxwell’s equations as follows

∂ρ

∂t
+ ∇ · (ρυ) = 0, (1)

∂ρυ

∂t
+ ∇ · (ρυυ + pI + TEM) = 0, (2)

∂ε

∂t
+ ∇ ·

[(

ω + ρ
υ2

2

)

υ + cE × B

]

= 0, (3)

where ρ and υ are density and velocity, respectively. I represents the identity tensor, TEM is

the electromagnetic stress tensor, ϵ is the total energy density and ω = p + Uint is enthalpy

density, where Uint is the internal energy. Magnetic and electric fields are denoted with B

and E, respectively,

1

c

∂B

∂t
+ ∇ × E = 0, (4)

1

c

∂E

∂t
− ∇ × B = −

J

c
. (5)

In the equations above, J is the current density that comes from Ohm’s law,

J =
c2

η

(

E +
v

c
× B

)

= c∇ × B, (6)

where, in the cgs system of units we use, η represents the physical resistivity.



Energy dissipation in astrophysical simulations 137

2.2 Initial and boundary conditions

We solve the OT test problem using the MHD approximation method. This problem is

a standard test problem in MHD codes to examine the power of the code to capture the

MHD shocks and shock-shock interactions.

We set up the simulations of the OT test problem in a 2D box 0 < x, y < 2π with periodic

boundary conditions (Orszag and Tang, 1979) with the polytropic equation of stat with

adiabatic index γ = 4/3.

The initial velocity and magnetic fields of the OT test problem are

v = v0 (− sin y, sin x, 0) , (7)

B = B0 (− sin y, sin 2x, 0) , (8)

where we define v0 = 0.99c/
√

2 and B0 = c
√

4πρ0 where ρ0 is the scaling factor of density

in code unit. The simulation results are presented in the code unit where the factor 1/
√

4π

and speed of light c are absorbed in the magnetic field and velocity, respectively. The initial

density and pressure are constant (ρ = 1 and P = 10 in the code unit).

2.3 Numerical setup

We perform the OT test problem in Minkowski coordinate in the Newtonian code PLUTO

v. 4.4. The equations are solved using the HLLC Riemann solver and the Monotonized

Central difference limiter MC. The equations are evolved in time using the second-order

Runge-Kutta method (RK2). To ensure ∇ · B = 0, we use the flux-constrained transport CT

method.

3 SIMULATION RESULTS AND DISCUSSION

The simulations are performed in the resolutions in the range of 64 × 64 to 4096 × 4096

grid cells, with the step of multiplying by 2 in each direction. All simulations run to the

final time t = 10 tc (tc = L/c is the light-crossing time with L = 1 as the typical length of

the system).

We study the energy evolution of the system by exploring the averaged energy densities

Q defined by

Q =

!
S

Q dx dy
!

S
dx dy

. (9)

3.1 Numerical resistivity

To investigate the system evolution, we determine the required resolution at which the

numerical error has the least effect on the physics of the system.

In this section, we assess the numerical resistivity in simulations at different resolutions

using the resistive MHD (Res-MHD) module in PLUTO. The sufficient resolution is the
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resolution in which the numerical resistivity is less than the physical resistivity, and the

substructures (plasmoids) are captured. Plasmoids are regions of higher density and lower

magnetization relative to their surroundings that may exist in the magnetic reconnection

layers. Plasmoids evolve along the reconnection layers by growth, bulk acceleration, and

mergers. Theoretical studies show that the plasmoid unstable reconnection layers exist

when the Lundquist number (S = L/η) is larger than 104 (Ripperda et al., 2020; Loureiro

et al., 2007). We search for the resolution that the numerical resistivity in the code unit is

less than 10−4.

In the left panel of Fig. 1, we present the time evolution of B2 in the non-resistive, ideal

MHD simulations at various resolutions. The value of B2 shows an increase as the reso-

lution is enhanced (numerical resistivity decreases). This indicates that as the resolution

increases, the curves exhibit greater convergence.

To determine the numerical resistivity at each resolution, we compare the time evolution

of B2 in ideal MHD simulations (η = 0) and Res-MHD simulations at different physical

resistivity values (e.g. η = 10−4, 10−3, and 5× 10−3). When the Res-MHD curve converges

to the MHD curve, it indicates that the numerical resistivity is less than/equal to the physical

resistivity.

For example, in the right panel of Fig. 1, we present the results of simulations at a resolu-

tion of 512×512 grid cells. It is evident that the curve corresponding to η = 10−4 converges

to the MHD curve (η = 0). This convergence implies that the numerical dissipation at the

resolution of 512 × 512 grid cells is ≥ 10−4. Therefore, the resolutions ≥ 512 × 512 grid

cells can be suitable for studying the evolution and properties of the system.

Figure 1. Time evolution of B2 in MHD simulations in different resolutions (Left) and in Res-MHD

simulations in the resolution of 512 × 512 grid cells and different physical resistivities (Right) using

PLUTO code.

In Fig. 2 are shown the current densities in ideal MHD simulations in two resolutions at

t = 2.5 tc. The zoomed frames at the bottom show the reconnection layer in the middle of

the simulation boxes. The left panel shows the results with the resolution of 1024 × 1024

grid cells, where the numerical resistivity is less than 10−4, so the current layer is thin

enough to become plasmoid unstable. The right panel shows the results in lower resolution
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Figure 2. Current density Jz at t = 2.5 tc of MHD simulation in the resolution of 1024 × 1024 (left)

and 256 × 256 grid cells (right). The bottom frames show the zoomed-out of the reconnection layer

in the middle of the simulation box.

256 × 256 grid cells that give higher numerical resistivity (> 10−4), the layer is thick, and

plasmoids do not emerge. We studied the magnetic reconnection and plasmoid formation

in different models of resistive MHD, relativistic MHD, and 3D simulations in Kayanikhoo

et al. (2023). In addition, Puzzoni et al. (2021) studied the particle acceleration in the re-

connection layer using PLUTO concerning the impact of Riemann solvers and reconstruction

methods, grid resolutions, and numerical resistivity on particle acceleration in magnetic re-

connection simulations. Their findings demonstrate that particle acceleration undergoes

variations based on the choice of numerical solvers and Lundquist numbers (S ≥ 103).

3.2 Energy conversion in MHD simulations

In this section, we study the magnetic energy dissipation in MHD and Res-MHD simula-

tions. The conserved total energy density contains magnetic energy density EB = B2/2,

kinetic energy density Ek = ρυ
2/2, internal energy Uint = p/(γ − 1), and electric energy

density EE = E2/2. We present the energy components that are computed at the resolution

of 512 × 512 grid cells in Fig. 3. The left column displays ideal MHD simulations (η = 0),

while the right column represents Res-MHD simulations (η = 5 × 10−3).

In the top row of panels, we show the time evolution of magnetic energy. The magnetic

energy increases to ≈ 1.15 times its initial value at t ≃ 2 tc, coinciding with the presence of

a current layer. Shortly after, at 2.5 tc, plasmoids emerge within the current layer in the ideal
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Figure 3. The time evolution of the averaged density of energy components in the simulations MHD

and Res-MHD (η = 5 × 10−3) at the resolution of 512 × 512 grid cells.

MHD simulation (shown in Fig. 2). Subsequently, magnetic energy gradually dissipates as

the simulation progresses. In the Res-MHD simulation, we note that the magnetic energy

dissipates at a faster rate compared to the ideal MHD simulation.

In the second row of Fig. 3, we show the average density of kinetic energy. The evolution

of kinetic and magnetic energies illustrates that kinetic energy leads to the amplification

of the magnetic field at approximately 2 tc. Magnetic energy converts to kinetic energy

through the magnetic reconnection to the time step t ≃ 4 tc.

Both kinetic and magnetic energies dissipate into internal energy by the end of the simu-

lation time, heating the plasma, as shown in the third-row panels. It is evident that resistiv-

ity results in increased dissipation, causing internal energy to rise by approximately 0.5%

more than in the ideal MHD simulation. The last row of panels represents electric energy,

which evolves similarly to magnetic and kinetic energy, as expected.
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4 CONCLUSIONS

In this paper, we investigated the magnetic energy evolution in the magnetized plasma by

performing the Orszag-Tang (OT) test problem, in astrophysical magnetohydrodynamic

(MHD) code PLUTO v. 4.4. OT is a standard test problem to test the power of MHD codes

to capture shocks and resolve the substructures.

Using the resistive MHD module in PLUTO, we estimate the numerical dissipation in each

resolution. The numerical resistivity in the resolution of 512 × 512 grid cells is estimated

to be ≥ 10−4 which represents the lowest limit for the existence of the plasmoid-unstable

current layer. In the ideal MHD simulation in the resolution of 1024 × 1024 grid cells, the

plasmoid-unstable current layer is observed while in the lower resolution, 256 × 256 grid

cells the plasmoids do not appear. Furthermore, our results confirm that in the Res-MHD

simulation with a physical resistivity of 10−4, plasmoids do not emerge within the layer.

We studied the energy evolution in MHD and Res-MHD simulations. Our findings show

that kinetic energy drives the amplification of the magnetic field, resulting in magnetic

energy reaching approximately 1.15 times its initial value. In MHD simulation, shortly

after this increase, the plasmoids are observed within the current layer. Subsequently, both

magnetic and kinetic energies gradually dissipate over the course of the simulation, with

the dissipated energy converting into internal energy and heating the plasma. The results

indicate that in resistive MHD simulation with resistivity η = 5 × 10−3, the dissipation is

0.5% higher than in MHD simulation.

In Kayanikhoo et al. (2023), we further examined 3D simulations, compared relativistic

and non-relativistic MHD simulations through energy conversion and magnetic reconnec-

tion rates, and the impact of resolution on reconnection rates in the models. Additionally,

we compared two MHD codes widely used in astrophysics PLUTO and KORAL.
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ABSTRACT

We review recent calculations of quasinormal modes and asymptotic tails of the

Bardeen spacetime interpreted as a quantum corrected Schwarzschild-like black

holes. Massless electromagnetic and Dirac fields and massive scalar fields are con-

sidered. The first few overtones are much more sensitive to the change of the quan-

tum correction parameter than the fundamental mode because such correction de-

forms the black hole geometry near the event horizon. While the asymptotic tails of

massless fields are identical to those for the Schwarzschild case, the tails for a mas-

sive field differ from the Schwarzschild limit at both intermediate and asymptotic

times.

Keywords: Regular spacetimes – quasinormal modes – outburst of overtones –

quantum corrected black holes

1 INTRODUCTION

Quasinormal modes of black holes (Kokkotas and Schmidt, 1999; Nollert, 1999; Konoplya

and Zhidenko, 2011) are a fundamental aspect of black hole physics and gravitational wave

astronomy. These modes represent the characteristic oscillations and decay of perturbations

around a black hole after an external perturbation, such as a merger or accretion event.

These modes are characterized by complex frequencies, which have direct implications for

the detection and interpretation of gravitational wave signals from black hole mergers by

observatories like LIGO and Virgo (Abbott et al., 2016).

Quasinormal modes of the historically first model of the regular black holes given by

the Bardeen spacetime (Bardeen, 1968) have been extensively studied in a great number

of papers (see for instance Flachi and Lemos (2013); Toshmatov et al. (2015, 2019); Mah-

davian Yekta et al. (2021); Rincón and Santos (2020); López and Ramírez (2022); Saleh

et al. (2018) and reference therein). However, the Bardeen spacetime was considered there

mainly as a solution of specific non-linear electrodynamics (Ayon-Beato and Garcia, 2000)

which describes a black hole as a gigantic magnetic monopole with zero electric charge

(Bronnikov, 2001).

Recently, the quasinormal spectrum of the Bardeen spacetime as a quantum corrected

neutral black hole metric (Nicolini et al., 2019) has been considered in (Konoplya et al.,

2023; Bolokhov, 2023b) with the emphasis to overtones behavior and asymptotic tails.

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.



144 D. Ovchinnikov

Here, we review these results and discuss three interesting phenomena related to the Bardeen

black hole spectrum: a) outburst of overtones, b) arbitrarily long-lived modes of massive

fields, and c) asymptotic tails.

2 BARDEEN SPACETIME AND THE WAVELIKE EQUATIONS

The spherically symmetric line element has the form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (1)

where for the Bardeen spacetime, the metric function is

f (r) = 1 − 2Mr2

(

r2 + l2
0

)3/2
, (2)

with M the Komar mass, and parameter l0 is related to the ultraviolet cutoff (Nicolini et al.,

2019). For l0 , 0, the space-time in eq.(5) has horizons for |l0| ≤ 4M/(3
√

3).

The general relativistic equations for the scalar (Φ), electromagnetic (Aµ), and Dirac (Υ)

fields in a curved spacetime can be written as follows:

1
√−g
∂µ

(√−ggµν∂νΦ
)

= 0, (3a)

1
√−g
∂µ

(

Fρσgρνgσµ
√−g

)

= 0, (3b)

γα
(

∂

∂xα
− Γα

)

Υ = 0. (3c)

Here Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor, γα are gamma matrices and Γα
are spin connections in the tetrad formalism. Using separation of variables (for example, in

case of the scalar field, employing the spherical symmetry and stationarity of the spacetime,

we assume Φ ∼ e−iωtYm
ℓ

(θ, ϕ)Ψ(r)/r, where Ym
ℓ

spherical harmonic function), after some

algebra the above dynamical equations (3) take the wave-like form:

d2Ψ

dr2
∗
+ (ω2 − V(r))Ψ = 0, (4)

where the “tortoise coordinate” r∗ is:

dr∗ ≡
dr

f (r)
. (5)

The effective potentials for the scalar (s = 0) and electromagnetic (s = 1) fields can be

written in a unified form:

V(r) = f (r)
ℓ(ℓ + 1)

r2
+ (1 − s)

f (r)

r

d f (r)

dr
, (6)
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where ℓ = s, s + 1, s + 2, . . . are the multipole numbers. For the Dirac field (s = 1/2) the

problem is reduced to two iso-spectral effective potentials

V±(r) = W2 ± dW

dr∗
, W ≡

(

ℓ +
1

2

)

√

f (r)

r
. (7)

The iso-spectral wave functions can be transformed one into another by the Darboux

transformation

Ψ+ = q

(

W +
d

dr∗

)

Ψ−, q = const, (8)

so that it is sufficient to analyze the spectrum of only one of the potentials.

3 LONG LIVED QUASINORMAL MODES AND THE OUTBURST OF

OVERTONES

The boundary conditions for quasinormal modes are purely outgoing wave at infinity and

purely incoming wave at the event horizon so that

Ψ =

{

eiωr∗ , for r∗ → +∞ (purely outgoing) ,

e−iωr∗ , for r∗ → −∞ (purely ingoing) .
(9)

In order to find low-lying quasinormal frequencies, the quick and relatively accurate

method which was used in Konoplya et al. (2023); Bolokhov (2023b) is the 6th order WKB

method (Konoplya, 2003; Konoplya et al., 2019a) with the Pade approximants (Matyjasek

and Opala, 2017). The WKB method was effectively used in a great number of works

(see, for example Kodama et al., 2010; Onozawa et al., 1996; Konoplya et al., 2019a,

and references therein). In order to find accurate values of overtones with n > ℓ, the

convergent Leaver method was used (Leaver, 1985), while for the asymptotic tails, the

time-domain integration (Gundlach et al., 1994) has been applied. The latter was used in

various works as well (for instance, Konoplya and Fontana, 2008; Churilova and Stuchlik,

2020; Bolokhov, 2023a; Bronnikov and Konoplya, 2020) with a good concordance for the

dominant frequencies. As all of these methods are broadly discussed in the literature, we

will not discuss them here in detail.

Using the first order WKB approach and expanding in terms of 1/L and l0, where

L = ℓ + 1
2

we find the position of the maximum of the effective potential:

rmax = 3M −
5l2

0

6M
−

65l4
0

216M3
+ O

(

l60

)

, (10)

and the frequency

ω =
L

3
√

3M
− i(2n + 1)

6
√

3M
+ l20

(

L

18
√

3M3
+

i(2n + 1)

54
√

3M3

)

+ l40

(

17L

648
√

3M5
+

7i(2n + 1)

324
√

3M5

)

+ O
(

1

L
, l60

)

.

(11)
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Figure 1. Quasinormal frequencies for the scalar perturbations (ℓ = 0) and n from 0 to 6 (Konoplya

et al., 2023).

Notice that in the eikonal limit, the WKB formula is exact, and the above formula sat-

isfies the eikonal QNMs/null geodesics correspondence (Cardoso et al., 2009), though in

general, the latter should be treated carefully since there are a number of exceptions from

it (Konoplya and Stuchlík, 2017; Konoplya, 2023; Konoplya et al., 2019b).

From fig. 1, we notice that the overtones deviate from their Schwarzschild limits at an

increasing with n rate, which reflects the fact that the Schwarzschild metric is deformed by

the l0 quantum correction mainly near the event horizon (Konoplya and Zhidenko, 2022).

When the scalar field has non-zero mass µ, the spectrum of the Schwarzschild and

Reissner-Nordstrom black holes contains arbitrarily long-lived quasinormal modes at some

values of µ (Ohashi and Sakagami, 2004). When µ is increased, the damping rate decreases,

approaching zero as a kind of threshold at which the mode disappears from the spectrum,

and the first overtone becomes the fundamental mode. This way, at particular values of

the mass of the field, there exist the modes, called quasi-resonances, which are similar to

standing waves. In Bolokhov (2023b), it was shown that this phenomenon also takes place

for the massive scalar field in the Bardeen background and that the outburst of overtones

takes place for such modes as well.

4 TELLING OSCILLATORY TAILS OF THE BARDEEN SPACETIME

At asymptotically late times, the massless scalar and gravitational fields for the

Schwarzschild spacetime decay according to the following law (Price, 1972):

|Ψ| ∼ t−(2ℓ+3), t → ∞. (12)

In fig. 2, we can see that the same law is fulfilled for the Bardeen spacetime.

When the massive term µ is turned on, the late-time behavior of the Reissner-Nordstrom

black hole has two regimes (Koyama and Tomimatsu, 2002). At asymptotic times

t

M
> (µM)−3 , (13)
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Figure 2. Time-domain profile according to (Konoplya et al., 2023) for scalar field perturbations

ℓ = 0 in the background of the quasi-extremal Bardeen black hole l0 = 0.707107; r0 = 1. Logarithmic

plot with the line ∼ t−3 .

the following decay law dominates

|Ψ| ∼ t−5/6 sin(µt), t → ∞. (14)

For the Bardeen spacetime, as was shown in (Bolokhov, 2023b), the decay law is different:

|Ψ| ∼ t−1 sin(A(µ)t), t → ∞, (15)

where A(µ) is some function which could be approximately found by fitting the data for

various values of µ. At the intermediate late times, corresponding to relatively small value

of µM, the decay law for the Bardeen spacetime is (Bolokhov, 2023b),

|Ψ| ∼ t−( 8
6
+ℓ) sin(A(µ)t), (16)

which is also different from the Schwarzschild or Reissner-Nordstrom case (Koyama and

Tomimatsu, 2002; Konoplya and Zhidenko, 2011).

5 CONCLUSIONS

We have reviewed recent studies (Konoplya et al., 2023; Bolokhov, 2023b) of quasinormal

modes and evolution of perturbations of a test scalar, electromagnetic and Dirac fields in

the vicinity of the Bardeen spacetime treated as a quantum corrected neutral black hole

(Nicolini et al., 2019). The spectrum has a number of interesting and distinctive properties,

such as outburst of overtones, long-lived quasinormal modes and different tail the behavior

at asymptotic and intermediate times.
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ABSTRACT

In general relativity, the asymptotically flat space-time of a charged, spherically sym-

metric (non-rotating) body is described by the Reissner-Nordström metric. This met-

ric corresponds to a naked singularity when the absolute value of charge, Q, exceeds

the mass, M. For all Reissner-Nordström naked singularities, there exists a zero

gravity sphere where a test particle can remain at rest. Outside that sphere, gravity

is attractive, inside it, gravity is repulsive. For values of Q/M >
√

9/8, the angular

frequency of circular test-particle orbits has a maximum at radius r = (4/3) Q2/M.

We construct polytropic tori with uniform values of specific angular momentum in

the naked singularity regime of the Reissner-Nordström metric (Q/M > 1).

Keywords: Stars: gravity – naked singularities – accretion, accretion disks

INTRODUCTION

The gravity of a spherically symmetric, electrically charged body is described by the Reiss-

ner–Nordström (RN) space-time metric. For values of charge Q > M, the metric describes

a naked singularity. One of the key features of many spherically symmetric naked sin-

gularities is the existence of a “zero-gravity” spherical surface, inside of which gravity is

repulsive, whereas outside of it, gravity is attractive as usual (Pugliese et al., 2011; Vieira

et al., 2014; Vieira and Kluźniak, 2023). This surface marks the innermost boundary for

the existence of circular geodesics, representing orbits with zero angular momentum, a test

particle remaining stably at rest there. In the RN case, no circular photon orbits exist for

Q/M >
√

9/8. For a somewhat larger value still of Q/M, no marginally stable orbits ex-

ist, so test-particle circular orbits are stable all the way down to the zero-gravity sphere

(Figure 1).

In a standard thin accretion disk, accretion is enabled by (effective) viscous torques

transferring angular momentum outwards. This is possible as long as angular frequency

decreases monotonically with the radius. In the case of RN space-time, the torque is re-

versed close to the zero-gravity radius, r0, as dΩ/dr > 0 there, for test particles. It is not yet

clear whether a thin disk may exist all the way to the zero-gravity sphere. For this reason,

we consider, instead, toroidal orbiting configurations of a perfect fluid.

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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Figure 1. Orbital stability diagram for the RN spacetime (q ≡ Q/M). The black region corresponds

to the hypervolume between the event horizons. The solid black line represents the zero gravity

sphere (radius r0). The black dashed lines represent the radius, rΩmax, at which angular frequency

is maximum. The black dotted line corresponds to the marginally stable orbit, whereas the dot-

dashed line corresponds to the photon orbit. Dark grey region corresponds to the stability region

for time-like circular geodesics. Light grey region corresponds to the instability region for time-like

circular geodesics. No circular geodesics exist in the white regions. The horizontal red dashed lines

correspond to the two choices of Q/M ratio discussed in this contribution.

Here, we focus on the structure and shape1 of equilibrium tori in which a perfect fluid is

orbiting the RN naked singularity. As a first step, we consider uniform angular momentum

distributions. Earlier work by Stuchlík et al. (2015); Kucáková et al. (2011); Prada-Méndez

et al. (2023) presented the equilibrium toroidal structures in the case of Kehagias–Sfetsos

naked singularities, Reissner-Nordström-(anti-)de Sitter space-times, and q-metric space-

time respectively. Our results are qualitatively similar to Stuchlík et al. (2015). We use

units with G = 1, c = 1. For convenience, since our results depend only on (Q/M)2, we

take Q > 0 to be the absolute magnitude of charge, the actual charge being ±Q.

1 While the configurations have the topology of a torus, their cross-section is not circular, not even ellipsoidal.
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Figure 2. Square of orbital frequency as a function of r/M for charge value Q/M = 1.08 (top) and

Q/M = 1.8 (bottom). The dotted line represents the unstable region.

GEODESIC MOTION IN RN SPACE TIME

The RN metric can be expressed in standard spherical coordinates as

ds2 = − f (r) dt2 + f −1 (r) dr2 + r2
(

dθ2 + sin2 θ dφ2
)

, (1)

where f (r) is the metric function given by

f (r) = 1 −
2M

r
+

Q2

r2
. (2)

For a perfect fluid, the energy-momentum tensor is given by

Tµν = (p + ρ) uµuν − pgµν, (3)

where ρ is the fluid energy density and p its pressure. The four-velocity of the fluid in a

circular orbit is uµ = (ut, 0, 0, uφ). The conserved energy and angular momentum of a test

particle in this orbit are given by

E ≡ −gtt ṫ = −ut, L ≡ gφφφ̇ = uφ. (4)

The conserved specific angular momentum l is defined by

l ≡
L

E
= −

uφ

ut

. (5)
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Figure 3. Square of specific angular momentum as a function of r/M for charge value Q/M = 1.08

(dashed) and Q/M = 1.8 (solid).

We begin with a discussion of test particle circular motion. The effective potential can be

conveniently taken to be E2, in the equatorial plane (sin θ = 1) it reduces to

Veff (r) = f (r)

(

1 +
L2

r2

)

, (6)

where we’ve used uµu
µ = −1. The condition ∂Veff/∂r = 0 then gives the angular momen-

tum of circular geodesics, i.e.

L2 (r) =
r3 f ′ (r)

2 f − r f ′ (r)
, (7)

or

l2 (r) =
r3

2 f 2
f ′ (r) . (8)

The orbital angular frequency, Ω = uφ/ut, so

Ω2 (r) =
f ′ (r)

2r
. (9)

The angular velocity for two values of Q/M is illustrated in Figure 2.
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For the RN space-time, the maximum angular velocity is given by the condition

dΩ2

dr2
=

d

dr

(

f ′ (r)

2r

)

= 0, (10)

so the maximum of angular velocity occurs at

rΩmax =
4

3

Q2

M
. (11)

In Figure 2 we present this radius, rΩmax as a function of Q/M. As circular geodesics are

not possible within the photon orbit, rΩmax is only defined as long as Q/M >
√

9/8. Note

that the marginally orbits, when they exist, are always at a larger radius – the maximum

of Ω is always attained in a stable orbit. The specific angular momentum at this orbit (of

maximum Ω) is given by,

lΩmax ≡ l(rΩmax). (12)

It is interesting to note that the specific angular momentum and its radial derivative in

circular orbits are not necessarily monotonic as a function of the radius r. The extrema of

the l (r) curve (if present) corresponds to the marginally stable orbits. The region between

the maximum and minimum of the Q/M = 1.08 specific angular momentum curve in

Figure 3 correspond to unstable circular orbits (c.f. Figure 2) by Rayleigh’s criterion, as

dl/dr < 0 there.

In the case of barotropic fluid, the surfaces of constant pressure (isobars) corresponding

to equipotential surfaces W(r, θ) are given by Boyer’s condition (e.g., Abramowicz et al.,

1978; Kozlowski et al., 1978)

−
∫ p

0

dp

p + ρ
= W −Win = ln

ut

(ut)in

−
∫ l

lin

Ωdl

1 −Ωl
. (13)

In the Newtonian limit, W is the usual effective potential. Here, the subscript “in” refers to

the inner edge of the torus. The equipotential surfaces are determined by the condition

W(r, θ) = constant. (14)

For the simplest case of tori with uniform distribution of specific angular momentum,

l0(r, θ) = constant, W is given by the following equation (Rezzolla and Zanotti, 2013):

W(r, θ) = ln |ut | =
1

2
ln

[

f (r) r2 sin2 θ

r2 sin2 θ − f (r) l2
0

]

.

At a given point in the (r, θ) plane, the potential W can be positive or negative, indicating

open and closed equipotential surfaces. In principle, the fluid can fill any of the closed

surfaces. Thus, a closed equipotential surface can be taken to represent the surface of
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Figure 4. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 < lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.



Equilibrium tori orbiting Reissner-Nordström naked singularities 157

Figure 5. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 < lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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a stationary configuration of orbiting fluid. The pressure of the toroidal barytrope is zero at

the surface, with a non-zero gradient.

For RN naked singularity for constant specific angular momentum l0, the potential W

takes the following form:

W(r, θ) = ln |ut | =
1

2
ln

[

(r2 − 2Mr + Q2) sin2 θ

r2 sin2 θ − (r2 − 2Mr + Q2)l2
0
/r2

]

. (15)

TOROIDAL PERFECT FLUID CONFIGURATIONS

We construct equilibrium toroidal configurations for four representative values of the angu-

lar momentum parameter, l0, for each of two values of the charge-to-mass ratio (Table 1).

These are shown with solid lines in Figs. 4–11. The dashed lines correspond to the surfaces

with positive values of W in Eq. (15), so any fluid in their vicinity would be unbound.

The barotropic fluid was assumed to have a uniform distribution of angular momentum.

Let us start by discussing the case of Q/M = 1.8, representative of singularities with no

marginally stable orbits. For low values of specific angular momentum, the circular locus

of maximum pressure in the torus (the torus “center") lies very close to the zero-gravity

sphere. While the torus can penetrate the zero-gravity sphere, its gradient of pressure bal-

ancing the repulsive gravity, a large part of the fluid must necessarily orbit outside of the

zero-gravity sphere. The gravitational repulsion of the naked singularity leads to a very

distorted shape of the “torus," which by analogy to, and in contrast with, the well-known

black hole “cusp" solution2 (known informally as “Sikora’s beak”) could best be described

as open “jaws” ready to snatch the singularity (Figure 4). For solutions with larger values of

angular momentum, these jaws become less prominent and finally disappear as the center

of the torus shifts outwards with increasing angular momentum parameters (Figures 4–7).

For low values of the charge-to-mass ratio, the presence of marginally stable orbits com-

plicates the solutions. Here, we discuss Q/M = 1.08 as an example. For low values of

angular momentum, the jaws are again apparent inside the zero-gravity sphere (Figure 8).

However, for larger values of angular momentum, the torus ends close to the zero-gravity

sphere, as though it hit a wall (Figure 9). For larger values of l0 still, two separate toroidal

solutions appear (Figure 10). This is related to the two stable orbital solutions for a test par-

ticle for a certain range of specific angular momenta (e.g., values of l0 near the maximum

of the dashed line in Figure 3). Once angular momentum exceeds the maximum of the

l (r) curve, only one stable orbital solution exists at large radii, and the fluid configuration

adopts the shape familiar from studies of compact object gravity in the quasi-Newtonian

regime, i.e., far from the source of gravity (Figure 11).

2 Introduced for the first time in Abramowicz, Jaroszyński & Sikora 1978.



Equilibrium tori orbiting Reissner-Nordström naked singularities 159

Figure 6. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 = lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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Figure 7. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 > lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.



Equilibrium tori orbiting Reissner-Nordström naked singularities 161

Figure 8. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 < lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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Figure 9. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 < lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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Figure 10. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 = lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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Figure 11. Equilibrium tori around RN naked singularity with Q/M=1.8 with l0 > lΩmax. Location

of the zero-gravity sphere is indicated by red dotted-dashed line. Top: W as a function of r/M in

equatorial plane. The radius of maximum angular frequency, rΩmax, is indicated by the black dotted

line. Bottom: Meridional cross-section of the equipotential surfaces. Solid closed lines represent

toroidal surfaces with negative W value. The black dashed lines represent positive values of W.
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Q/M l2
0
<< (lΩmax)2 l2

0
< (lΩmax)2 l2

0
= (lΩmax)2 l2

0
> (lΩmax)2

1.08 0.05 8 9.73 16

1.8 0.05 0.7 2.13 9

Table 1. List of specific angular momentum values used in our calculations for two different charge

to mass ratios.

CONCLUSIONS

We have studied the shape of fluid tori orbiting the RN naked singularities. Historically,

such studies were performed for black holes to gather insight into accretion disks in an era

before numerical simulations were feasible. This is the first step of a program aiming to

retrace this historical development for the case of naked singularities.

We consider perfect fluid configurations in hydrostatic equilibrium with non-zero3 uni-

form angular momentum orbiting Reissner-Nordström singularities. We find that typically,

no cusp is formed at the inner edge of toroidal figures of equilibrium around RN singular-

ities. A toroidal solution with a cusp (on the inside of the outer torus or on the outside of

the inner torus) can at most be found in that narrow charge-to-mass ratio parameter when

marginally stable orbits exist (Figure 10). Unlike in black holes, the equipotential surfaces

in RN singularities never self-intersect. Thus, unlike in black holes, where accretion from

a toroidal “disk" may proceed onto the compact object through “Roche-lobe-like" overflow

with no angular momentum loss, the RN singularity can only be approached if the accreting

fluid loses its excess angular momentum—the zero-gravity sphere is engulfed by the fluid

only at low values of specific angular momentum (e.g., Figures 4-6). At higher values of

specific angular momentum, only unbound matter may approach the singularity (or even

the zero-gravity sphere), but it is likely to outflow to infinity (e.g., Figure 7).

The positions and shapes of the constant specific angular momentum equilibrium tori

may also be taken to illustrate the general conclusion that for the Reissner-Nordström naked

singularity (and similar space-times), a part of any figure of equilibrium of an orbiting

fluid must always lie outside of the zero gravity sphere. This may have applications in

interpreting the Event Horizon Telescope (EHT) observations of the center of our Galaxy

(Mishra and Vieira, 2023).
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ABSTRACT

Using the integration of wave equation in the time-domain we show that scalar field

perturbations around the (2 + 1)-dimensional asymptotically flat black hole with

Gauss-Bonnet corrections are dynamically stable even for the near extreme values

of the coupling constant.

Keywords: Scalar field perturbations – (2 + 1)-dimensional asymptotically flat

black hole – Gauss-Bonnet corrections – quasinormal modes

1 INTRODUCTION

Black holes have been observed in the gravitational (Abbott et al., 2016) and electromag-

netic (Akiyama et al., 2019; Goddi et al., 2016) spectra, while ongoing projects promise

a great extension of the range of observations (Auclair et al., 2023). Quasinormal modes

(Berti et al., 2009; Nollert, 1999; Kokkotas and Schmidt, 1999; Konoplya and Zhidenko,

2011) represent the characteristic oscillations that black holes undergo when perturbed,

and they serve as a valuable tool for probing the black holes’ fundamental properties. Our

study explores the intricate interplay between black hole’s quasinormal modes and their

(in)stability. Usually, the strict mathematical proof of stability is a very difficult problem

(see, for instance, Beyer, 2011). A clear evidence of the linear stability or instability is

provided by the analysis of the quasinormal spectrum. If all the quasinormal modes are

damped, the black hole is stable, while if there exists at least one unboundedly growing

mode, it signifies the onset of instability. Therefore, the instability was extensively studied

with the help of quasinormal modes spectra (Takahashi and Soda, 2010; Ishihara et al.,

2008; Kodama et al., 2010; Dyatlov, 2011).

The particular black hole metric we will study here is the (2+ 1)-dimensional black hole

obtained as a regularization (Glavan and Lin, 2020) of the Einstein-Gauss-Bonnet equa-

tions of motion in Konoplya and Zhidenko (2020) and further studied and generalized in

Hennigar et al. (2020, 2021). Although the straightforward regularization in Glavan and

Lin (2020) did not form a consistent theory in four dimensions, the black hole solution

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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obtained within such a naive approach was also a solution of the well-defined theory for-

mulated in Aoki et al. (2020).

Quasinormal modes of three-dimensional asymptotically AdS (BTZ) spacetimes were

extensively studied (Cardoso and Lemos, 2001; Konoplya, 2004; Fontana, 2023), because

of their importance in the AdS/CFT correspondence (Birmingham et al., 2002). However,

no such analysis has been done so far for the (2+1)-dimensional asymptotically flat space-

times, to the best of our knowledge. Here, we will show that the scalar field perturbations

around the (2+ 1)-dimensional asymptotically flat black holes decay with time, even at the

near-extreme values of the Gauss-Bonnet coupling.

2 BLACK HOLE METRICS AND WAVELIKE EQUATIONS

The metric of the (2+1)-dimensional black hole has the following form

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dx2, (1)

where the metric function is

f (r) = 1 − r2
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. (2)

Here, rH is the radius of the event horizon, Λ is the cosmological constant, α is the Gauss-

Bonnet coupling constant. When 1 + 2α/r2
H
> 0 and the coupling constant α < 0 at Λ = 0

the metric is asymptotically flat and perturbative in α. When the cosmological constant is

negative, the metric is reduced to the BTZ one (Banados et al., 1992) up to the redefinition

of constants. The general-covariant Klein-Gordon equation

1
√−g
∂µ

(√−ggµν∂νΦ
)

= 0, (3)

can be reduced to the wave-like form

d2Ψ

dr2
∗
+ (ω2 − V(r))Ψ = 0, (4)

where the “tortoise coordinate” r∗ has the form:

dr∗ ≡
dr

f (r)
, (5)

and the effective potential is

V(r) = f (r)

(

k2

r2
+

f ′(r)

2r
− f (r)

4r2

)

. (6)

Here k is the multipole number.
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3 EVOLUTION OF PERTURBATIONS

Quasinormal modes of asymptotically flat black holes are eigenvalues of the above wave-

like equation satisfying particular boundary conditions: the waves must be purely outgoing

at infinity and purely incoming at the event horizon. For analysis of the evolution of per-

turbations in time and consideration of the contribution of all the overtones so that the

instability, if any, could be detected, we use the time-domain integration method (Gund-

lach et al., 1994), which was used in numerous works (for instance, Konoplya and Fontana,

2008; Churilova and Stuchlik, 2020; Bronnikov and Konoplya, 2020). It shows a good

concordance with more accurate methods. The essence of this method is the integration of

the wave equation in the framework of the null-cone coordinates u = t− r∗, v = t+ r∗, using

the following discretization (Gundlach et al., 1994),

Ψ (N) = Ψ (W) + Ψ (E) − Ψ (S ) − ∆2V (S )
Ψ (W) + Ψ (E)

4
+ O

(

∆4
)

. (7)

Here, the points are: N ≡ (u + ∆, v + ∆), W ≡ (u + ∆, v), E ≡ (u, v + ∆), S ≡ (u, v), and the

Gaussian impinging wave package are given on the null surfaces u = u0 and v = v0.

For checking the results obtained by the time-domain integration at k > 0 we used the

6th order WKB method with Padé approximants (Konoplya et al., 2019; Matyjasek and

Opala, 2017; Konoplya, 2003).

Time-domain profiles show decaying profiles not only for small α (see Fig. 2) but also

for the extreme α, as in Fig. 1. If the instability appeared, it would be governed by the

non-oscillatory, i.e. purely imaginary, growing mode, as was proved in Konoplya et al.

(2008) for generic static backgrounds.
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Figure 1. Left: Effective potential as a function of r∗. Right: Time-domain profile of perturbations.

Here we have k = 0, Λ = 0, α = −0.49. The Prony method suggests that the dominant modes are

non-oscillatory ω = −0.001899i
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Figure 2. Left: Effective potential as a function of r∗. Right: Time-domain profile of perturbations.

Here we have k = 1, Λ = 0, α = −0.01. The Prony method gives ω = 0.050145 − 0.003598i, while

the 6th order WKB method with Pade approximants gives ω = 0.050155 − 0.003579i

4 CONCLUSIONS

Here, we have shown that asymptotically flat (2 + 1)-dimensional black holes with Gauss-

Bonnet corrections are stable even at the near-extreme values of the Gauss-Bonnet cou-

pling. The full parametric range of stability and the other types of asymptotics could be

studied in further research. Thus, allowing for a non-zero cosmological constant may bring

instabilities to the system (Zhu et al., 2014; Konoplya and Zhidenko, 2014).
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1Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences,

ul. Bartycka 18, 00-716 Warsaw, Poland
2Research Centre for Computational Physics and Data Processing,

Institute of Physics, Silesian University in Opava,
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ABSTRACT

We present two-dimensional general relativistic radiative magnetohydrodynamical

simulations of accretion disks around non-rotating stellar-mass black hole. We study

the evolution of an equilibrium accreting torus in different grid resolutions to deter-

mine an adequate resolution to produce a stable turbulent disk driven by magneto-

rotational instability. We evaluate the quality parameter, Qθ, from the ratio of MRI

wavelength to the grid zone size and examine the effect of resolution in various quan-

titative values such as the accretion rate, magnetisation, fluxes of physical quantities

and disk scale-height. We also analyse how the resolution affects the formation of

plasmoids produced in the magnetic reconnection events.

Keywords: accretion, accretion disks – black hole physics – radiation GRMHD

1 INTRODUCTION

Global General Relativistic (GR) Radiative (R) Magnetohydrodynamical (MHD) simula-

tions are an excellent tool to model the violent and turbulent environment in the vicinity

of an accreting compact object. Even though this method can capture the interplay of

many different physical processes governing the behaviour of magnetised plasma, it also

has many limitations.

One significant limitation is that the GRRMHD solves the flux of quantities on a fixed

discrete grid, neglecting the structure inside the grid cells and approximating them as ho-

mogeneous. The solution to the related Riemann problem is always only approximate; thus,

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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some information on the low-scale fluctuations is lost. At the same time, accretion in mag-

netised disks is known to be driven by low-scale turbulences caused by magneto-rotational

instability (MRI, Balbus and Hawley, 1991, 1998).

The smaller cell size leads to a smaller time step. The issue becomes even more complex

in the case of the GR due to singularities in the commonly used coordinate systems and

limitation by the speed of light in the case of radiative MHD. A suitable choice of compu-

tational grid parameters is fundamental in GRMHD simulations, as it must have a sufficient

resolution to resolve the low-scale turbulences while considering computational demands.

The challenge of the GRMHD method is the scalability of turbulences present in the

accretion flow. This makes it difficult to achieve a fully converged solution. Convergence

in an accretion disk simulation is often determined by the stability of the flow parame-

ters (e.g., mass accretion rate, density scale height, radiative luminosity). Recently, White

et al. (2019) studied numerical convergence in simulations of magnetically arrested disks

(MAD) and its effects in the lunch Jets. They studied the effect of 4 different resolutions.

They found that turbulent structure does not appear in their lowest resolution, and MRI

is suppressed. Also, Ripperda et al. (2022) conducted extreme-resolution 104 grid shell

resolution 3D simulations of MAD flows and analyzed the appearance of blob structures.

They showed that magnetic flux bundles can escape from the event horizon through recon-

nection and complete a full orbit as low-density hot spots consistent with interferometric

observations.

Quality parameters were derived to assess simulation convergence in studies by Hawley

et al. (2011, 2013). They are based on the assumption that the characteristic wavelength of

the MRI must be well resolved in order to maintain the MRI-induced turbulences. Although

satisfying these conditions is important for obtaining reliable and physical results, other

limitations and approximations of the GRMHD must still be considered.

Here, we investigate the influence of increasing resolution on simulation results. The

structure of this Proceeding is as follows: in Section 2, we describe the employed code

KORAL and the numerical setup of our simulation. In Section 3, we describe the diagnostic

tools we considered; in Section 4, we present the analysis of the simulation results, and in

Section 5, we comment on our finding and draw conclusions.

2 NUMERICAL SETUP AND INITIAL CONDITION

2.1 KORAL implementation

We use the GRRMHD code KORAL to perform global two-dimensional (2D) axisymmetric

simulations of accretion onto a M = 10 M⊙ non-rotating black hole (BH)1. The grid reso-

lution is logarithmic in radius and stretches up to rout = 1000 rg, where rg ≡ GM/c2 is the

gravitational radius. We considered four increasing-resolution simulation grids described

in Table 1.

KORAL solves the conservation equations for a fluid with rest-mass density ρ, 4-velocity

uµ, and stress-energy tensor T µν, coupled with the radiation tensor (Rµν) via the radiation

1 M⊙ denoting the solar mass
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4-force density Gν. The equations are

∇µ (ρuµ) = 0, ∇µT µν = Gν, ∇µRµν = −Gν. (1)

The MHD stress-energy tensor Tµν is given by

T µν =
(

ρ + uint + pgas + b2
)

uµuν +

(

pgas +
1

2
b2

)

δ
µ
ν − bµbν, (2)

where bµ is the magnetic field four-vector, uint and pgas = (γ − 1)uint are the internal energy

and pressure of the gas in the comoving frame, with γ being the adiabatic index.

The implementation of the various processes in the KORAL code was described in an

extensive collection of published papers, including Sądowski et al. (2013, 2014); Sądowski

and Narayan (2015); Sądowski et al. (2015, 2017); Chael et al. (2017), and recently also

summarised in Lančová (2023).

2.1.1 Mean-field dynamo

MRI-driven turbulences are responsible for angular momentum transport in BH accretion

disks. A physical mechanism is required to sustain the magnetic fields in time against

dissipation. Local and global simulations of accretion disks have shown that shearing due

to differential rotation induces a turbulent dynamo capable of amplifying and sustaining

magnetic fields against dissipation (see Del Zanna et al., 2022 and references therein).

MHD dynamo cannot operate in axisymmetric plasma configurations, as follows from

Cowling’s anti-dynamo theorem (Brandenburg et al., 1995). Therefore, capturing the growth

of MRI self-consistently requires a three-dimensional (3D) simulation, which is computa-

tionally expensive given the long evolution times and requirements for high resolution.

However, the KORAL code implementation allows for replenishment of the magnetic field

with an artificial mean-field dynamo term in the case of a 2D axisymmetric configuration,

as introduced in Sądowski et al. (2015). The dynamo efficiently counterbalances the mag-

netic field dissipation.

2.2 Initial state

All simulations presented in this work are initialised by a torus in hydrodynamical equi-

librium following Penna et al. (2013). Fig. 1 shows the initial distribution of matter and

magnetic field topology in the meridional plane. The inner edge of the initial torus is lo-

cated at Rin = 22 rg. It is initially threaded with a poloidal magnetic field, such that the

magnetization in the torus centre is β = pmag/pgas = 20, where pmag is the magnetic pres-

sure.

The initial angular momentum on the equatorial plane is set up as a fraction of the Ke-

plerian Ω multiplied by a factor ξ = 0.975 for R > R1 = 30 rg. Inside R1, the angular

momentum is constant. The initial state corresponds to simulation r300a0 (but with single

loop magnetic field loop as shown in Fig. 1) in Sądowski et al. (2015), where the results

were compared to a 3D simulation with the same parameters but without the dynamo term,
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Figure 1. Snapshot of the initial state in our simulations, showing logarithm of gas density. Contours

show the initial poloidal magnetic field lines.

leading to comparable time-averaged results. The effects of different magnetic field config-

urations, including a similar looped configuration, have been studied by Kološ and Janiuk

(2020).

The simulations were run for 20 000 tg in total2. After t ∼ 10 000 tg from the begin-

ning, the simulations become more stable as the accretion rate stabilises to a value close to

Ṁ =
∫ π

0
ρur √gdθ ≃ 10 ṀEdd

3. From this point to the end of the simulation, we averaged

the data to study the mean properties of the accretion disk.

3 DIAGNOSTIC TOOLS FOR TESTING RESOLUTION

Inadequate resolution can lead to a number of numerical artefacts, crashing of the simula-

tions, or even wrong results. For example, it may suppress the growth of MRI when the

wavelength (of at least) the fastest-growing instability mode is longer than the grid shell

size. The MRI produces turbulences, but when the resolution is low, only a small range of

wave numbers can be captured, distorting the properties of those turbulences. If the sim-

ulation fails to capture the turbulent structure initiated and sustained by MRI fluctuations,

angular momentum is not transported outwards, which prevents mass accretion. However,

high-resolution simulations are computationally very expensive. Thus, it is useful to deter-

mine whether a given simulation has adequate resolution to produce accurate quantitative

results.

One would presume that numerical results converge to an exact solution as the grid

size decreases. An approach to determine the accuracy of a given simulation is to run

2 tg = rg/c
3 ṀEdd = LEdd/ηc

2, where, η = −Ltot/
∫ π

0
ρurdθc2 is the radiative efficiency with Ltot defined in eq. (6).
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again for a higher (e.g. doubled) resolution and check for convergence in the results. As

part of this investigation, we ran a series of simulations with increasing resolution to test

the convergence. However, different quantities have different convergence rates and are

subject to the limitations of the numerical algorithm used. Still, additional effects beyond

resolution, such as resistivity or viscosity terms, significantly impact magnetic stress for

the same resolution. Moreover, the chaotic nature of the turbulent processes introduces an

additional layer of complexity in interpreting the convergence. These intricacies make it

challenging to reach a definitive conclusion regarding the effect of resolution alone.

3.1 MRI quality parameter

The first diagnostic tool considered for resolution is derived from the MRI characteristic

wavelength, λMRI ∝ |uA|/Ω, where uA is the Alfvén velocity and Ω is the angular velocity.

Sano et al. (2004) studied the linear evolution of MRI in local shearing box simulation and

found that at least 6 resolution grid zones should resolve MRI wavelength (λMRI
i
/∆xi ≥ 6).

Common indicators for the proper resolution to resolve the MRI turbulences are the

quality parameters Qi ≡ λMRI
i
/∆xi (first introduced in Noble et al., 2010; Hawley et al.,

2011), where ∆xi denotes the grid size in the i-th direction. Noble et al. (2010) studied

the properties of the turbulence through global GRMHD simulations and suggested that

Qθ ≳ 20 is adequate for resolving MRI.

Furthermore, Hawley et al. (2011), who performed global MHD simulations using a pse-

udo-Newtonian potential and examined previous results of shearing box simulations, em-

phasise the importance of considering a resolution parameter in the toroidal direction (i.e.

Qφ ≳ 20 and Qθ ≳ 10). The authors noted that the two parameters (Qφ, Qθ) are not inde-

pendent of each other: higher values in one direction can compensate for lower values in

the other. For example Qθ ≳ 10−15 can compensate for a lower value of Qφ ≈ 20 (Sorathia

et al., 2012). Hence, the product of QθQφ ≳ 200 has also been suggested as a criterion for

convergence (Narayan et al., 2012).

In our case of 2D axisymmetric simulations, only Qθ can be defined. Therefore, we

consider Qθ > 20 as adequate for resolving MRI. We define Qθ as:

Qθ =
2π

Ωdx̂θ

∣

∣

∣b̂θ
∣

∣

∣

√
ρ
, (3)

where the magnetic field component b̂θ and the grid cell size dx̂θ are evaluated in the fluid

frame (denoted with hats). In addition, we consider the theta average of the quality pa-

rameter as a function of radius. For this reason, we compute the density-weighted quality

parameter as a function of the cylindrical radius R:

⟨Qθ⟩ (R) =

∫

Qθρdθ
∫

ρdθ
. (4)
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4 RESULTS

In this section, we describe selected properties of the accretion flow in the simulations and

their dependency on resolution. The quantities are shown either as a function of time or

their spatial or radial profile from time-averaged data.

Fig. 2 shows the color-maps of the gas density and the radiation energy density in the

fluid frame (Ê) from averaged data. The white solid line shows the surface of the last

scattering (photosphere) and the dashed lines show the surface corresponds to density scale-

height (hτ). hτ, calculated in the z direction. It is apparent that for a low resolution, the

funnel region is not formed properly, and the disk photosphere is much higher than in the

case of the high resolution. In the (Nr × Nθ) = 642 grid shells simulation, the photosphere

position cannot be properly established at all, leading to the jump in the bottom half of the

domain. We also examined the scale-height hρ of the simulated accretion disk, calculated

as

hρ =

√

√∫

ρz2dz
∫

ρdz
, (5)

as shown with the dashed lines in Fig. 2 and as a function of radius in the right panel of

Fig. 5 with the various solid lines corresponding to different resolutions. The time average

scale-height is roughly stable for R > 20 rg, and a typical value is between 0.25–0.30.

Before discussing other results, we examine if the resolution is adequate for capturing

MRI following the discussion in Section 3. Fig. 3 shows the values of Qθ for each resolu-

tion. For higher resolutions, i.e. (Nr × Nθ) = 2562, 5122, the values are higher than 20 for

the vast majority of the cells, which indicate adequate resolution (see Section 3.1).

For the highest resolution, Qθ > 1000, while for the lower resolution, the values are

< 10. We can conclude that the resolution of 642 is inadequate to capture MRI. In the case

of (Nr × Nθ) = 1282, Qθ ∼ 10 for most cells. However, in the equatorial plane, the values

reach Qθ ≥ 20. MRI may be properly resolved in that case, especially if the resolution

in the toroidal direction is high enough (i.e. Qφ ≳ 20), which can compensate for lower

values in Qθ. We conclude that the resolution requirement is (Nr × Nθ) = 2562 or greater.

In Fig. 4 (left panel), we show the time evolution of the Q parameter measured at

R = 20 rg and theta as defined from eq. 4. We observe that the values are initially very

low and fluctuate until the disk is formed and reaches inflow equilibrium for the measured

radius, coinciding with the time when the accretion rate becomes stable.

4.1 Accretion Rate

The time evolution of the accretion rate measured close to the BH event horizon is shown

in Fig. 4 (right panel). The mean value and variance of the accretion rate after 10 000 tg
(indicated by the vertical line) until the end of each simulation is given in the second column

of Table 1 while the third column shows the time average value of the resolution parameter.

The variance of the accretion rate fluctuations is decreasing with increasing resolution. The

very high variance of the resolution parameter in the highest resolutions is because a vary

high value at t ∼ 18 000 tg . However, the variability of 2D simulations using the artificial
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Figure 2. The logarithm of radiation energy density in the fluid frame (left panels) and time average

density (right panels). The solid line surface shows the position of the photosphere and the dashed

line correspond to the density scale-height.

Table 1. The 10− 20× 103 tg average and standard variance of the accretion rate at event horizon and

resolution parameter at R = 20 rg.

(Nr × Nθ)
⟨Ṁ⟩ ⟨Qθ⟩

(ṀEdd) (R = 20 rg)

642 11.3 ± 7.2 1.5 ± 1.1

1282 12.6 ± 5.2 06 ± 38

2562 11.2 ± 4.4 25 ± 32

5122 09.4 ± 3.8 100 ± 100

dynamo term is shown to be higher than in the 3D simulations (Sądowski et al., 2015), so

these results should be interpreted with caution.

4.2 Magnetization

We calculated the magnetization, σ = b2/ρ, across the resolutions. The results are plotted

in Fig. 5 (left panel). The magnetization as a function of radial coordinate decreases with

increasing radius for all resolutions and the values converge as the resolution is increased

with 2562 and 5122 grid shells resolution being almost identical. Thus, we can conclude
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Figure 3. The values of resolution quality parameter Qθ measured at t = 15 × 103 tg.
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Figure 4. The time evolution of the quality parameter ⟨Qθ⟩(R = 20 rg) (left panel) and of the ac-

cretion rate measured close to the black hole event horizon (right panel). The vertical line indicates

t ≥ 10 000 tg for which we average the results. Dashed lines were chosen for better clarity between

overlapping lines.
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Figure 5. The magnetization (left panel) and the disk scale-height (right panel) as a function of radius

from the time-averaged data.

that magnetization values are affected by resolution and tend to converge at the same value

as the resolution increases.

4.3 Luminosities

An interesting application of numerical simulations is to compare the luminosity or spectra

with observations. Therefore, in this section we examine if these results converge. The

total luminosity in all forms of energy may be defined by integrating the flux carried by gas

and radiation:

Ltot (R) = −
∫ π

0

(T r
t + Rr

t + ρu
r)
√
−gdθ. (6)

We define the radiative luminosity:

Lrad (R) = −
∫ π

0

Rr
t

√
−gdθ. (7)

Fig. 6 shows the values of Ltot (left panel) and Lrad (right panel) for each resolution.

While these values are affected by resolution, they remain within the same order of magni-

tude. In the left panel of Fig. 7, the radiation energy density measured in the fluid frame,

(Ê), is identical for all simulations. Interestingly, the resolution does not affect the radiative

quantities as much as those related to MHD fluid.

4.4 Formation of Plasmoids

Plasmoids, which in 2D show as magnetic islands, are bubbles of magnetised gas formed in

elongated magnetic sheets, and their formation is connected with magnetic reconnection.

Current sheets subject to turbulence induced in accretion disks may become thin enough

to break apart into plasmoids. Because the thickness of the sheet is limited by numerical

resolution, in low resolutions, plasmoids are not formed. In our results, only the highest

resolution of 5122 grid cells allows the current sheet to become thin enough for plasmoids
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Figure 6. Left panel: The value of total (solid lines) and radiative luminosity (dashed lines) from

eqs. 6, 7 respectively. Right panel: The radiation energy density in the fluid frame.

to form, as shown in the right panel of Fig. 7. This observation underscores the critical role

of resolution in capturing intricate magnetic reconnection processes.

5 DISCUSSION AND CONCLUSIONS

In this study, we conducted a series of radiative General Relativistic Magnetohydrodynam-

ics (GRMHD) simulations, systematically varying the resolution to assess convergence.

The selected resolutions were tested using quality parameters as resolution diagnostics,

analyzed to examine the key properties of the accretion flow and determine the optimal

Figure 7. Snapshot at t ∼ 10 000 tg showing the logarithm of density and the formation of plasmoids

(inserted panel) in the simulation with resolution Nr × Nθ = 5122 grid cells. Contours show the

magnetic field lines.
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resolution for magnetohydrodynamic simulations of the accretion disk and assessing result

convergence. We summarize our main results below:

(1) We observed that the accretion rate stabilizes when the Magnetorotational Insta-

bility (MRI) is properly resolved at t > 3 × 103 tg as indicated by the value of quality

parameters (Qθ > 20). The variance of the average value of accretion rate is decreasing

with increasing resolution.

(2) Resolutions lower than (NR ×Nθ) < 1282 are inadequate to capture MRI suggesting

this resolution being a potential threshold. We observed higher resolutions (i.e. 2562, 5122)

not to have a significant quantitative difference.

(3) The calculation of magnetization showed convergence as resolution increased while

radiation energy density remain unaffected by resolution changes, luminosity and scale-

height remained relatively stable across resolutions.

(4) Low resolution cannot resolve the fine structure of blobs, plasmoids are only appear

in the highest resolution.

This comprehensive analysis demonstrates the critical importance of resolution in accu-

rately simulating and interpreting the dynamics of accretion flows. Adequate resolution

is essential for capturing phenomena such as MRI or fine structural details such as the

formation of plasmoids, ensuring the reliability of simulation results in understanding the

intricate processes governing accretion disks.
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Lančová, D. (2023), Computer modelling of accretion processes in binary systems with black holes

and neutron stars, arXiv e-prints, arXiv: 2310.13152.
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Sądowski, A., Narayan, R., McKinney, J. C. and Tchekhovskoy, A. (2014), Numerical simulations

of super-critical black hole accretion flows in general relativity, Monthly Notices of the Royal

Astronomical Society , 439(1), pp. 503–520, arXiv: 1311.5900.

Sądowski, A., Narayan, R., Tchekhovskoy, A., Abarca, D., Zhu, Y. and McKinney, J. C. (2015),

Global simulations of axisymmetric radiative black hole accretion discs in general relativity with

a mean-field magnetic dynamo, Monthly Notices of the Royal Astronomical Society , 447(1), pp.

49–71, arXiv: 1407.4421.
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ABSTRACT

The nodal oscillations of matter orbiting compact objects such as black holes and
neutron stars are usually applied for the explanation of the observed low-frequency
quasiperiodic oscillations. In the present paper, we test the applicability of the
nodal precession variants of the magnetically modified geodesic model based on the
epicyclic motion of slightly charged matter in the magnetosphere of a neutron star
represented by the Schwarzschild geometry combined with the dipole magnetic field
for fitting of the twin high-frequency quasiperiodic oscillations observed around
magnetized neutron stars. We demonstrate that there is a nodal precession vari-
ant giving a possibility to fit the data similarly to the standard relativistic precession
variant, and we show that the other nodal variant can be clearly excluded.

Keywords: Dipole magnetic field – neutron star – orbiting charged matter –
observed quasi-periodic oscillations

1 INTRODUCTION

Charged matter orbiting a magnetized neutron star (NS) can have frequencies of the epi-
cyclic oscillatory motion around equatorial circular orbits, along with the orbital frequency
of these circular orbits, comparable to the frequencies of the twin-peak, high-frequency
quasiperiodic oscillations (HF QPOs) observed in binary systems containing magnetized
NSs (Vrba et al., submitted) – a magnetized NS can be conveniently modeled by the
Schwarzschild geometry and the dipole magnetic field that defines the equatorial plane of
the whole background. The magnetic parameter b representing the ratio of the electromag-
netic and gravitational forces acting on the charged matter must be sufficiently small for
comparability to the observed frequencies and can correspond to matter with a very small

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.
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specific charge so that only charged dust or plasmoids can be considered as acceptable,
while protons (electrons) or ions are excluded1.

In the standard geodesic model of the quasiperiodic oscillations, usually, the relativistic
precession variants (or the epicyclic resonance variants) are considered for the explana-
tions of the twin HF QPOs, while the nodal precession frequency is usually applied for an
explanation of the low-frequency quasiperiodic oscillations (Tasheva and Stefanov, 2021).
Here, we test the possibility of applying the nodal precession variants of the magnetically
modified geodesic model, i.e., the variants of the relativistic precession model where the
radial epicyclic frequency is substituted by the latitudinal epicyclic frequency, for charged
test matter orbiting with epicyclic oscillations a magnetized NS described by the simple
model considered in Vrba et al. (submitted).

We give the frequencies of the epicyclic orbital motion of the charged test matter in the
equatorial plane of the magnetized NS and present the fitting curves for the nodal preces-
sion variants of the magnetically modified geodesic model to the data of the twin HF QPOs
observed in binary systems containing NSs. We also give for comparison fitting of these
data by the relativistic precession variants of the model.

The radius of the NS is assumed at R = 3M, thus, the dipole magnetic field is relevant
at the range of r > 3M. The epicyclic oscillations around the off-equatorial circular orbits,
discussed in detail in Vrba et al. (submitted), are not considered in the present paper, as
they predict frequencies higher than the observed frequencies. We focus on the oscillations
around the equatorial circular orbits.

Throughout this paper, we use space-like signature (− + ++) and a geometric system of
units in which G = c = 1; we restore them when we need to compare our results with
observational data. Greek indices run from 0 − 3, and Latin indices run from 1 − 3.

2 RELATIVISTIC DIPOLE MAGNETOSPHERE OF NSS

We use the Schwarzschild geometry with line element given in the standard Schwarzschild
coordinates (t, r, θ, ϕ) in the form

ds2
= − f (r) dt2

+ f (r)−1 dr2
+ r2

(

dθ2 + sin2 θdϕ2
)

, (1)

where

f (r) = 1 − 2M

r
, (2)

M denotes the NS mass.
Around NSs with a dipole magnetic field, the motion of the charged test particles will

be limited by their surface. We choose it at R = 3M as this radius is the upper limit on the
so-called extremely compact objects having a radius located under the photon sphere of the
vacuum Schwarzschild spacetime.

1 The electromagnetic Lorentz force acting on electrons or protons in the vicinity of black hole event horizon or
the NS surface can lead in standard astrophysical situations to the enormous acceleration of electrons, protons, or
ions (Stuchlík and Kološ, 2016a; Tursunov et al., 2020a; Stuchlík et al., 2020, 2021).
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The dipole magnetic field of a considered NS can be generated by a circular current
loop with radius a ≥ 2M, located on the surface of the NS equatorial plane or by current
sheet flashing on the whole NS surface. Using the Schwarzschild metric means that we
can approach its horizon, but limits on the radius of realistic NSs have to be taken into
consideration. The four-vector electromagnetic potential Aµ of the outer part of the dipole-
field solution (r > a) in the Schwarzschild metric has only one non-zero component –
Aµ = (0, 0, 0, Aϕ). The only non-zero component of the four-potential, Aϕ, is given by
Kovář et al. (2008); Petterson (1974); Preti (2004)

Aϕ = −B
[

ln

(

1 − 2M

r

)

+
2M

r

(

1 +
M

r

)

]

r2 sin2 θ

= −B h (r, θ) (3)

and the parameter governing the magnetic field is given by

B = 3µ
8M3
, (4)

where µ is the magnetic dipole moment of the NS. The Maxwell tensor, Fµν = Aν,µ − Aµ,ν,
has only two non-zero components

Frϕ =
∂Aϕ

∂r
= Bθ

= 2B sin2 θ

(

2M(r − M)
2M − r

− r ln
r − 2M

r

)

(5)

and

Fθϕ =
∂Aϕ

∂θ
= Br

= −B sin (2θ)

[

r2 ln
r − 2M

r
+ 2M (M + r)

]

. (6)

Clearly, in the equatorial plane, Br vanishes, while on the symmetry axis also Bθ vanishes.
The magnetic field intensity Bθ̂ measured by local static observers on the NS surface

enables to express the magnetic dipole moment in the form (Bakala et al., 2010)

µ =
4M3R3/2

√
R − 2M

6M (R − M) + 3R (R − 2M) ln f (R)
Bθ̂. (7)

Considering a magnetized NS with R = 3M, M = 2M⊙
2 and Bsurf = 108 G, we obtain

the magnetic dipole moment µ � 7 × 10−4 m2.

2 where M⊙ is the solar mass



190 Z. Stuchlík, J. Vrba

3 CHARGED PARTICLE DYNAMICS IN DIPOLE MAGNETIC FIELD OF NSS

AND EQUATORIAL CIRCULAR ORBITS

The charged test particle motion is governed by the Lorentz equation

duµ

dτ
+ Γ

µ

αβ
uαuβ =

q

m
F
µ
αu
α, (8)

where uµ is the four-velocity of the particle with the mass m and charge q, normalized by
the condition uαu

α
= −1, τ is the proper time of the particle, and Fµν is the antisymmetric

tensor of the electromagnetic field. It can be deduced from the Hamiltonian formalism, see
e.g. Kološ et al. (2015). The Hamiltonian H reads

H =
1
2

gαβ (πα − qAα)
(

πβ − qAβ
)

+
m2

2
, (9)

where canonical four-momentum πµ is given by the relation πµ = muµ + qAµ. The test
particle motion is governed by the Hamilton equations

dxµ

dζ
=
∂H

∂πµ
,

dπµ
dζ
= − ∂H
∂xµ
, (10)

where ζ = τ/m. The symmetries of the Schwarzschild spacetime (1) and the dipole mag-
netic field (3) imply the existence of two constants of the particle motion – covariant spe-
cific energy and covariant specific axial angular momentum

E = E

m
= −πt

m
= −gttu

t, L = L

m
=
πϕ

m
= gϕϕu

ϕ
+ q̄Aϕ, (11)

where q̄ = q/m is the specific charge of the particle. The Hamiltonian (9) can be expressed
in the separated form

H

m2
=

1
2

grru2
r +

1
2

gθθu2
θ +

1
2

gttE2
+

1
2

gϕϕ
(

L − q̄Aϕ
)2
+

1
2
= HD + HP, (12)

consisting of the dynamical, HD, and potential, HP, parts

HD =
1
2

(

grru2
r + gθθu2

θ

)

, (13)

HP =
1
2

[

gttE2
+ gϕϕ

(

L − q̄Aϕ
)2
+ 1

]

. (14)

The motion of charged particles can be characterized by the turning points determined
by the condition HP = 0, which gives the regions of the spacetime available (in the r − θ
plane) for the motion of the particles with the given motion constants E, L, in dependence
on the electromagnetic interaction given by the particle specific charge and intensity and
character of the magnetic field.

3.1 Effective potential and equatorial circular orbits

The motion in the considered background is generally of chaotic character (Stuchlík et al.,
2020), but it can be characterized by the effective potential, which represents the barrier
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governing the particle motion in dependence on the motion constants and the parameters
of the background.

The turning points of the radial motion are determined by the equation E = Veff(r, θ;L, b)
and the effective potential reads (Kovář et al., 2008)

Veff(r, θ) ≡ −gtt

[

gϕϕ
(

L − q̄Aϕ
)2
+ 1

]

=

(

1 − 2M

r

)















(

L
r sin θ

− b h (r, θ) r sin θ

)2

+ 1















, (15)

being thus given by the motion constant L and the “magnetic parameter” b determining the
intensity of the particle interaction with the given magnetic field

b = q̄B = q

m

3µ
8M3
. (16)

The positive (negative) value of the magnetic parameter b corresponds to the magnetic
attraction (repulsion) with inward (outward) directed electromagnetic Lorentz force.

The local extrema of the effective potential determines the circular orbits of charged
particles that are stable (unstable) for local minima (maxima). The epicyclic motion is
possible only around the stable circular orbits. Here, we concentrate on the equatorial
circular orbits that must be considered in the regions where stability is satisfied for both
radial and latitudinal (vertical) perturbations – for details, see Vrba et al. (submitted). The
axial angular momentum L of the charged particles following the equatorial circular orbits
with fixed parameter b are given by the relations (assuming in the following M = 1)

Lc =
b

r − 3

[

r2 Ln (r) + 2r + 6
]

+ r
△(r, b)
r − 3

, (17)

where △(r, b) =
√

b2 [2 (r − 1) + (r − 2) r Ln (r)]2
+ r − 3 and Ln (r) = ln r−2

r
. The specific

energy E of the particles at these circular orbits reads

Ec = r−1

√

1 − 2
r

{

−br2
+

[

r
△(r, b)
r − 3

+
br2 Ln (r) + 2br + 6b

r − 3
− r2 Ln (r) − 2 (r + 1)

]2














1
2

. (18)

Because of the symmetry of the effective potential relative to the sign change ofL and b,
we can restrict attention to the corotating orbits. We can see that the circular orbits can exist
at r > 3, while both the specific angular momentum and specific energy diverge if r → 3;
at r = 3, the equatorial photon circular orbit is located. The special reality condition

[2b (r − 1) + b (r − 2) r Ln (r)]2
+ r − 3 ≥ 0, (19)

governing the existence of the equatorial circular orbits at the radii 2 < r < 3 is irrelevant
here, as we assume R = 3.
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Figure 1. Dependence of ISCO position on the dipole magnetic field parameter b. The blue curve
gives ISCO due to instability in the radial direction, and the orange curve gives ISCO due to instability
in the latitudinal direction – relating to the off-equatorial circular orbits (Vrba et al., submitted).

The stability of the equatorial circular orbits in both radial and latitudinal directions is
studied in detail in Vrba et al. (submitted) and we simply use the results of this paper, see
Figure 1. We give only short summary of these results: for values of the magnetic parameter
b > brISCO(r = 3) � −0.654 a marginally stable circular orbit exists at some r > 3 due to
instability in the radial direction, while for values of b < bθISCO(r = 3) � −0.751, the
instability at the marginally stable orbit is in the latitudinal direction – two fundamentally
distinct scenarios of the instability of the equatorial circular orbits arise; in the case of
bθISCO(r = 3) � −0.751 < b < brISCO(r = 3) � −0.654, the equatorial circular orbits are
stable at r > 3 (Vrba et al., submitted).

4 FREQUENCIES OF THE EPICYCLIC EQUATORIAL ORBITAL MOTION

The locally measured epicyclic frequencies around the equatorial circular orbits are given
in general axially symmetric backgrounds of the type considered here by Kološ et al. (2015)

ω2
r (r) = ∂2

rrVeff , ω2
θ (r) = ∂2

θθVeff . (20)

The orbital frequency of the circular orbit related to the particle’s proper time reads

ωϕ =
dϕ
dτ
= L (r, θ = π/2) gϕϕ − bh (r, θ = π/2) . (21)

Since the frequencies (20) are calculated for the local comoving observer, we have to
transform to the system of a static observer at infinity due to the redshift effect, using the
standard SI units. The transformation for general locally measured angular frequency ω to
general frequency ν measured by the distant observer can be expressed in the form

νi =
1

2π
c3

GM

ωi

−gttE (r)
, (22)

where i = {r, θ, ϕ}.
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By using the effective potential introduced above (20), we can derive the expressions for
the local epicyclic frequencies of charged particles in the field of a magnetized NS with
magnetic dipole field in the form (Vrba et al., submitted)

ω2
r = −

1

r5 (r − 2)2
×

{

b2(r − 2)
[

(r − 2)2 r4Ln2 (r) + 4 (r − 3) r4 Ln (r) + 4
(

r4 − 2r3 − 3r2 − 4r + 12
)]

+

3 (r − 2)3
[

r△(r, b) + br2 Ln (r) + 2br + 6b
]2

(r − 3)2
− 2 (r − 2) r3

−
16b

(

2r2 − 7r + 6
) [

r△(r, b) + br2 Ln (r) + 2br + 6b
]

r − 3

−2 (r − 2) r3

[

△(r, b) + br2 Ln (r) + 2br − 2br Ln (r) − 2b
]2

(r − 3)2



















, (23)

ω2
θ =

1
r4



















(

r△(r, b) + br2 Ln (r) + 2br + 6b
)2

(r − 3)2

− b2r4Ln2 (r) − 4b2r3 Ln (r) − 4b2r2 − 4b2r2 Ln (r) − 8b2r − 4b2
}

, (24)

ωϕ =
△(r, b) + br2 Ln (r) + 2br − 2br Ln (r) − 2b

(r − 3) r
. (25)

See also Bakala et al. (2010), where the frequencies were derived in different ways, hav-
ing the same form. For a slowly rotating sphere, the frequencies were derived in Bakala
et al. (2012). By applying transformation (22) to equations (23-25), we obtain the ob-
servable epicyclic frequencies. The behavior of the frequencies νr (r) , νθ (r) and νϕ (r),
as functions of the radial coordinate r in equatorial plane (θ = π/2), is demonstrated in
Figure 2.

The frequencies of epicyclic oscillations of charged particles in the field of a NS with
a magnetic dipole differ in many aspects from the frequencies of uncharged particles in
a Schwarzschild compact object. The most remarkable manifestation of these differences
is the separation of the latitudinal and Keplerian frequencies. This occurs in the presence
of any nonzero magnetic field in the case of a homogeneous magnetic field, it was studied
in (in the case of a homogeneous magnetic field, it was studied in Kološ et al., 2015) and
is a consequence of the disruption of spherical symmetry of the background. The strong
differences in behavior of the epicyclic and orbital frequencies demonstrated in the case
of the dipole magnetic field inspired the idea to apply the nodal precession variants of
the magnetically modified geodesic model to the case of HF QPOs observed in the binary
systems containing a NS.

Another effect that influences the behavior of the epicyclic motion is the shift in the
location of the ISCO in dependence on the parameter b (see Figure 1). The last significant
difference is the interchange of the profiles of the epicyclic latitudinal and radial frequencies
for negative values of the parameter b due to the θ-instability – see Figure 2.



194 Z. Stuchlík, J. Vrba

ν r

ν θ

ν ϕ

5 10 15 20

0

500

1000

1500

2000

r

ν
ϕ
,θ
,r
[H
z
]

b=-2

ν r

ν θ

ν ϕ

5 10 15 20

0

500

1000

1500

2000

2500

r

ν
ϕ
,θ
,r
[H
z
]

b=2

Figure 2. Epicyclic frequencies in the equatorial plane (θ = π/2) for a NS with mass M = 2M⊙
and various strengths of dipole magnetic field constructed for frequencies of the epicyclic equatorial
circular motion. The colored curves represent the epicyclic frequencies in the dipole configuration.
The solid black and dashed black curves represent the radial and latitudinal (Keplerian) frequencies
in the Schwarzschild case, respectively.

5 FITTING TO THE HF QPOS

The HF QPOs play a crucial role in astrophysics as they provide a very solid basis for
predicting the parameters of compact objects in accretion systems.

5.1 Geodesic models and their modifications

There are two main variants (and their subvariants) of the so-called geodesic model of HF
QPOs using the frequencies of the epicyclic oscillations and the orbital motion in fitting
the data observed in the astrophysical systems containing a black hole or a NS (Stuch-
lík and Kološ, 2016b): the Epicyclic Resonance (ER) model (Kluzniak and Abramowicz,
2001; Abramowicz and Kluźniak, 2001; Remillard and McClintock, 2006; Török et al.,
2005) and the Relativistic Precession (RP) model (Stella et al., 1999a,b). For details of the
geodesic model of HF QPOs and their applications on the situations around BHs and NSs,
see Stuchlík et al. (2013); Stuchlík and Kološ (2016b).

Modification of the variants of the geodesic model by the presence of a magnetic field
acting on a slightly charged orbiting matter significantly enlarges the ability of the modified
model to fit the observational data because of adding a new free parameter b reflecting the
electromagnetic interaction of the charged matter with the external magnetic field (Bakala
et al., 2010; Kološ et al., 2017; Stuchlík et al., 2022). Here, we test in a rough way the
applicability of the new variant, called nodal precession and representing a direct modifi-
cation of the relativistic precession variant by substituting the radial epicyclic frequency
with the latitudinal epicyclic frequency to fit the data of HF QPOs. In order to estimate
the efficiency of the possibility of fitting, we compare the fitting curves of the whole set
of the NS HF QPO data for the nodal precession and relativistic precession variant of the
magnetically modified geodesic model.
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Figure 3. The NP variants of the equatorial geodesic model. HF QPOs fits for the collected data of
selected sources. We variate dipole magnetic parameter b and mass of the NS.

We present only rough estimates of possible fitting to the HF QPOs observed in binary
systems containing NSs using the collected data of the observed binary systems. Detailed
fitting to data from individual sources is planned for future papers.

We thus use the upper (νU) and lower (νL) frequencies of the two peaks observed in the
data, which are as follows for each model. The variants must differ for b > 0 and b < 0 due
to the different radial profiles of the frequencies νr, νθ, νϕ
NPa: νU = νϕ and νL = νθ − νϕ
RPa: νU = νϕ and νL = νϕ − νr
NPr: νU = νϕ and νL = νϕ − νθ
RPr: νU = νϕ and νL = νr − νϕ.

The fitting of the upper and lower frequency curves for each model to the astrophysical
data are shown in Figure 4, where is presented the NP variants, while Figure 3 corresponds
to the RP variants. It is evident that in one of the sub-variants, both the NP and RP are
promising, while the other seems to be quite excluded. It is evident that both models
show quite promising results for the specifically chosen values of parameter b. The RP
model exhibits the best agreement with astrophysical data for low positive values b ∼ 0.01,
whereas the NP model shows the most promising results around negative values b ∼ −2.

The charged particle within our test particle model can also represent an elementary par-
ticle (electron, proton), but the fitting to HF QPO data cannot be fulfilled for
B = 108−1012 G in strong NS magnetosphere. Our “charged test particle” more likely rep-
resents a hot spot (plasmoid, “ball lightning”) in accretion flow with density lower (higher)
than the surrounding plasma and with accumulated net electric charge (Ripperda et al.,
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Figure 4. The RP variants of the equatorial geodesic model. HF QPOs fits for the collected data of
selected sources. We variate dipole magnetic parameter b and mass of the NS.

2020; Tursunov et al., 2020b). Our HF QPOs fits can be thus used for estimates of such
hot-spot (plasmoid) net specific charge. Another possible application of our “charged par-
ticle” model is that it could model magnetic field influence on quasi-neutral plasma flow.
Such a connection between charged particle dynamics and plasma flow is based on the in-
teresting finding that the fundamental frequencies of test particle dynamics could be present
in the spectra of oscillating accretion disk (Mishra et al., 2019).

6 CONCLUSIONS

The presence of magnetic fields around NS is of utmost importance in numerous astrophys-
ical contexts, as their effects can be of critical significance, even in the case of electromag-
netic interaction, which is small in comparison with gravitational interaction. In fitting to
data of HF QPOs from the atol sources containing NSs, the magnetically modified variants
of the geodesic model based on epicyclic oscillations of orbiting charged matter can be
promising. We have shown that not only the PRa variant reflecting Lorentz attraction can
give fits for b ∼ 0.01, but also the NPr variant with Lorentz repulsion can allow good fits
for b ∼ −2.

The fitting of the HF QPOs should be thus to slightly charged matter, e.g. to charged dust,
plasmoids, or structures similar to ball lighting, if we consider the realistic magnetic field as
observed in the atoll sources having NSs with magnetic field intensity ranging from 108G
to 1012 G. For example, singly ionized dust grains with masses of the order of 10−13 g for
b ∼ 0.01 (10−11 g for b ∼ −2) could be the potential contributors to this phenomenon, for
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the magnetic field strengths of B = 1010 G. We can expect that the two discussed variants
of the magnetically modified geodesic model of HF QPOs could improve precession of the
individual data fits in some of the observed binaries containing NSs. Further improvement
could be expected with the inclusion of the rotational effect of the NS that can be realized
at least on the level of the Lense-Thirring term to the Schwarzschild geometry.
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ABSTRACT

The electric charge of a black hole is frequently neglected in many astrophysical

scenarios due to unrealistically large values of the charge necessary for the Reissner-

Nordström spacetime metric. Nevertheless, a variety of selective accretion processes

could result in a black hole having a gravitationally weak electric charge. Thus, the

motion of charged particles can be influenced by a combined effect of gravitational

attraction and electrostatic interaction, which can be attractive or repulsive. This can

lead to the existence of certain observational patterns in the non-thermal spectra of

astrophysical black holes. In the present work, we study the harmonic oscillations

of charged particles around a weakly charged black hole.

Keywords: Black hole – electric charge – harmonic oscillations

1 INTRODUCTION

The no-hair theorem states that the spacetime around black holes can be fully described by

at most three metric parameters – black hole mass, spin, and electric charge. The charge

of the black hole is usually neglected in astrophysical scenarios, justified by unrealistically

large values of the charge required for its visible effect on the spacetime metric. Indeed,

one can compare the gravitational radius of a black hole with the characteristic length of

the charge QG of the Reissner-Nordström black hole, which gives the maximum charge

value

√

Q2
G

G

c4
=

2GM

c2
, ⇒ QG = 2G1/2M ≈ 1031 M

10M⊙
Fr. (1)

This high value of charge is not yet justifiable in astrophysically relevant scenarios. On the

other hand, there exist several astrophysical mechanisms based on selective accretion, in

which the black hole can be weakly charged. The reader may refer for further details to

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.



200 B. Juraev, A. Tursunov

Zajaček et al. (2018); Zajacek and Tursunov (2019); Tursunov et al. (2021). Wald mecha-

nism (Wald, 1974) is a well-known method of charging black holes. It involves the natural

induction of charge by the twisting of magnetic field lines caused by the black hole’s rota-

tion’s frame-dragging effect. Therefore, the black hole and the surrounding magnetosphere

should both accumulate a charge of Q ∼ 1018 Fr per solar mass. Recently, it was proposed

that primordial black holes (PBHs) can be charged due to Poisson fluctuation at horizon

crossing or high-energy particle collisions (Araya et al., 2023), and it was reported that the

range of Q for PBHs is between 10−22 Fr and 10−6 Fr per kg, respectively.

In this paper, we study harmonic oscillations of charged particles in the vicinity of

, a weakly charged black hole. Harmonic oscillations of charged particles in the vicinity of

weakly magnetized black holes were previously studied in Kološ et al. (2015); Tursunov

et al. (2016).

We use the metric signature (− + + +), and the system of geometric units, in which

G = M = c = 1.

2 DYNAMICS OF A CHARGED PARTICLE

2.1 Equations of motion

Spherically symmetric solution of Einstein’s field equations, corresponding to the Schwarz-

schild spacetime metric, reads

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (2)

where f (r) is lapse function defined as

f (r) = 1 −
2

r
. (3)

The only non-zero covariant component of the electromagnetic four-potential

Aµ = (At, 0, 0, 0) is given by

At = −
Q

r
. (4)

The anti-symmetric tensor of the electromagnetic field Fαβ = Aβ,α − Aα,β has the only one

independent nonzero component

Ftr = −Frt = −
Q

r2
. (5)

Let us now consider the motion of a charged particle of mass m and charge q in the

combined background of gravitational and electric fields. The motion of a charged particle

is governed by the Lorentz equation in curved spacetime

duµ

dτ
+ Γ

µ

αβ
uαuβ −

q

m
F
µ
νu
ν = 0, (6)

where uµ is the four-velocity of the particle, τ is the proper time of the particle and

Γ
µ

αβ
– Christoffel symbols.
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Two integrals of motion, which correspond to the temporal and spatial components of the

classical four-momentum of the charged particle, can be introduced due to the symmetries

of the background Schwarzschild metric as

Pt

m
= −E ≡ −

E

m
= ut −

qQ

mr
, (7)

Pφ

m
= L ≡

L

m
= uφ, (8)

where E and L denote specific energy and specific angular momentum of the charged

particle.

2.2 Effective potential

Using the normalization condition for the velocity of a massive particle uµuµ = −1, one

can derive the effective potential for the charged particle moving around a weakly charged

Schwarzschild black hole in the form

Veff(r) =
Q

r
+

√

f (r)

(

1 +
L2

r2 sin2 θ

)

, (9)

where Q = Qq/m is an electric interaction parameter.

The detailed analysis dynamics of a charged particle in the vicinity of the weakly charged

black hole are represented in Tursunov et al. (2021); Pugliese et al. (2011).

3 HARMONIC OSCILLATIONS

One can observe an oscillatory motion of the test particle around its equilibrium position in

the form of linear harmonic oscillations if the particle is displaced from a stable equilibrium

position corresponding to a circular orbit at the position r0, which is located at the minimum

of the effective potential Veff(r, θ) at r = r0 and θ = π/2. The following equations govern

the particle’s displacement in the case of harmonic oscillations around the stable orbit:

r = r0 + δr and θ = θ0 + δθ

δ̈r + ω2
rδr = 0, δ̈θ + ω2

θδθ = 0, (10)

where dot denotes ẋ = dx/dτ, here τ is the proper time of the particle. Then, the locally

measured angular frequencies of the harmonic oscillations of the particle are given by

ω2
r =
∂2Veff

∂r2
, ω2

θ =
1

r2 f (r)

∂2Veff

∂θ2
, ωφ =

dφ

dτ
. (11)

Here, ωφ is an axial (Keplerian) frequency, while ωr and ωθ are locally measured radial

and latitudinal angular frequencies of the particle’s harmonical oscillations, respectively.

Applying the effective potential Veff from (9), the locally measured latitudinal ωθ, radial
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Figure 1. Dependence of locally measured frequencies ωr, ωθ, and ωφ on radial distance from the

black hole r. Due to the spherical symmetry of the fields, ωθ = ωφ. Here, we present three scenarios:

the uncharged situation, where Q = 0 (left column); the attractive electrostatic interaction, where

Q < 0 (middle column); and the repulsive electrostatic interaction, where Q > 0 (right column).

ωr, and axial (Keplerian) ωφ frequencies of the charged particle harmonic oscillations in

the field of a weakly electrically charged black hole take the explicit form

ω2
θ =
L2

r4
, (12)

ω2
r =

3L2r2 f 3 − 2r3E2
(

E2 − Q
)

− Q2
(

4 + 3 f r2
)

f 2r6
, (13)

ωφ =
dφ

dτ
= Uφ =

L

gφφ
≡

L

r2 sin2 θ
, (14)

where f = 1 − 2/r is the lapse function, L is the spefic angular momentum and E is

the specific energy, which is E = Veff(r). Figure 1 illustrates the dependence of the locally

measured frequencies ωθ(r), ωr(r), and ωφ(r) on the radial coordinate r for the values of the

electric interaction parameter Q = 0,±0.01,±0.1. Locally measured harmonic oscillations

are expressed in physical units. By factor c3/GM, a dimensionless form can be obtained.

4 CONCLUSION

This work presents the study of harmonic oscillations of charged particles in the vicinity

of a weakly charged Schwarzschild black hole. We have derived equations for the angular
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frequencies of the harmonic oscillations of the particle as measured by a local observer.

Additionally, we have constructed the radial dependence on the locally measured angular

frequencies for various values of the electric interaction parameter. The obtained results can

further be applied in relation to the quasiperiodic oscillations (QPOs) phenomena observed

in black hole microquasars (Kološ et al., 2017; Tursunov and Kološ, 2018),
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ABSTRACT

Asymptotically safe gravity is based on the idea of the dependence of the gravita-

tional coupling upon the distance from the origin, approaching its classical value in

the weak field regime. We consider three cases of identifying the cut-off parameter

in the asymptotically safe gravity, leading to the three distinctive models for black

holes. We find that the deviation of the fundamental mode from the Schwarzschild

limit is a few per cent, in contrast to the higher overtones, where the deviation

reaches hundreds of per cent, even when the fundamental mode almost coincides

with the Schwarzschild mode. This behavior is connected with the fact that the

quantum correction to the black hole spacetime is strong near the event horizon but

quickly falls off with distance and is negligible near the peak of the effective poten-

tial surrounding the black hole.

Keywords: Regular spacetimes – quasinormal modes – outburst of overtones –

asymptotically safe gravity

1 INTRODUCTION

The investigation of quasinormal modes (QNMs, Kokkotas and Schmidt, 1999; Nollert,

1999; Konoplya and Zhidenko, 2011) of black holes has become crucial in comprehending

how black holes respond to perturbations. QNMs, representing the characteristic damped

oscillations of black holes, encapsulate vital information about their fundamental proper-

ties. Their observation is facilitated by gravitational interferometer systems like LIGO and

Virgo (Abbott et al., 2016). Simultaneously, the concept of asymptotically safe gravity

(Bonanno and Reuter, 2000) has emerged as a theoretical framework aimed at addressing

issues regarding the renormalization of gravity in the quantum domain.

This report explores the relationship between QNMs of black holes and the hypothesis of

asymptotically safe gravity. We conduct an extensive examination of quasinormal modes

of test fields for three black-hole models within asymptotically safe gravity, demonstrating

that the overtones are considerably more sensitive to quantum corrections than the funda-

mental mode. This phenomenon, termed “the outburst of overtones”, is associated with the

978-80-7510-577-6 © 2023 – SU in Opava. All rights reserved.



206 A. F. Zinhailo

distortion of black hole geometry near its event horizon (Konoplya and Zhidenko, 2022).

This report provides an overview of the primary findings concerning quasinormal spectra

of black holes in asymptotically safe gravity. Further details can be explored in Konoplya

et al. (2022, 2023).

2 BLACK HOLE METRICS AND WAVELIKE EQUATIONS

The metric of a spherically-symmetric black hole has the following form

ds2 = − f (r) dt2 + f (r)−1 dr2 + r2 dΩ2. (1)

In asymptotically safe gravity, Newton’s coupling now depends on r. The basic constituent

of the theory is the cut-off parameter. There are three known ways to identify the cut-off

parameter of the theory:

(1) Identification of the cut-off parameter as a modified proper distance leads to the

Bonanno-Reuter metric (Bonanno and Reuter, 2000). The metric function for the Bonanno-

Reuter spacetime is

f (r) = 1 − 2Mr2

r3 + 118
15π

(

r + 9
2

M
) , (2)

where M is the black hole mass measured in units of the Planck mass.

(2) Identification of the cut-off parameter as a function of the Kretschmann scalar (Held

et al., 2019) leads to the metric coinciding with the Hayward metric (Hayward, 2006):

f (r) = 1 − 2r2/M2

r3/M3 + γ
. (3)

Here, the event horizon exists whenever γ ≤ 32/27.

(3) Starting from a classical Schwarzschild solution, the backreaction effects produced

by running Newton’s coupling are taken into account iteratively. This way, a kind of coor-

dinate independent iterative procedure for identification suggested in Platania (2019) leads

to the Dymnikova black hole (Dymnikova, 1992)

f (r) = 1 − 2M

r





























1 − e
−

r3

2l2crM





























. (4)

Here, lcr is a critical length scale below which the modifications owing to the running of

Newton’s constant become negligible. The maximal value of lcr at which the event horizon

still exists is

lcr ≈ 1.138 M,

where M is the mass measured in units of length.
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The general relativistic equations for the scalar (Φ), electromagnetic (Aµ), and Dirac (Υ)

fields in a curved spacetime can be cast to the wave-like form:

d2Ψ

dr2
∗
+

(

ω2 − V (r)
)

Ψ = 0, (5)

where the “tortoise coordinate” r∗ is:

dr∗ ≡
dr

f (r)
. (6)

The effective potentials for the scalar (s = 0) and electromagnetic (s = 1) fields can be

written in a unified form:

V (r) = f (r)
ℓ (ℓ + 1)

r2
+ (1 − s) · f (r)

r

d f (r)

dr
, (7)

where ℓ = s, s + 1, s + 2, . . . are the multipole numbers. For the Dirac field (s = 1/2), the

problem is reduced to two iso-spectral effective potentials

V± (r) = W2 ± dW

dr∗
, W ≡

(

ℓ +
1

2

)

√

f (r)

r
. (8)

The isospectral wave functions Ψ± can be transformed one into another by using the

Darboux transformation:

Ψ+ = q

(

W +
d

dr∗

)

Ψ−, q = const. (9)

Therefore, it is sufficient to study only one of the iso-spectral cases.

3 QUASINORMAL MODES

Quasinormal modes represent the appropriate oscillation frequencies that govern the evo-

lution of perturbations during the intermediate to late stages, known as the ringdown phase.

These modes correspond to solutions of the master wave equation (5) subject to the follow-

ing boundary conditions for the wave function Ψ ∝ eiω(r∗−t):

Ψ ∼ pure outgoing wave, r∗ → +∞,
Ψ ∼ pure ingoing wave, r∗ → −∞.

(10)

For finding dominant quasinormal modes, we used the 6th order WKB method (Konoplya,

2003; Konoplya et al., 2019) with the Pade approximants (Matyjasek and Opala, 2017).

The WKB method has been broadly applied for finding quasinormal modes of black holes

and wormholes (for example in Kodama et al., 2010; Onozawa et al., 1996; Konoplya

et al., 2019; Bolokhov, 2023). In order to find precise values of modes with arbitrary

relation between the multipole number and overtone, the Leaver method is used (Leaver,

1985), which is based on the convergent procedure. Another convergent technique we used

is the Bernstein polynomial method (Konoplya and Zhidenko, 2023), though only several
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n ω (Bonanno-Reuter) ω (Schwarzschild)

0 0.066877 − 0.020549i 0.062066 − 0.023122i

1 0.059764 − 0.063499i 0.053629 − 0.073417i

2 0.047392 − 0.110619i 0.043693 − 0.131297i

3 0.030448 − 0.166115i 0.036544 − 0.192977i

4 0.019951 − 0.224263i 0.031639 − 0.255638i

5 0.012209 − 0.290487i 0.028063 − 0.318481i

6 0.000983 − 0.354117i 0.025304 − 0.381317i

7 0.000 − 0.420i 0.023081 − 0.444100i

Table 1. Dominant quasinormal modes for the electromagnetic perturbations (ℓ = 1) of the Bonanno-

Reuter black hole (M = 4) and the corresponding modes for the Schwarzschild black hole, according

to Konoplya et al. (2022).

first overtones can be found during reasonable computing time. Finally, in order to see the

evolution of perturbations in time, the time-domain integration developed in Gundlach et al.

(1994) has been applied. This method was also used in a great number of publications (see,

for example, Konoplya and Fontana, 2008; Churilova and Stuchlik, 2020; Bronnikov and

Konoplya, 2020 and references therein) with a very good concordance with other methods

for the fundamental mode.

3.1 Bonanno-Reuter metric

Using the first-order WKB formula, we can obtain quasinormal modes in the high multipole

number ℓ → ∞ regime in analytic form. For this, we will use the expression for the position

of the peak of the effective potential, which for the Bonanno-Reuter metric is located at:

rmax ≈ 3M − 1652

135πM
− 5071817

54675π2M3
− 28261793432

22143375π3M5
. (11)

Then, the WKB formula yields

Im(ω) =

(

n + 1
2

)

3
√

3M

(

1 − 1298

405πM2
+ O

(

1

M4

))

, (12)

Re(ω) =

(

ℓ + 1
2

)

3
√

3M

(

1 +
59

27πM2
+ O

(

1

M4

))

. (13)

Observing table 1, it becomes evident that as n increases, the deviation of the over-

tones amplifies, while the fundamental mode only exhibits a slight deviation from the

Schwarzschild limit. Additionally, at n = 7, a purely imaginary (non-oscillatory) mode

emerges in the spectrum, which is not an algebraically special one.



Quasinormal spectrum in the asymptotically safe gravity 209

n ωM (Hayward) ωM (Schwarzschild)

0 0.113494 − 0.089160i 0.110455 − 0.104896i

1 0.066731 − 0.319873i 0.086117 − 0.348053i

2 0.041068 − 0.576924i 0.075742 − 0.601079i

3 0.021679 − 0.833067i 0.070410 − 0.853678i

4 0.000000 − 1.082236i 0.067074 − 1.105630i

5 0.001449 − 1.317232i 0.064742 − 1.357140i

Table 2. Quasinormal modes for the ℓ = 0 scalar perturbations of the Hayward black hole (γ = 1)

and the corresponding modes for the Schwarzschild black hole, according to Konoplya et al. (2022).

3.2 Hayward metric

In a similar fashion, we obtain the following expressions for the Hayward metric for the

location of the peak of the effective potential,

rmax ≈ 3M − 2γM

9
− γ

2M

27
− 70γ3M

6561
− 665γ4M

177147
, (14)

and the eikonal quasinormal frequencies,

Im (ω) =

(

n + 1
2

)

3
√

3M

(

1 − 2

27
γ + O

(

γ2
)

)

, (15)

Re (ω) =

(

ℓ + 1
2

)

3
√

3M

(

1 − 2

54
γ + O

(

γ2
)

)

. (16)

According to observations in Cardoso et al. (2009), there exists a correspondence between

the eikonal quasinormal modes and characteristics of null geodesics: The real and imagi-

nary parts of ω are multiples of the frequency and instability timescale of the circular null

geodesics, respectively. While we confirm this observation for the specific case considered

in asymptotically safe gravity, generally, this correspondence does not hold for modes with

ℓ ≫ n that cannot be accurately reproduced by the WKB formula (Konoplya and Stuchlík,

2017; Konoplya, 2023).

Table 2 shows that there is an outburst of overtones for the Hayward metric as well.

3.3 Dymnikova black hole

As can be seen from Table 3, the overtones deviate at a stronger rate from their Schwarz-

schild values when n is increased. For all three types of metrics, the deformation of the

geometry occurs mainly near the event horizon, while in the far zone, the metrics merge

with the Schwarzschild one. The overtones are highly sensitive to these near-horizon de-

formations.
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lcr n = 0 n = 1 n = 2 n = 3

0 0.24826 − 0.09249i 0.2145 − 0.2937i 0.175 − 0.525i 0.146 − 0.772i

0.7 0.24823 − 0.09247i 0.2141 − 0.2935i 0.173 − 0.525i 0.140 − 0.772i

0.75 0.24814 − 0.09239i 0.2135 − 0.2930i 0.170 − 0.523i 0.135 − 0.768i

0.8 0.24804 − 0.09226i 0.2125 − 0.2922i 0.166 − 0.521i 0.123 − 0.765i

0.85 0.24790 − 0.09200i 0.2112 − 0.2909i 0.160 − 0.518i 0.103 − 0.762i

0.9 0.24766 − 0.09159i 0.2088 − 0.2886i 0.149 − 0.512i 0.06 − 0.74 i

0.95 0.2473 − 0.09085i 0.206 − 0.2849i 0.13 − 0.50 i 0.06 − 0.81 i

1.0 0.2468 − 0.08986i 0.201 − 0.280 i 0.107 − 0.508i 0.05 − 0.8 i

1.05 0.24614 − 0.08855i 0.195 − 0.276 i 0.107 − 0.514i 0.04 − 0.8 i

1.1 0.24516 − 0.08699i 0.1892 − 0.2731i 0.091 − 0.519i 0.05 − 0.87 i

Table 3. Quasinormal modes found by the Leaver method for ℓ = 1, electromagnetic perturbations;

M = 1. The metric is approximated by the 17th-order parametrization in Konoplya et al. (2023). The

Schwarzschild limit corresponds to lcr = 0.

4 CONCLUSIONS

We have reviewed recent results obtained in Konoplya et al. (2023, 2022) regarding the

behavior of overtones in various black hole models within asymptotically safe gravity. De-

spite different approaches to identifying the cutoff parameters, a qualitatively similar fea-

ture is observed in all three cases: an outburst of overtones that convey information about

the geometry of the event horizon.
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