General Relativistic Magnetohydrodynamic Simulations of Accreting Tori: Resolution Study

General Relativistic Magnetohydrodynamic Simulations of Accreting Tori: Resolution Study

Authors

Angelos Karakonstantakis, Debora Lančová and Miljenko Čemeljić

Abstract

We present two-dimensional general relativistic radiative magnetohydrodynamical simulations of accretion disks around non-rotating stellar-mass black hole. We study the evolution of an equilibrium accreting torus in different grid resolutions to determine an adequate resolution to produce a stable turbulent disk driven by magnetorotational instability. We evaluate the quality parameter, Qθ, from the ratio of MRI wavelength to the grid zone size and examine the effect of resolution in various quantitative values such as the accretion rate, magnetisation, fluxes of physical quantities and disk scale-height. We also analyse how the resolution affects the formation of plasmoids produced in the magnetic reconnection events.

Keywords

accretion, accretion disks – black hole physics – radiation GRMHD

PDF file here

References

  1. Balbus, S. A. and Hawley, J. F. (1991), A Powerful Local Shear Instability in Weakly Magnetized Disks. I. Linear Analysis, The Astrophysical Journal , 376, p. 214.
  2. Balbus, S. A. and Hawley, J. F. (1998), Instability, turbulence, and enhanced transport in accretion disks, Reviews of Modern Physics, 70(1), pp. 1–53.
  3. Brandenburg, A., Nordlund, A., Stein, R. F. and Torkelsson, U. (1995), Dynamo-generated Turbulence and Large-Scale Magnetic Fields in a Keplerian Shear Flow, The Astrophysical Journal , 446, p. 741.
  4. Chael, A. A., Narayan, R. and S ˛adowski, A. (2017), Evolving non-thermal electrons in simulations of black hole accretion, Monthly Notices of the Royal Astronomical Society , 470(2), pp. 2367–2386, arXiv: 1704.05092.
  5. Del Zanna, L., Tomei, N., Franceschetti, K., Bugli, M. and Bucciantini, N. (2022), General relativistic magnetohydrodynamics mean-field dynamos, Fluids, 7(2), p. 87, ISSN 2311-5521, URL http://dx.doi.org/10.3390/fluids7020087.
  6. Hawley, J. F., Guan, X. and Krolik, J. H. (2011), Assessing Quantitative Results in Accretion Simulations: From Local to Global, The Astrophysical Journal , 738(1), 84, arXiv: 1103.5987.
  7. Hawley, J. F., Richers, S. A., Guan, X. and Krolik, J. H. (2013), Testing Convergence for Global Accretion Disks, The Astrophysical Journal , 772(2), 102, arXiv: 1306.0243.
  8. Kološ, M. and Janiuk, A. (2020), Simulations of black hole accretion torus in various magnetic field configurations, arXiv: 2004.07535.
  9. Lančová, D. (2023), Computer modelling of accretion processes in binary systems with black holes and neutron stars, arXiv e-prints, arXiv: 2310.13152.
  10. Narayan, R., S ˛adowski, A., Penna, R. F. and Kulkarni, A. K. (2012), GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows, Monthly Notices of the Royal Astronomical Society , 426(4), pp. 3241–3259, arXiv: 1206.1213.
  11. Noble, S. C., Krolik, J. H. and Hawley, J. F. (2010), Dependence of Inner Accretion Disk Stress on Parameters: The Schwarzschild Case, The Astrophysical Journal , 711(2), pp. 959–973, arXiv: 1001.4809.
  12. Penna, R. F., Kulkarni, A. and Narayan, R. (2013), A new equilibrium torus solution and GRMHD initial conditions, A&A, 559, A116, arXiv: 1309.3680.
  13. Ripperda, B., Liska, M., Chatterjee, K., Musoke, G., Philippov, A. A., Markoff, S. B., Tchekhovskoy, A. and Younsi, Z. (2022), Black hole flares: Ejection of accreted magnetic flux through 3d plasmoid-mediated reconnection, The Astrophysical Journal Letters, 924(2), p. L32, URL https://dx.doi.org/10.3847/2041-8213/ac46a1.
  14. Sano, T., Inutsuka, S.-i., Turner, N. J. and Stone, J. M. (2004), Angular Momentum Transport by Magnetohydrodynamic Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability, The Astrophysical Journal , 605(1), pp. 321–339, arXiv: astro-ph/0312480.
  15. Sądowski, A. and Narayan, R. (2015), Photon-conserving Comptonization in simulations of accretion discs around black holes, Monthly Notices of the Royal Astronomical Society , 454(3), pp. 2372– 2380, arXiv: 1508.04980.
  16. Sądowski, A., Narayan, R., McKinney, J. C. and Tchekhovskoy, A. (2014), Numerical simulations of super-critical black hole accretion flows in general relativity, Monthly Notices of the Royal Astronomical Society , 439(1), pp. 503–520, arXiv: 1311.5900.
  17. Sądowski, A., Narayan, R., Tchekhovskoy, A., Abarca, D., Zhu, Y. and McKinney, J. C. (2015), Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo, Monthly Notices of the Royal Astronomical Society , 447(1), pp. 49–71, arXiv: 1407.4421.
  18. Sądowski, A., Narayan, R., Tchekhovskoy, A. and Zhu, Y. (2013), Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes, Monthly Notices of the Royal Astronomical Society , 429(4), pp. 3533–3550, arXiv: 1212.5050.
  19. Sądowski, A., Wielgus, M., Narayan, R., Abarca, D., McKinney, J. C. and Chael, A. (2017), Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity, Monthly Notices of the Royal Astronomical Society , 466(1), pp. 705–725, arXiv: 1605.03184.
  20. Sorathia, K. A., Reynolds, C. S., Stone, J. M. and Beckwith, K. (2012), Global Simulations of Accretion Disks. I. Convergence and Comparisons with Local Models, The Astrophysical Journal, 749(2), 189, arXiv: 1106.4019.
  21. White, C. J., Stone, J. M. and Quataert, E. (2019), A resolution study of magnetically arrested disks, The Astrophysical Journal, 874(2), p. 168, URL https://dx.doi.org/10.3847/1538-4357/ab0c0c.