MAD UFOs: Magnetically Arrested Discs with persistent Ultra-Fast Outflows

MAD UFOs: Magnetically Arrested Discs with persistent Ultra-Fast Outflows

Authors

Petra Suková, Michal Zajaček and Vladimír Karas

Abstract

General-relativistic magneto-hydrodynamical (GRMHD) simulations of accreting black holes suggest that the accretion flows form toroidal structures embedded in a large scale component of magnetic field, which becomes organized on length- scales exceeding the gravitational radius of the central black hole. Magnetic field grows gradually until a Magnetically Arrested Disc (MAD) develops that diminishes or inhibits further accretion. We study an outflow that develops in the MAD state in 3D GRMHD simulations. We show that the outflow can be accelerated to relativistic velocities and persist over the course of our simulation. We compare the properties of the outflow from MAD discs with those launched by orbiting secondary at close orbit. The main difference is that the orbiting body launches a more coherent, quasiperiodic ultrafast outflow at lower velocities (v < 0.5c) while the outflow launched in the MAD state (without the body) has a stochastic behaviour and has an approximately flat velocity distribution between lower anf higher outflow velocities, 0.2c < v < 0.3c and v > 0.5c.

Keywords

Accretion discs – black holes – Active Galactic Nuclei – MHD simulations – outflows

PDF file here

References

  1. Babak, S., Gair, J., Sesana, A., Barausse, E., Sopuerta, C. F., Berry, C. P. L., Berti, E., Amaro-Seoane, P., Petiteau, A. and Klein, A. (2017), Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals, Phys. Rev. D, 95(10), 103012, arXiv: 1703.09722.
  2. Bisnovatyi-Kogan, G. S. and Ruzmaikin, A. A. (1974), The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field, Astrophys. Space Sci., 28(1), pp. 45–59.
  3. Bisnovatyi-Kogan, G. S. and Ruzmaikin, A. A. (1976), The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. II: Self-consistent Stationary Picture, Astrophys. Space Sci., 42(2), pp. 401–424.
  4. Curd, B. and Narayan, R. (2022), GRRMHD simulations of MAD accretion discs declining from super-Eddington to sub-Eddington accretion rates, Monthly Notices of the Royal Astronomical Society, 518(3), pp. 3441–3461, ISSN 0035-8711, arXiv: https://academic.oup.com/mnras/article-pdf/518/3/3441/47466433/stac3330.pdf, URL https://doi.org/10.1093/mnras/stac3330.
  5. El Mellah, I., Cerutti, B. and Crinquand, B. (2023), Reconnection-driven flares in 3d black hole magnetospheres – a scenario for hot spots around sagittarius a, A&A, 677, p. A67, URL https: //doi.org/10.1051/0004-6361/202346781.
  6. Event Horizon Telescope Collab., Akiyama, K., Alberdi, A. et al. (2019), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett., 875(1), L1, arXiv: 1906.11238.
  7. Fujita, R. and Hikida, W. (2009), Analytical solutions of bound timelike geodesic orbits in kerr spacetime, Classical and Quantum Gravity, 26(13), p. 135002, URL https://dx.doi.org/10. 1088/0264-9381/26/13/135002.
  8. Gammie, C. F., McKinney, J. C. and Tóth, G. (2003), Harm: A numerical scheme for gen- eral relativistic magnetohydrodynamics, ApJ, 589(1), p. 444, URL http://stacks.iop.org/ 0004-637X/589/i=1/a=444.
  9. Gravity Collaboration, Abuter, R., Amorim, A., Bauböck, M. et al. (2018), Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA, Astron. Astrophys., 618, L10, arXiv: 1810.12641.
  10. Holz, D. E. and Hughes, S. A. (2005), Using gravitational-wave standard sirens, Apj, 629(1), p. 15.
  11. Klein, A., Barausse, E., Sesana, A., Petiteau, A., Berti, E., Babak, S., Gair, J., Aoudia, S., Hinder, I., Ohme, F. and Wardell, B. (2016), Science with the space-based interferometer eLISA: Supermassive black hole binaries, Phys. Rev. D, 93(2), 024003, arXiv: 1511.05581.
  12. Narayan, R., Igumenshchev, I. V. and Abramowicz, M. A. (2003), Magnetically Arrested Disk: an Energetically Efficient Accretion Flow, Publ. Astron. Soc. Jpn, 55, pp. L69–L72, arXiv: astro-ph/0305029.
  13. Pasham, D. R., Tombesi, F., Suková, P., Zajacek, M., Rakshit, S., Coughlin, E., Kosec, P. and Karas, V. (2023), A Case for a Binary Black Hole System Revealed via Quasi-Periodic Outflows, submitted to Nature.
  14. Pounds, K. A., Reeves, J. N., King, A. R., Page, K. L., O’Brien, P. T. and Turner, M. J. L. (2003), A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143, Mon. Not. R. Astron. Soc., 345(3), pp. 705–713, arXiv: astro-ph/0303603.
  15. Ressler, S. M., Tchekhovskoy, A., Quataert, E., Chandra, M. and Gammie, C. F. (2015), Electron thermodynamics in GRMHD simulations of low-luminosity black hole accretion, Mon. Not. R. Astron. Soc., 454, pp. 1848–1870, arXiv: 1509.04717.
  16. Suková, P., Zajaček, M., Witzany, V. and Karas, V. (2021), Stellar transits across a magnetized accretion torus as a mechanism for plasmoid ejection, ApJ, 917(1), p. 43, URL https://doi.org/10.3847/1538-4357/ac05c6.
  17. Tamanini, N., Caprini, C., Barausse, E., Sesana, A., Klein, A. and Petiteau, A. (2016), Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens, J. Cosmol. Astropart. Phys., 2016(4), 002, arXiv: 1601.07112.
  18. Tchekhovskoy, A., McKinney, J. C. and Narayan, R. (2007), WHAM: a WENO-based general relativistic numerical scheme – I. Hydrodynamics, Mon. Not. R. Astron. Soc., 379, pp. 469–497, arXiv: 0704.2608.
  19. Tombesi, F., Cappi, M., Reeves, J. N., Palumbo, G. G. C., Yaqoob, T., Braito, V. and Dadina, M. (2010), Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines, Astron. Astrophys., 521, A57, arXiv: 1006.2858.
  20. Witzany, V. and Jefremov, P. (2018), New closed analytical solutions for geometrically thick fluid tori around black holes. Numerical evolution and the onset of the magneto-rotational instability, Astron. Astrophys., 614, A75, arXiv: 1711.09241.