Signal from neutron star obscured by oscillating accretion torus

Signal from neutron star obscured by oscillating accretion torus

Authors

Kateřina Klimovičová, Debora Lančová and Gabriel Török

Abstract

X-ray fluxes of low-mass neutron star binaries reveal rapid, nearly periodic changes corresponding to frequencies in the order of hundreds of hertz. Two closely related peaks often appear in the power spectral density and are designated as twin-peak Quasi-Periodic Oscillations (QPOs). Some QPO models attribute the observed effects to the torus oscillating in the inner region of the accretion flow. Since the observed variability is very strong, oscillations of a torus can be reflected in the observed light curves either by modulation of an accretion flow and/or by a periodic obscuration of a hot region on the neutron star surface. Applying a self-consistent description of the oscillations and full relativistic ray tracing, we analyse how the obscuration effect can affect the light curve detected by a distant observer. Within the same paradigm, we also investigate a possible product of torus instability and the implied signature of the Keplerian frequency in the light curve.

Keywords

Black hole – neutron star – X–ray binary – rapid variability

PDF file here

References

  1. Abramowicz, M. A., Horák, J. and Kluźniak, W. (2007), Modulation of the Neutron Star Boundary Layer Luminosity by Disk Oscillations, Acta Astron., 57, pp. 1–10.
  2. Abramowicz, M. A., Karas, V., Kluźniak, W., Lee, W. H. and Rebusco, P. (2003), Non-Linear Resonance in Nearly Geodesic Motion in Low-Mass X-Ray Binaries, PASJ, 55, pp. 467–466, arXiv: astro-ph/0302183.
  3. Abramowicz, M. A. and Kluźniak, W. (2001), A precise determination of black hole spin in GRO J1655-40, A&A, 374, pp. L19–L20, arXiv: astro-ph/0105077.
  4. Abramowicz, M. A. and Kluźniak, W. (2004), Interpreting black hole QPOs, in P. Kaaret, F. K. Lamb and J. H. Swank, editors, X-ray Timing 2003: Rossi and Beyond, volume 714 of American Institute of Physics Conference Series, pp. 21–28, arXiv: astro-ph/0312396.
  5. Bakala, P., Goluchová, K., Török, G., Šrámková, E., Abramowicz, M. A., Vincent, F. H. and Mazur, G. P. (2015), Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori, A&A, 581, A35, arXiv: 1505.06673.
  6. Bakala, P., Török, G., Karas, V., Dovčiak, M., Wildner, M., Wzientek, D., Šrámková, E., Abramowicz, M., Goluchová, K., Mazur, G. P. and Vincent, F. H. (2014), Power density spectra of modes of orbital motion in strongly curved space-time: obtaining the observable signal, MNRAS, 439(2), pp. 1933–1939, arXiv: 1401.4468.
  7. Beckwith, K. and Done, C. (2005), Extreme gravitational lensing near rotating black holes, MNRAS, 359(4), pp. 1217–1228, arXiv: astro-ph/0411339.
  8. Blaes, O. M., Šrámková, E., Abramowicz, M. A., Kluźniak, W. and Torkelsson, U. (2007), Epicyclic Oscillations of Fluid Bodies: Newtonian Nonslender Torus, ApJ, 665(1), pp. 642–653, arXiv: 0706.4483.
  9. Bronzwaer, T., Davelaar, J., Younsi, Z., Mościbrodzka, M., Falcke, H., Kramer, M. and Rezzolla, L. (2018), RAPTOR. I. Time-dependent radiative transfer in arbitrary spacetimes, A&A, 613, A2, arXiv: 1801.10452.
  10. Bursa, M. (2005), Global oscillations of a fluid torus as a modulation mechanism for black-hole high-frequency QPOs, Astronomische Nachrichten, 326(9), pp. 849–855, arXiv: astro-ph/0510460.
  11. Bursa, M., Abramowicz, M. A., Karas, V. and Kluźniak, W. (2004), The Upper Kilohertz Quasiperiodic Oscillation: A Gravitationally Lensed Vertical Oscillation, ApJ, 617(1), pp. L45–L48, arXiv: astro-ph/0406586.
  12. Chan, C.-k., Psaltis, D. and Özel, F. (2013), GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes, ApJ, 777(1), 13, arXiv: 1303.5057.
  13. Cunningham, C. T. and Bardeen, J. M. (1973), The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole, ApJ, 183, pp. 237–264.
  14. de Avellar, M. G. B., Porth, O., Younsi, Z. and Rezzolla, L. (2018), Kilohertz QPOs in low-mass X-ray binaries as oscillation modes of tori around neutron stars – I, MNRAS, 474(3), pp. 3967–3975.
  15. Dexter, J. and Agol, E. (2009), A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime, ApJ, 696(2), pp. 1616–1629, arXiv: 0903.0620.
  16. Gilfanov, M. R. and Sunyaev, R. A. (2014), Radiation-dominated boundary layer between an accretion disc and the surface of a neutron star: theory and observations, Physics Uspekhi, 57(4), 377-388.
  17. Goldreich, P., Goodman, J. and Narayan, R. (1986), The stability of accretion tori. I – Long-wavelength modes of slender tori, MNRAS, 221, pp. 339–364.
  18. Goodman, J., Narayan, R. and Goldreich, P. (1987), The stability of accretion tori. II – Non-linear evolution to discrete planets, MNRAS, 225, pp. 695–711.
  19. Horák, J. (2005), A possible mechanism for QPOs modulation in neutron star sources, Astronomische Nachrichten, 326(9), pp. 845–848, arXiv: astro-ph/0511569.
  20. Ingram, A. and Done, C. (2010), A physical interpretation of the variability power spectral components in accreting neutron stars, MNRAS, 405(4), pp. 2447–2452, arXiv: 0907.5485.
  21. Jaroszyński, M., Abramowicz, M. A. and Paczyński, B. (1980), Supercritical accretion disks around black holes, Acta Astron., 30(1), p. 1–34.
  22. Karas, V. (1999), Twin Peak Separation in Sources with Kilohertz Quasi-periodic Oscillations Caused by Orbital Motion, ApJ, 526(2), pp. 953–956.
  23. Karas, V. and Bao, G. (1992), On the light curve of an orbiting spot., A&A, 257, pp. 531–533.
  24. Karas, V., Vokrouhlický, D. and Polnarev, A. G. (1992), In the vicinity of a rotating black hole: a fast numerical code for computing observational effects., MNRAS, 259, pp. 569–575.
  25. Kluźniak, W. and Abramowicz, M. A. (2001), Strong-Field Gravity and Orbital Resonance in Black Holes and Neutron Stars — kHz Quasi-Periodic Oscillations (QPO), Acta Physica Polonica B, 32(11), p. 3605.
  26. Kluźniak, W., Michelson, P. and Wagoner, R. V. (1990), Determining the Properties of Accretion-Gap Neutron Stars, ApJ, 358, p. 538.
  27. Mazur, G. P., Zanotti, O., S ˛adowski, A., Mishra, B. and Klu´zniak, W. (2016), Oscillations of radiation pressure supported tori near black holes, MNRAS, 456(3), pp. 3245–3252, arXiv: 1510.08810.
  28. McClintock, J. E. and Remillard, R. A. (2006), Black hole binaries, in Compact stellar X-ray sources, volume 39, pp. 157–213, Cambridge, UK: Cambridge University Press.
  29. Mishra, B., Vincent, F. H., Manousakis, A., Fragile, P. C., Paumard, T. and Kluźniak, W. (2017), Quasi-periodic oscillations from relativistic ray-traced hydrodynamical tori, MNRAS, 467(4), pp. 4036–4049, arXiv: 1510.07414.
  30. Montero, P. J., Rezzolla, L. and Yoshida, S. (2004), Oscillations of vertically integrated relativistic tori – II. Axisymmetric modes in a Kerr space-time, MNRAS, 354(4), pp. 1040–1052, arXiv: astro-ph/0407642.
  31. Motta, S. E. (2016), Quasi periodic oscillations in black hole binaries, Astronomische Nachrichten, 337(4-5), p. 398, arXiv: 1603.07885.
  32. Paczyński, B. (1987), Possible relation between the X-ray QPO phenomenon and general relativity, Nature, 327(6120), pp. 303–304.
  33. Papaloizou, J. C. B. and Pringle, J. E. (1984), The dynamical stability of differentially rotating discs with constant specific angular momentum, MNRAS, 208, pp. 721–750.
  34. Parthasarathy, V., Kluźniak, W. and Čemeljić, M. (2017), MHD simulations of oscillating cusp-filling tori around neutron stars – missing upper kHz QPO, MNRAS, 470(1), pp. L34–L38, arXiv: 1703.05036.
  35. Prather, B. S., Dexter, J., Moscibrodzka, M. and Event Horizon Telescope Collaboration (2023), Comparison of Polarized Radiative Transfer Codes Used by the EHT Collaboration, ApJ, 950(1), 35, arXiv: 2303.12004.
  36. Rezzolla, L., Yoshida, S., Maccarone, T. J. and Zanotti, O. (2003a), A new simple model for high-frequency quasi-periodic oscillations in black hole candidates, MNRAS, 344(3), pp. L37–L41, arXiv: astro-ph/0307487.
  37. Rezzolla, L., Yoshida, S. and Zanotti, O. (2003b), Oscillations of vertically integrated relativistic tori I. Axisymmetric modes in a Schwarzschild space-time, MNRAS, 344(3), pp. 978–992, arXiv: astro-ph/0307488.
  38. Schnittman, J. D. (2005), Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes, ApJ, 621(2), pp. 940–950, arXiv: astro-ph/0407179.
  39. Schnittman, J. D. and Bertschinger, E. (2004), The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes, ApJ, 606(2), pp. 1098–1111, arXiv: astro-ph/0309458.
  40. Schnittman, J. D., Homan, J. and Miller, J. M. (2006a), A Precessing Ring Model for Low-Frequency Quasi-periodic Oscillations, ApJ, 642(1), pp. 420–426, arXiv: astro-ph/0512595.
  41. Schnittman, J. D., Krolik, J. H. and Hawley, J. F. (2006b), Light Curves from an MHD Simulation of a Black Hole Accretion Disk, ApJ, 651(2), pp. 1031–1048, arXiv: astro-ph/0606615.
  42. Schnittman, J. D. and Rezzolla, L. (2006), Quasi-periodic Oscillations in the X-Ray Light Curves from Relativistic Tori, ApJ, 637(2), pp. L113–L116, arXiv: astro-ph/0506702.
  43. Stella, L. and Vietri, M. (1999), kHz Quasiperiodic Oscillations in Low-Mass X-Ray Binaries as Probes of General Relativity in the Strong-Field Regime, Phys. Rev. Lett., 82(1), pp. 17–20, arXiv: astro-ph/9812124.
  44. Stella, L., Vietri, M. and Morsink, S. M. (1999), Correlations in the Quasi-periodic Oscillation Frequencies of Low-Mass X-Ray Binaries and the Relativistic Precession Model, ApJ, 524(1), pp. L63–L66, arXiv: astro-ph/9907346.
  45. Stuchlík, Z. and Bao, G. (1992), Radiation from hot spots orbiting an extreme Reissner-Nordström black hole, General Relativity and Gravitation, 24(9), pp. 945–957.
  46. Suleimanov, V. and Poutanen, J. (2006), Spectra of the spreading layers on the neutron star surface and constraints on the neutron star equation of state, MNRAS, 369(4), pp. 2036–2048, arXiv: astro-ph/0601689.
  47. Török, G., Abramowicz, M. A., Kluźniak, W. and Stuchlík, Z. (2005), The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars, A&A, 436(1), pp. 1–8.
  48. Török, G., Goluchová, K., Horák, J., Šrámková, E., Urbanec, M., Pecháček, T. and Bakala, P. (2016),
  49. Twin peak quasi-periodic oscillations as signature of oscillating cusp torus, MNRAS, 457(1), pp. L19–L23, arXiv: 1512.03841.
  50. Török, G., Klimovičová, K., Lančová, D., Matuszková, M., Šrámková, E., Urbanec, M., Čemeljić, M. and Karas, V. (submitted), Modulation mechanism of twin-peak quasi-periodic oscillations.
  51. Török, G., Kotrlová, A., Matuszková, M., Klimovičová, K., Lančová, D., Urbancová, G. and Šrámková, E. (2022), Simple Analytic Formula Relating the Mass and Spin of Accreting Compact Objects to Their Rapid X-Ray Variability, ApJ, 929(1), 28, arXiv: 2203.04787.
  52. van der Klis, M. (1998), Kilohertz quasi-periodic oscillations in low-mass x-ray binaries, Advances in Space Research, 22(7), pp. 925–934, arXiv: astro-ph/9704272.
  53. Van der Klis, M. (2006), Rapid x-ray variability, in Compact stellar X-ray sources, 39, pp. 39–112, cambridge University Press.
  54. Vincent, F. H., Paumard, T., Gourgoulhon, E. and Perrin, G. (2011), GYOTO: a new general relativistic ray-tracing code, Classical and Quantum Gravity, 28(22), 225011, arXiv: 1109.4769.