Quasinormal ringing of Bardeen spacetime

Quasinormal ringing of Bardeen spacetime

Authors

Dmitriy Ovchinnikov

Abstract

We review recent calculations of quasinormal modes and asymptotic tails of the Bardeen spacetime interpreted as a quantum corrected Schwarzschild-like black holes. Massless electromagnetic and Dirac fields and massive scalar fields are considered. The first few overtones are much more sensitive to the change of the quantum correction parameter than the fundamental mode because such correction deforms the black hole geometry near the event horizon. While the asymptotic tails of massless fields are identical to those for the Schwarzschild case, the tails for a massive field differ from the Schwarzschild limit at both intermediate and asymptotic times.

Keywords

Regular spacetimes – quasinormal modes – outburst of overtones – quantum corrected black holes

PDF file here

References

  1. Abbott, B. P. et al. (LIGO Scientific, Virgo) (2016), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116(6), p. 061102, arXiv: 1602.03837.
  2. Ayon-Beato, E. and Garcia, A. (2000), The Bardeen model as a nonlinear magnetic monopole, Phys. Lett. B, 493, pp. 149–152, arXiv: gr-qc/0009077.
  3. Bardeen, J. M. (1968), in Abstracts of the 5th international conference on gravitation and the theory of relativity (GR5), Tbilisi, USSR, Sept. 9-13, 1968, edited by V. A. Fock et al. (Tbilisi University Press, 1968) p. 174.
  4. Bolokhov, S. V. (2023a), Black holes in Starobinsky-Bel-Robinson Gravity and the breakdown of quasinormal modes/null geodesics correspondence, arXiv: 2310.12326.
  5. Bolokhov, S. V. (2023b), Long lived quasinormal modes and telling oscillatory tails of the Bardeen spacetime, 10.20944/preprints202310.0517.v1.
  6. Bronnikov, K. A. (2001), Regular magnetic black holes and monopoles from nonlinear electrody- namics, Phys. Rev. D, 63, p. 044005, arXiv: gr-qc/0006014.
  7. Bronnikov, K. A. and Konoplya, R. A. (2020), Echoes in brane worlds: ringing at a black hole-wormhole transition, Phys. Rev. D, 101(6), p. 064004, arXiv: 1912.05315.
  8. Cardoso, V., Miranda, A. S., Berti, E., Witek, H. and Zanchin, V. T. (2009), Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D, 79(6), p. 064016, arXiv: 0812.1806.
  9. Churilova, M. S. and Stuchlik, Z. (2020), Ringing of the regular black-hole/wormhole transition, Class. Quant. Grav., 37(7), p. 075014, arXiv: 1911.11823.
  10. Flachi, A. and Lemos, J. P. S. (2013), Quasinormal modes of regular black holes, Phys. Rev. D, 87(2), p. 024034, arXiv: 1211.6212.
  11. Gundlach, C., Price, R. H. and Pullin, J. (1994), Late time behavior of stellar collapse and explosions: Linearized perturbations, Phys. Rev. D, 49, pp. 883–889, arXiv: gr-qc/9307009.
  12. Kodama, H., Konoplya, R. A. and Zhidenko, A. (2010), Gravitational stability of simply rotating
    Myers-Perry black holes: Tensorial perturbations, Phys. Rev. D, 81, p. 044007, arXiv: 0904.2154.
  13. Kokkotas, K. D. and Schmidt, B. G. (1999), Quasinormal modes of stars and black holes, Living Rev.
    Rel., 2, p. 2, arXiv: gr-qc/9909058.
  14. Konoplya, R. A. (2003), Quasinormal behavior of the d-dimensional Schwarzschild black hole and
    higher order WKB approach, Phys. Rev. D, 68, p. 024018, arXiv: gr-qc/0303052.
  15. Konoplya, R. A. (2023), Further clarification on quasinormal modes/circular null geodesics corre-
    spondence, Phys. Lett. B, 838, p. 137674, arXiv: 2210.08373.
  16. Konoplya, R. A. and Fontana, R. D. B. (2008), Quasinormal modes of black holes immersed in a
    strong magnetic field, Phys. Lett. B, 659, pp. 375–379, arXiv: 0707.1156.
  17. Konoplya, R. A., Ovchinnikov, D. and Ahmedov, B. (2023), Bardeen spacetime as a quan-
    tum corrected Schwarzschild black hole: Quasinormal modes and Hawking radiation, arXiv:
    2307.10801.
  18. Konoplya, R. A. and Stuchlík, Z. (2017), Are eikonal quasinormal modes linked to the unstable
    circular null geodesics?, Phys. Lett. B, 771, pp. 597–602, arXiv: 1705.05928.
  19. Konoplya, R. A. and Zhidenko, A. (2011), Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys., 83, pp. 793–836, arXiv: 1102.4014.
  20. Konoplya, R. A. and Zhidenko, A. (2022), First few overtones probe the event horizon geometry, arXiv: 2209.00679.
  21. Konoplya, R. A., Zhidenko, A. and Zinhailo, A. F. (2019a), Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quant. Grav., 36, p. 155002, arXiv: 1904.10333.
  22. Konoplya, R. A., Zinhailo, A. F. and Stuchlík, Z. (2019b), Quasinormal modes, scattering, and Hawking radiation in the vicinity of an Einstein-dilaton-Gauss-Bonnet black hole, Phys. Rev. D, 99(12), p. 124042, arXiv: 1903.03483.
  23. Koyama, H. and Tomimatsu, A. (2002), Slowly decaying tails of massive scalar fields in spherically symmetric space-times, Phys. Rev. D, 65, p. 084031, arXiv: gr-qc/0112075.
  24. Leaver, E. W. (1985), An Analytic representation for the quasi normal modes of Kerr black holes, Proc. Roy. Soc. Lond. A, 402, pp. 285–298.
  25. López, L. A. and Ramírez, V. (2022), Quasinormal modes of a Generic-class of magnetically charged regular black hole: scalar and electromagnetic perturbations, arXiv: 2205.10166.
  26. Mahdavian Yekta, D., Karimabadi, M. and Alavi, S. A. (2021), Quasinormal modes for non-minimally coupled scalar fields in regular black hole spacetimes: Grey-body factors, area spectrum and shadow radius, Annals Phys., 434, p. 168603, arXiv: 1912.12017.
  27. Matyjasek, J. and Opala, M. (2017), Quasinormal modes of black holes. The improved semianalytic approach, Phys. Rev. D, 96(2), p. 024011, arXiv: 1704.00361.
  28. Nicolini, P., Spallucci, E. and Wondrak, M. F. (2019), Quantum Corrected Black Holes from String T-Duality, Phys. Lett. B, 797, p. 134888, arXiv: 1902.11242.
  29. Nollert, H.-P. (1999), TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav., 16, pp. R159–R216.
  30. Ohashi, A. and Sakagami, M.-a. (2004), Massive quasi-normal mode, Class. Quant. Grav., 21, pp. 3973–3984, arXiv: gr-qc/0407009.
  31. Onozawa, H., Mishima, T., Okamura, T. and Ishihara, H. (1996), Quasinormal modes of maximally charged black holes, Phys. Rev. D, 53, pp. 7033–7040, arXiv: gr-qc/9603021.
  32. Price, R. H. (1972), Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer- Spin, Zero-Rest-Mass Fields, Phys. Rev. D, 5, pp. 2439–2454.
  33. Rincón, A. and Santos, V. (2020), Greybody factor and quasinormal modes of Regular Black Holes, Eur. Phys. J. C, 80(10), p. 910, arXiv: 2009.04386.
  34. Saleh, M., Thomas, B. B. and Kofane, T. C. (2018), Quasinormal modes of gravitational perturbation around regular Bardeen black hole surrounded by quintessence, Eur. Phys. J. C, 78(4), p. 325.
  35. Toshmatov, B., Abdujabbarov, A., Stuchlík, Z. and Ahmedov, B. (2015), Quasinormal modes of test fields around regular black holes, Phys. Rev. D, 91(8), p. 083008, arXiv: 1503.05737.
  36. Toshmatov, B., Stuchlík, Z., Ahmedov, B. and Malafarina, D. (2019), Relaxations of perturbations of spacetimes in general relativity coupled to nonlinear electrodynamics, Phys. Rev. D, 99(6), p. 064043, arXiv: 1903.03778.