Quasinormal spectrum in the asymptotically safe gravity

Quasinormal spectrum in the asymptotically safe gravity

Authors

Antonina F. Zinhailo

Abstract

Asymptotically safe gravity is based on the idea of the dependence of the gravitational coupling upon the distance from the origin, approaching its classical value in the weak field regime. We consider three cases of identifying the cut-off parameter in the asymptotically safe gravity, leading to the three distinctive models for black holes. We find that the deviation of the fundamental mode from the Schwarzschild limit is a few per cent, in contrast to the higher overtones, where the deviation reaches hundreds of per cent, even when the fundamental mode almost coincides with the Schwarzschild mode. This behavior is connected with the fact that the quantum correction to the black hole spacetime is strong near the event horizon but quickly falls off with distance and is negligible near the peak of the effective potential surrounding the black hole.

Keywords

Regular spacetimes – quasinormal modes – outburst of overtones – asymptotically safe gravity

PDF file here

References

  1. Abbott, B. P. et al. (LIGO Scientific, Virgo) (2016), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116(6), p. 061102, arXiv: 1602.03837.
  2. Bolokhov, S. V. (2023), Long lived quasinormal modes and telling oscillatory tails of the Bardeen spacetime, 10.20944/preprints202310.0517.v1.
  3. Bonanno, A. and Reuter, M. (2000), Renormalization group improved black hole space-times, Phys. Rev., D62, p. 043008, arXiv: hep-th/0002196.
  4. Bronnikov, K. A. and Konoplya, R. A. (2020), Echoes in brane worlds: ringing at a black hole– wormhole transition, Phys. Rev. D, 101(6), p. 064004, arXiv: 1912.05315.
  5. Cardoso, V., Miranda, A. S., Berti, E., Witek, H. and Zanchin, V. T. (2009), Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D, 79(6), p. 064016, arXiv: 0812.1806.
  6. Churilova, M. S. and Stuchlik, Z. (2020), Ringing of the regular black-hole/wormhole transition, Class. Quant. Grav., 37(7), p. 075014, arXiv: 1911.11823.
  7. Dymnikova, I. (1992), Vacuum nonsingular black hole, Gen. Rel. Grav., 24, pp. 235–242.
  8. Gundlach, C., Price, R. H. and Pullin, J. (1994), Late time behavior of stellar collapse and explosions:
  9. Linearized perturbations, Phys. Rev. D, 49, pp. 883–889, arXiv: gr-qc/9307009.
    Hayward, S. A. (2006), Formation and evaporation of regular black holes, Phys. Rev. Lett., 96, p.
    031103, arXiv: gr-qc/0506126.
  10. Held, A., Gold, R. and Eichhorn, A. (2019), Asymptotic safety casts its shadow, JCAP, 06, p. 029,
    arXiv: 1904.07133.
  11. Kodama, H., Konoplya, R. A. and Zhidenko, A. (2010), Gravitational stability of simply rotating
    Myers-Perry black holes: Tensorial perturbations, Phys. Rev. D, 81, p. 044007, arXiv: 0904.2154.
  12. Kokkotas, K. D. and Schmidt, B. G. (1999), Quasinormal modes of stars and black holes, Living Rev.
    Rel., 2, p. 2, arXiv: gr-qc/9909058.
  13. Konoplya, R. A. (2003), Quasinormal behavior of the d-dimensional Schwarzschild black hole and
    higher order WKB approach, Phys. Rev. D, 68, p. 024018, arXiv: gr-qc/0303052.
  14. Konoplya, R. A. (2023), Further clarification on quasinormal modes/circular null geodesics corre-
    spondence, Phys. Lett. B, 838, p. 137674, arXiv: 2210.08373.
  15. Konoplya, R. A. and Fontana, R. D. B. (2008), Quasinormal modes of black holes immersed in a
    strong magnetic field, Phys. Lett. B, 659, pp. 375–379, arXiv: 0707.1156.
  16. Konoplya, R. A. and Stuchlík, Z. (2017), Are eikonal quasinormal modes linked to the unstable
    circular null geodesics?, Phys. Lett. B, 771, pp. 597–602, arXiv: 1705.05928.
  17. Konoplya, R. A., Stuchlik, Z., Zhidenko, A. and Zinhailo, A. F. (2023), Quasinormal modes of
    renormalization group improved Dymnikova regular black holes, Phys. Rev. D, 107(10), p. 104050,
    arXiv: 2303.01987.
  18. Konoplya, R. A. and Zhidenko, A. (2011), Quasinormal modes of black holes: From astrophysics to
    string theory, Rev. Mod. Phys., 83, pp. 793–836, arXiv: 1102.4014.
  19. Konoplya, R. A. and Zhidenko, A. (2022), First few overtones probe the event horizon geometry,
    arXiv: 2209.00679.
  20. Konoplya, R. A. and Zhidenko, A. (2023), Bernstein spectral method for quasinormal modes of a
    generic black hole spacetime and application to instability of dilaton–de Sitter solution, Phys. Rev.
    D, 107(4), p. 044009, arXiv: 2211.02997.
  21. Konoplya, R. A., Zhidenko, A. and Zinhailo, A. F. (2019), Higher order WKB formula for quasi-
    normal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quant.
    Grav., 36, p. 155002, arXiv: 1904.10333.
  22. Konoplya, R. A., Zinhailo, A. F., Kunz, J., Stuchlik, Z. and Zhidenko, A. (2022), Quasinormal ringing
    of regular black holes in asymptotically safe gravity: the importance of overtones, JCAP, 10, p.
    091, arXiv: 2206.14714.
  23. Leaver, E. W. (1985), An Analytic representation for the quasi normal modes of Kerr black holes,
    Proc. Roy. Soc. Lond. A, 402, pp. 285–298.
  24. Matyjasek, J. and Opala, M. (2017), Quasinormal modes of black holes. The improved semianalytic
    approach, Phys. Rev. D, 96(2), p. 024011, arXiv: 1704.00361.
  25. Nollert, H.-P. (1999), TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black
    holes and neutron stars, Class. Quant. Grav., 16, pp. R159–R216.
  26. Onozawa, H., Mishima, T., Okamura, T. and Ishihara, H. (1996), Quasinormal modes of maximally
    charged black holes, Phys. Rev. D, 53, pp. 7033–7040, arXiv: gr-qc/9603021.
  27. Platania, A. (2019), Dynamical renormalization of black-hole spacetimes, Eur. Phys. J. C, 79(6), p.
    470, arXiv: 1903.10411.