Astrophysical black holes embedded in organized magnetic fields

Astrophysical black holes embedded in
organized magnetic fields
Case of a nonvanishing electric charge

Authors

Vladimír Karas

Abstract

Large-scale magnetic fields pervade the cosmic environment where the astrophysical black holes are often embedded and influenced by mutual interaction. In this contribution, we outline the appropriate mathematical framework to describe magnetized black holes within General Relativity, and we show several examples of how these can be employed in the astrophysical context. In particular, we examine the magnetized black hole metric in terms of an exact solution of electro-vacuum Einstein-Maxwell equations under the influence of a non-vanishing electric charge. New effects emerge: the expulsion of the magnetic flux out of the black-hole horizon depends on the intensity of the imposed magnetic field.

Keywords

Black holes – electromagnetic fields – general relativity

PDF file here

References

  1. Beskin, V. S., Balogh, A., Falanga, M. and Treumann, R. A. (2015), Magnetic fields at largest universal strengths: Overview, Space Science Reviews, 191(1-4), pp. 1–12.
  2. Bičák, J. and Hejda, F. (2015), Near-horizon description of extremal magnetized stationary black holes and meissner effect, Physical Review D, 92(10), p. 104006.
  3. Chandrasekhar, S. (1983), The Mathematical Theory of Black Holes, Oxford University Press.
  4. Ernst, F. J. and Wild, W. J. (1976), Kerr black holes in a magnetic universe, Journal of Mathematical Physics, 17(2), pp. 182–184.
  5. Gal’tsov, D. V. (1986), Particles and Fields around Black Holes, Moscow University Press.
  6. García Díaz, A. (1985), Magnetic generalization of the kerr–newman metric, Journal of Mathematical Physics, 26(1), pp. 155–156.
  7. Gutsunaev, T. I. and Manko, V. S. (1988), On a family of solutions of the einstein-maxwell equations, General Relativity and Gravitation, 20(4), pp. 327–335.
  8. Hiscock, W. A. (1981), On black holes in magnetic universes, Journal of Mathematical Physics, 22(8), pp. 1828–1833.
  9. Karas, V. (1988), Magnetic fluxes across black holes. exact models, Bulletin of the Astronomical Institute of Czechoslovakia, 39.
  10. Karas, V. and Budinová, Z. (2000), Magnetic fluxes across black holes in a strong magnetic field regime, Physica Scripta, 61(2), pp. 253–256.
  11. Karas, V. and Stuchlík, Z. (2023), Magnetized black holes: Interplay between charge and rotation, Universe, 9(6), p. 267.
  12. Karas, V., Svoboda, J. and Zajacek, M. (2019), Selected chapters on active galactic nuclei as relativistic systems, arXiv preprint arXiv:1901.06507.
  13. Karas, V. and Vokrouhlický, D. (1991), On interpretation of the magnetized kerr–newman black hole, Journal of Mathematical Physics, 32(3), pp. 714–716.
  14. Khan, S. U. and Chen, Z.-M. (2023), Charged particle dynamics in black hole split monopole magnetosphere, The European Physical Journal C, 83(8).
  15. Kovář, J., Kopáček, O., Karas, V. and Kojima, Y. (2012), Regular and chaotic orbits near a massive magnetic dipole, Classical and Quantum Gravity, 30(2), p. 025010.
  16. Lai, D. (2015), Physics in very strong magnetic fields, Space Science Reviews, 191(1-4), pp. 13–25.
  17. Melvin, M. (1964), Pure magnetic and electric geons, Physics Letters, 8(1), pp. 65–68.
  18. Romero, G. E. and Vila, G. S. (2014), Introduction to Black Hole Astrophysics, Springer Berlin Heidelberg.
  19. Ruffini, R. and Wilson, J. R. (1975), Relativistic magnetohydrodynamical effects of plasma accreting into a black hole, Physical Review D, 12(10), pp. 2959–2962.
  20. Vrba, J., Rayimbaev, J., Stuchlik, Z. and Ahmedov, B. (2023), Charged particles motion and quasiperiodic oscillation in simpson–visser spacetime in the presence of external magnetic fields, The European Physical Journal C, 83(9).
  21. Wald, R. M. (1974), Black hole in a uniform magnetic field, Physical Review D, 10(6), pp. 1680–1685.
  22. Wald, R. M. (1984), General Relativity, University of Chicago Press.