Charged particles on resonant orbits around Schwarzschild black hole
Authors
Martin Kološ and Misbah Shahzadi
Abstract
We explore the dynamics of test particles on perturbed circular orbits in the equatorial plane of a Schwarzschild black hole in search of resonant effects. The nonlinear bond between radial and vertical oscillatory modes is given by Lorentz electromagnetic force acting on charged particles in the uniform magnetic field. When the perturbation of the circular orbit is large enough, strong, persistent 2:1 resonance between radial and vertical modes develops.
Keywords
Black hole – resonances – particle dynamics – magnetic field
PDF file here
References
- Abramowicz, M. A. and Klu´zniak, W. (2004), Interpreting black hole QPOs, in P. Kaaret, F. K. Lamband J. H. Swank, editors, X-ray Timing 2003: Rossi and Beyond, volume 714 of American Institute of Physics Conference Series, pp. 21–28, arXiv: astro-ph/0312396.
- Frolov, V. P. and Shoom, A. A. (2010), Motion of charged particles near a weakly magnetized Schwarzschild black hole, Phys. Rev. D , 82(8), 084034, arXiv: 1008.2985.
- Galtsov, D. V. and Petukhov, V. I. (1978), Black hole in an external magnetic field., Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 74, pp. 801–818.
- Karas, V. and Vokrouhlicky, D. (1990), Test particle motion around a magnetised Schwarzschild black hole, Classical and Quantum Gravity, 7(3), pp. 391–398.
- Kološ, M., Stuchlík, Z. and Tursunov, A. (2015), Quasi-harmonic oscillatory motion of charged particles around a Schwarzschild black hole immersed in a uniform magnetic field, Classical and Quantum Gravity, 32(16), 165009, arXiv: 1506.06799.
- Kološ, M., Shahzadi, M. and Tursunov, A. (2023), Charged particle dynamics in parabolic magnetosphere around Schwarzschild black hole, European Physical Journal C, 83(4), 323.
- Kopáček, O. and Karas, V. (2018), Near-horizon Structure of Escape Zones of Electrically Charged Particles around Weakly Magnetized Rotating Black Hole, The Astrophysical Journal , 853, 53, arXiv: 1801.01576.
- Remillard, R. A. and McClintock, J. E. (2006), X-Ray Properties of Black-Hole Binaries, Annual Review of Astronomy and Astrophysics, 44, pp. 49–92, arXiv: astro-ph/0606352.
- Tabor, M. (1989), Chaos and Integrability in Nonlinear Dynamics: An Introduction, WileyInterscience.
- Török, G., Abramowicz, M. A., Klu´zniak, W. and Stuchlík, Z. (2005), The orbital resonance model for twin peak kHz quasi periodic oscillations in microquasars, Astronomy and Astrophysics , 436, pp. 1–8.
- Wald, R. M. (1974), Black hole in a uniform magnetic field, Phys. Rev. D , 10, pp. 1680–1685.
- Wald, R. M. (1984), General relativity, University of Chicago Press, Chicago.