Tidal deformability of ultracompact Schwarzschild stars and their approach to the black hole limit

Tidal deformability of ultracompact Schwarzschild stars and their approach to the black hole limit

Authors

Camilo Posada

Abstract

A well-known result in general relativity is that the tidal Love numbers of black holes vanish. In contrast, different configurations of a black hole may have non-vanishing Love numbers. For instance, it has been conjectured recently that the Love number of generic exotic compact objects (ECOs) shows a logarithmic behaviour. Here, we analyse the ultracompact Schwarzschild star, which allows the compactness to cross and go beyond the Buchdahl limit. This Schwarzschild star has been shown to be a good black hole mimicker. Moreover, it has been found that the Love number of these objects approaches zero as their compactness approaches the black hole limit. Here, we complement those results by showing that the Love number for these configurations follows an exponentially decaying behaviour rather than the logarithmic behaviour proposed for generic ECOs.

Keywords

Tidal deformability – interior solutions – black hole mimicker – gravastar

PDF file here

References

  1. Beltracchi, P. and Gondolo, P. (2019), An exact time-dependent interior Schwarzschild solution, Phys. Rev. D, 99(8), p. 084021, arXiv: 1902.07827.
  2. Beltracchi, P., Gondolo, P. and Mottola, E. (2021), Slowly rotating gravastars, arXiv: 2107.00762.
  3. Binnington, T. and Poisson, E. (2009), Relativistic theory of tidal Love numbers, Phys. Rev. D, 80, p.084018, arXiv: 0906.1366.
  4. Buchdahl, H. A. (1959), General Relativistic Fluid Spheres, Phys. Rev., 116, pp. 1027–1034.
  5. Cardoso, V., Franzin, E., Maselli, A., Pani, P. and Raposo, G. (2017), Testing strong-field gravity with tidal Love numbers, Phys. Rev. D, 95(8), p. 084014, [Addendum: Phys.Rev.D 95, 089901 (2017)], arXiv: 1701.01116.
  6. Cardoso, V. and Pani, P. (2019), Testing the nature of dark compact objects: a status report, Living Rev. Rel., 22(1), p. 4, arXiv: 1904.05363.
  7. Celotti, A., Miller, J. C. and Sciama, D. W. (1999), Astrophysical evidence for the existence of black holes: Topical review, Class. Quant. Grav., 16, p. A3, arXiv: astro-ph/9912186.
  8. Chan, T. K., Chan, A. P. O. and Leung, P. T. (2015), I-Love relations for incompressible stars and realistic stars, Phys. Rev., D91(4), p. 044017, arXiv: 1411.7141.
  9. Chandrasekhar, S. (1985), The mathematical theory of black holes, Oxford University Press.
  10. Chandrasekhar, S. and Miller, J. C. (1974), On slowly rotating homogeneous masses in general relativity, Mon. Not. Roy. Astron. Soc., 167, p. 63.
  11. Charalambous, P., Dubovsky, S. and Ivanov, M. M. (2021), On the Vanishing of Love Numbers for Kerr Black Holes, JHEP, 05, p. 038, arXiv: 2102.08917.
  12. Chia, H. S. (2021), Tidal deformation and dissipation of rotating black holes, Phys. Rev. D, 104(2), p. 024013, arXiv: 2010.07300.
  13. Chirenti, C., Posada, C. and Guedes, V. (2020), Where is Love? Tidal deformability in the black hole compactness limit, Class. Quant. Grav., 37(19), p. 195017, arXiv: 2005.10794.
  14. Damour, T. and Nagar, A. (2009), Relativistic tidal properties of neutron stars, Phys. Rev., D80, p. 084035, arXiv: 0906.0096.
  15. Glendenning, N. K. (2000), Compact stars: Nuclear physics, particle physics, and general relativity, Springer, 2nd. edition.
  16. Harrison, B. K., Thorne, K. S., Wakano, M. and Wheeler, J. A. (1965), Gravitation theory and gravitational collapse, The University of Chicago Press.
  17. Hartle, J. B. (1967), Slowly rotating relativistic stars. 1. Equations of structure, Astrophys. J., 150, pp. 1005–1029.
  18. Hartle, J. B. and Thorne, K. S. (1968), Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars, Astrophys. J., 153, p. 807.
  19. Hawking, S. W. and Ellis, G. F. R. (1973), The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press.
  20. Hinderer, T. (2008), Tidal Love numbers of neutron stars, Astrophys. J., 677, pp. 1216–1220, arXiv: 0711.2420.
  21. Hui, L., Joyce, A., Penco, R., Santoni, L. and Solomon, A. R. (2021), Static response and Love numbers of Schwarzschild black holes, JCAP, 04, p. 052, arXiv: 2010.00593.
  22. Konoplya, R. A., Posada, C., Stuchlík, Z. and Zhidenko, A. (2019), Stable Schwarzschild stars as black-hole mimickers, Phys. Rev. D, 100(4), p. 044027, arXiv: 1905.08097.
  23. Mazur, P. O. and Mottola, E. (2001), Gravitational condensate stars: An alternative to black holes, arXiv: gr-qc/0109035.
  24. Mazur, P. O. and Mottola, E. (2004), Gravitational vacuum condensate stars, Proc. Nat. Acad. Sci., 101, pp. 9545–9550, arXiv: gr-qc/0407075.
  25. Mazur, P. O. and Mottola, E. (2015), Surface tension and negative pressure interior of a non-singular ‘black hole’, Class. Quant. Grav., 32(21), p. 215024, arXiv: 1501.03806.
  26. Ovalle, J., Posada, C. and Stuchlík, Z. (2019), Anisotropic ultracompact Schwarzschild star by gravitational decoupling, Class. Quant. Grav., 36(20), p. 205010, arXiv: 1905.12452.
  27. Poisson, E. (2021), Tidally induced multipole moments of a nonrotating black hole vanish to all post-Newtonian orders, Phys. Rev. D, 104(10), p. 104062, arXiv: 2108.07328.
  28. Posada, C. (2017), Slowly rotating supercompact Schwarzschild stars, Mon. Not. Roy. Astron. Soc., 468(2), pp. 2128–2139, arXiv: 1612.05290.
  29. Posada, C. and Chirenti, C. (2019), On the radial stability of ultra compact Schwarzschild stars beyond the Buchdahl limit, Class. Quant. Grav., 36, p. 065004, arXiv: 1811.09589.
  30. Postnikov, S., Prakash, M. and Lattimer, J. M. (2010), Tidal Love Numbers of Neutron and Self-Bound Quark Stars, Phys. Rev. D, 82, p. 024016, arXiv: 1004.5098.
  31. Wald, R. M. (2001), The thermodynamics of black holes, Living Rev. Rel., 4, p. 6, arXiv: gr-qc/9912119.