Stability of asymptotically flat (2+1)-dimensional black holes with Gauss-Bonnet corrections

Stability of asymptotically flat (2+1)-dimensional black holes with Gauss-Bonnet corrections

Authors

Milena Skvortsova

Abstract

Using the integration of wave equation in the time-domain we show that scalar field perturbations around the (2 + 1)-dimensional asymptotically flat black hole with Gauss-Bonnet corrections are dynamically stable even for the near extreme values of the coupling constant.

Keywords

Scalar field perturbations – (2 + 1)-dimensional asymptotically flat black hole – Gauss-Bonnet corrections – quasinormal modes

PDF file here

References

  1. Abbott, B. P. et al. (LIGO Scientific, Virgo) (2016), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116(6), p. 061102, arXiv: 1602.03837.
  2. Akiyama, K. et al. (Event Horizon Telescope) (2019), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett., 875, p. L1, arXiv: 1906.11238.
  3. Aoki, K., Gorji, M. A. and Mukohyama, S. (2020), A consistent theory of D → 4 Einstein-Gauss-Bonnet gravity, Phys. Lett. B, 810, p. 135843, arXiv: 2005.03859.
  4. Auclair, P. et al. (LISA Cosmology Working Group) (2023), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel., 26(1), p. 5, arXiv: 2204.05434.
  5. Banados, M., Teitelboim, C. and Zanelli, J. (1992), The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, pp. 1849–1851, arXiv: hep-th/9204099.
  6. Berti, E., Cardoso, V. and Starinets, A. O. (2009), Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, p. 163001, arXiv: 0905.2975.
  7. Beyer, H. R. (2011), On the stability of the massive scalar field in Kerr space-time, J. Math. Phys., 52, p. 102502, arXiv: 1105.4956.
  8. Birmingham, D., Sachs, I. and Solodukhin, S. N. (2002), Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett., 88, p. 151301, arXiv: hep-th/0112055.
  9. Bronnikov, K. A. and Konoplya, R. A. (2020), Echoes in brane worlds: ringing at a black hole– wormhole transition, Phys. Rev. D, 101(6), p. 064004, arXiv: 1912.05315.
  10. Cardoso, V. and Lemos, J. P. S. (2001), Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev. D, 63, p. 124015, arXiv: gr-qc/0101052.
  11. Churilova, M. S. and Stuchlik, Z. (2020), Ringing of the regular black-hole/wormhole transition, Class. Quant. Grav., 37(7), p. 075014, arXiv: 1911.11823.
  12. Dyatlov, S. (2011), Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Commun. Math. Phys., 306, pp. 119–163, arXiv: 1003.6128.
  13. Fontana, R. D. B. (2023), Scalar field instabilities in charged BTZ black holes, arXiv: 2306.02504.
  14. Glavan, D. and Lin, C. (2020), Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime, Phys. Rev. Lett., 124(8), p. 081301, arXiv: 1905.03601.
  15. Goddi, C. et al. (2016), BlackHoleCam: Fundamental physics of the galactic center, Int. J. Mod. Phys. D, 26(02), p. 1730001, arXiv: 1606.08879.
  16. Gundlach, C., Price, R. H. and Pullin, J. (1994), Late time behavior of stellar collapse and explosions: Linearized perturbations, Phys. Rev. D, 49, pp. 883–889, arXiv: gr-qc/9307009.
  17. Hennigar, R. A., Kubiznak, D. and Mann, R. B. (2021), Rotating Gauss-Bonnet BTZ Black Holes,
    Class. Quant. Grav., 38(3), p. 03LT01, arXiv: 2005.13732.
  18. Hennigar, R. A., Kubiznak, D., Mann, R. B. and Pollack, C. (2020), Lower-dimensional
    Gauss–Bonnet gravity and BTZ black holes, Phys. Lett. B, 808, p. 135657, arXiv: 2004.12995.
  19. Ishihara, H., Kimura, M., Konoplya, R. A., Murata, K., Soda, J. and Zhidenko, A. (2008), Evolution
    of perturbations of squashed Kaluza-Klein black holes: escape from instability, Phys. Rev. D, 77,
    p. 084019, arXiv: 0802.0655.
  20. Kodama, H., Konoplya, R. A. and Zhidenko, A. (2010), Gravitational stability of simply rotating
    Myers-Perry black holes: Tensorial perturbations, Phys. Rev. D, 81, p. 044007, arXiv: 0904.2154.
  21. Kokkotas, K. D. and Schmidt, B. G. (1999), Quasinormal modes of stars and black holes, Living Rev.
    Rel., 2, p. 2, arXiv: gr-qc/9909058.
  22. Konoplya, R. A. (2003), Quasinormal behavior of the d-dimensional Schwarzschild black hole and
    higher order WKB approach, Phys. Rev. D, 68, p. 024018, arXiv: gr-qc/0303052.
  23. Konoplya, R. A. (2004), Influence of the back reaction of the Hawking radiation upon black hole
    quasinormal modes, Phys. Rev. D, 70, p. 047503, arXiv: hep-th/0406100.
  24. Konoplya, R. A. and Fontana, R. D. B. (2008), Quasinormal modes of black holes immersed in a
    strong magnetic field, Phys. Lett. B, 659, pp. 375–379, arXiv: 0707.1156.
  25. Konoplya, R. A., Murata, K., Soda, J. and Zhidenko, A. (2008), Looking at the Gregory-Laflamme
    instability through quasi-normal modes, Phys. Rev. D, 78, p. 084012, arXiv: 0807.1897.
  26. Konoplya, R. A. and Zhidenko, A. (2011), Quasinormal modes of black holes: From astrophysics to
    string theory, Rev. Mod. Phys., 83, pp. 793–836, arXiv: 1102.4014.
  27. Konoplya, R. A. and Zhidenko, A. (2014), Charged scalar field instability between the event and
    cosmological horizons, Phys. Rev. D, 90(6), p. 064048, arXiv: 1406.0019.
  28. Konoplya, R. A. and Zhidenko, A. (2020), BTZ black holes with higher curvature corrections in the
    3D Einstein-Lovelock gravity, Phys. Rev. D, 102(6), p. 064004, arXiv: 2003.12171.
  29. Konoplya, R. A., Zhidenko, A. and Zinhailo, A. F. (2019), Higher order WKB formula for quasi-
    normal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quant. Grav., 36, p. 155002, arXiv: 1904.10333.
  30. Matyjasek, J. and Opala, M. (2017), Quasinormal modes of black holes. The improved semianalytic approach, Phys. Rev. D, 96(2), p. 024011, arXiv: 1704.00361.
  31. Nollert, H.-P. (1999), TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav., 16, pp. R159–R216.
  32. Takahashi, T. and Soda, J. (2010), Catastrophic Instability of Small Lovelock Black Holes, Prog. Theor. Phys., 124, pp. 711–729, arXiv: 1008.1618.
  33. Zhu, Z., Zhang, S.-J., Pellicer, C. E., Wang, B. and Abdalla, E. (2014), Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev. D, 90(4), p. 044042, [Addendum: Phys.Rev.D 90, 049904 (2014)], arXiv: 1405.4931.