Stability of asymptotically flat (2+1)-dimensional black holes with Gauss-Bonnet corrections
Authors
Milena Skvortsova
Abstract
Using the integration of wave equation in the time-domain we show that scalar field perturbations around the (2 + 1)-dimensional asymptotically flat black hole with Gauss-Bonnet corrections are dynamically stable even for the near extreme values of the coupling constant.
Keywords
Scalar field perturbations – (2 + 1)-dimensional asymptotically flat black hole – Gauss-Bonnet corrections – quasinormal modes
PDF file here
References
- Abbott, B. P. et al. (LIGO Scientific, Virgo) (2016), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 116(6), p. 061102, arXiv: 1602.03837.
- Akiyama, K. et al. (Event Horizon Telescope) (2019), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett., 875, p. L1, arXiv: 1906.11238.
- Aoki, K., Gorji, M. A. and Mukohyama, S. (2020), A consistent theory of D → 4 Einstein-Gauss-Bonnet gravity, Phys. Lett. B, 810, p. 135843, arXiv: 2005.03859.
- Auclair, P. et al. (LISA Cosmology Working Group) (2023), Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel., 26(1), p. 5, arXiv: 2204.05434.
- Banados, M., Teitelboim, C. and Zanelli, J. (1992), The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, pp. 1849–1851, arXiv: hep-th/9204099.
- Berti, E., Cardoso, V. and Starinets, A. O. (2009), Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, p. 163001, arXiv: 0905.2975.
- Beyer, H. R. (2011), On the stability of the massive scalar field in Kerr space-time, J. Math. Phys., 52, p. 102502, arXiv: 1105.4956.
- Birmingham, D., Sachs, I. and Solodukhin, S. N. (2002), Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett., 88, p. 151301, arXiv: hep-th/0112055.
- Bronnikov, K. A. and Konoplya, R. A. (2020), Echoes in brane worlds: ringing at a black hole– wormhole transition, Phys. Rev. D, 101(6), p. 064004, arXiv: 1912.05315.
- Cardoso, V. and Lemos, J. P. S. (2001), Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev. D, 63, p. 124015, arXiv: gr-qc/0101052.
- Churilova, M. S. and Stuchlik, Z. (2020), Ringing of the regular black-hole/wormhole transition, Class. Quant. Grav., 37(7), p. 075014, arXiv: 1911.11823.
- Dyatlov, S. (2011), Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole, Commun. Math. Phys., 306, pp. 119–163, arXiv: 1003.6128.
- Fontana, R. D. B. (2023), Scalar field instabilities in charged BTZ black holes, arXiv: 2306.02504.
- Glavan, D. and Lin, C. (2020), Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime, Phys. Rev. Lett., 124(8), p. 081301, arXiv: 1905.03601.
- Goddi, C. et al. (2016), BlackHoleCam: Fundamental physics of the galactic center, Int. J. Mod. Phys. D, 26(02), p. 1730001, arXiv: 1606.08879.
- Gundlach, C., Price, R. H. and Pullin, J. (1994), Late time behavior of stellar collapse and explosions: Linearized perturbations, Phys. Rev. D, 49, pp. 883–889, arXiv: gr-qc/9307009.
- Hennigar, R. A., Kubiznak, D. and Mann, R. B. (2021), Rotating Gauss-Bonnet BTZ Black Holes,
Class. Quant. Grav., 38(3), p. 03LT01, arXiv: 2005.13732.
- Hennigar, R. A., Kubiznak, D., Mann, R. B. and Pollack, C. (2020), Lower-dimensional
Gauss–Bonnet gravity and BTZ black holes, Phys. Lett. B, 808, p. 135657, arXiv: 2004.12995.
- Ishihara, H., Kimura, M., Konoplya, R. A., Murata, K., Soda, J. and Zhidenko, A. (2008), Evolution
of perturbations of squashed Kaluza-Klein black holes: escape from instability, Phys. Rev. D, 77,
p. 084019, arXiv: 0802.0655.
- Kodama, H., Konoplya, R. A. and Zhidenko, A. (2010), Gravitational stability of simply rotating
Myers-Perry black holes: Tensorial perturbations, Phys. Rev. D, 81, p. 044007, arXiv: 0904.2154.
- Kokkotas, K. D. and Schmidt, B. G. (1999), Quasinormal modes of stars and black holes, Living Rev.
Rel., 2, p. 2, arXiv: gr-qc/9909058.
- Konoplya, R. A. (2003), Quasinormal behavior of the d-dimensional Schwarzschild black hole and
higher order WKB approach, Phys. Rev. D, 68, p. 024018, arXiv: gr-qc/0303052.
- Konoplya, R. A. (2004), Influence of the back reaction of the Hawking radiation upon black hole
quasinormal modes, Phys. Rev. D, 70, p. 047503, arXiv: hep-th/0406100.
- Konoplya, R. A. and Fontana, R. D. B. (2008), Quasinormal modes of black holes immersed in a
strong magnetic field, Phys. Lett. B, 659, pp. 375–379, arXiv: 0707.1156.
- Konoplya, R. A., Murata, K., Soda, J. and Zhidenko, A. (2008), Looking at the Gregory-Laflamme
instability through quasi-normal modes, Phys. Rev. D, 78, p. 084012, arXiv: 0807.1897.
- Konoplya, R. A. and Zhidenko, A. (2011), Quasinormal modes of black holes: From astrophysics to
string theory, Rev. Mod. Phys., 83, pp. 793–836, arXiv: 1102.4014.
- Konoplya, R. A. and Zhidenko, A. (2014), Charged scalar field instability between the event and
cosmological horizons, Phys. Rev. D, 90(6), p. 064048, arXiv: 1406.0019.
- Konoplya, R. A. and Zhidenko, A. (2020), BTZ black holes with higher curvature corrections in the
3D Einstein-Lovelock gravity, Phys. Rev. D, 102(6), p. 064004, arXiv: 2003.12171.
- Konoplya, R. A., Zhidenko, A. and Zinhailo, A. F. (2019), Higher order WKB formula for quasi-
normal modes and grey-body factors: recipes for quick and accurate calculations, Class. Quant. Grav., 36, p. 155002, arXiv: 1904.10333.
- Matyjasek, J. and Opala, M. (2017), Quasinormal modes of black holes. The improved semianalytic approach, Phys. Rev. D, 96(2), p. 024011, arXiv: 1704.00361.
- Nollert, H.-P. (1999), TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav., 16, pp. R159–R216.
- Takahashi, T. and Soda, J. (2010), Catastrophic Instability of Small Lovelock Black Holes, Prog. Theor. Phys., 124, pp. 711–729, arXiv: 1008.1618.
- Zhu, Z., Zhang, S.-J., Pellicer, C. E., Wang, B. and Abdalla, E. (2014), Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation, Phys. Rev. D, 90(4), p. 044042, [Addendum: Phys.Rev.D 90, 049904 (2014)], arXiv: 1405.4931.