Theory-agnostic parametrization of wormhole spacetimes

Theory-agnostic parametrization of wormhole spacetimes

Authors

Thomas D. Pappas

Abstract

We present a generalization of the Rezzolla-Zhidenko theory-agnostic parametrization of black-hole spacetimes to accommodate spherically-symmetric Lorentzian, traversable wormholes (WHs) in an arbitrary metric theory of gravity. By applying our parametrization to various known WH metrics and performing calculations involving shadows and quasinormal modes, we show that only a few parameters are important for finding potentially observable quantities in a WH spacetime.

Keywords

Wormholes – theory-agnostic parametrization – wormhole shadows – quasinormal modes

PDF file here

References

  1. Aneesh, S., Bose, S. and Kar, S. (2018), Gravitational waves from quasinormal modes of a class of Lorentzian wormholes, Phys. Rev., D97(12), p. 124004, arXiv: 1803.10204.
  2. Bambi, C. and Stojkovic, D. (2021), Astrophysical Wormholes, Universe, 7(5), p. 136, arXiv: 2105.00881.
  3. Berti, E., Cardoso, V. and Starinets, A. O. (2009), Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26, p. 163001, arXiv: 0905.2975.
  4. Biswas, S., Rahman, M. and Chakraborty, S. (2022), Echoes from braneworld wormholes, Phys. Rev. D, 106(12), p. 124003, arXiv: 2205.14743.
  5. Blázquez-Salcedo, J. L., Knoll, C. and Radu, E. (2021), Traversable wormholes in Einstein-Dirac-Maxwell theory, Phys. Rev. Lett., 126(10), p. 101102, arXiv: 2010.07317.
  6. Bolokhov, S., Bronnikov, K., Krasnikov, S. and Skvortsova, M. (2021), A Note on “Traversable Wormholes in Einstein–Dirac–Maxwell Theory”, Grav. Cosmol., 27(4), pp. 401–402, arXiv: 2104.10933.
  7. Bolokhov, S. V., Bronnikov, K. A. and Skvortsova, M. V. (2012), Magnetic black universes and wormholes with a phantom scalar, Class. Quant. Grav., 29, p. 245006, arXiv: 1208.4619.
  8. Bronnikov, K. and Kim, S.-W. (2003), Possible wormholes in a brane world, Phys. Rev. D, 67, p. 064027, arXiv: gr-qc/0212112.
  9. Bronnikov, K. A. (1973), Scalar-tensor theory and scalar charge, Acta Phys. Polon. B, 4, pp. 251–266.
  10. Bronnikov, K. A. (2018), Scalar fields as sources for wormholes and regular black holes, Particles, 1(1), pp. 56–81, arXiv: 1802.00098.
  11. Bronnikov, K. A. and Fabris, J. C. (2006), Regular phantom black holes, Phys. Rev. Lett., 96, p. 251101, arXiv: gr-qc/0511109.
  12. Bronnikov, K. A., Fabris, J. C. and Zhidenko, A. (2011), On the stability of scalar-vacuum spacetimes, Eur. Phys. J. C, 71, p. 1791, arXiv: 1109.6576.
  13. Bronnikov, K. A. and Grinyok, S. (2001), Instability of wormholes with a nonminimally coupled scalar field, Grav. Cosmol., 7, pp. 297–300, arXiv: gr-qc/0201083.
  14. Bronnikov, K. A. and Konoplya, R. A. (2020), Echoes in brane worlds: ringing at a black hole-wormhole transition, Phys. Rev. D, 101(6), p. 064004, arXiv: 1912.05315.
  15. Bronnikov, K. A., Konoplya, R. A. and Pappas, T. D. (2021), General parametrization of wormhole spacetimes and its application to shadows and quasinormal modes, Phys. Rev. D, 103(12), p. 124062, arXiv: 2102.10679.
  16. Bronnikov, K. A., Konoplya, R. A. and Zhidenko, A. (2012), Instabilities of wormholes and regular black holes supported by a phantom scalar field, Phys. Rev., D86, p. 024028, arXiv: 1205.2224.
  17. Bronnikov, K. A., Melnikov, V. N. and Dehnen, H. (2007), Regular black holes and black universes, Gen. Rel. Grav., 39, pp. 973–987, arXiv: gr-qc/0611022.
  18. Bronnikov, K. A. and Walia, R. K. (2022), Field sources for Simpson-Visser spacetimes, Phys. Rev. D, 105(4), p. 044039, arXiv: 2112.13198.
  19. Churilova, M. S., Konoplya, R. A. and Zhidenko, A. (2020), Arbitrarily long-lived quasinormal modes in a wormhole background, Phys. Lett., B802, p. 135207, arXiv: 1911.05246.
  20. Churilova, M. S. and Stuchlik, Z. (2020), Ringing of the regular black-hole/wormhole transition, Class. Quant. Grav., 37(7), p. 075014, arXiv: 1911.11823.
  21. Cuyubamba, M. A., Konoplya, R. A. and Zhidenko, A. (2018), No stable wormholes in Einstein-dilaton-Gauss-Bonnet theory, Phys. Rev., D98(4), p. 044040, arXiv: 1804.11170.
  22. Damour, T. and Solodukhin, S. N. (2007), Wormholes as black hole foils, Phys. Rev., D76, p. 024016, arXiv: 0704.2667.
  23. Dutta Roy, P., Aneesh, S. and Kar, S. (2020), Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes, Eur. Phys. J., C80(9), p. 850, arXiv: 1910.08746.
  24. Einstein, A. and Rosen, N. (1935), The Particle Problem in the General Theory of Relativity, Phys. Rev., 48, pp. 73–77.
  25. Ellis, H. G. (1973), Ether flow through a drainhole – a particle model in general relativity, J. Math. Phys., 14, pp. 104–118.
  26. Fisher, I. Z. (1948), Scalar mesostatic field with regard for gravitational effects, Zh. Eksp. Teor. Fiz., 18, pp. 636–640, arXiv: gr-qc/9911008.
  27. Flamm, L. (1916), Beiträge zur Einsteinschen Gravitationstheorie, Phys. Z., 17, p. 448.
  28. Gonzalez, J. A., Guzman, F. S. and Sarbach, O. (2009), Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis, Class. Quant. Grav., 26, p. 015010, arXiv: 0806.0608.
  29. Hennigar, R. A., Poshteh, M. B. J. and Mann, R. B. (2018), Shadows, Signals, and Stability in Einsteinian Cubic Gravity, Phys. Rev. D, 97(6), p. 064041, arXiv: 1801.03223.
  30. Jusufi, K. (2021), Correspondence between quasinormal modes and the shadow radius in a wormhole spacetime, Gen. Rel. Grav., 53(9), p. 87, arXiv: 2007.16019.
  31. Kim, J. Y., Lee, C. O. and Park, M.-I. (2018), Quasi-Normal Modes of a Natural AdS Wormhole in Einstein-Born-Infeld Gravity, Eur. Phys. J., C78(12), p. 990, arXiv: 1808.03748.
  32. Kokkotas, K., Konoplya, R. A. and Zhidenko, A. (2017), Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: analytical approximation, Phys. Rev. D, 96, p. 064007, arXiv: 1705.09875.
  33. Kokkotas, K. D. and Schmidt, B. G. (1999), Quasinormal modes of stars and black holes, Living Rev. Rel., 2, p. 2, arXiv: gr-qc/9909058.
  34. Konoplya, R., Rezzolla, L. and Zhidenko, A. (2016), General parametrization of axisymmetric black holes in metric theories of gravity, Phys. Rev., D93(6), p. 064015, arXiv: 1602.02378.
  35. Konoplya, R. and Zhidenko, A. (2010), Passage of radiation through wormholes of arbitrary shape, Phys. Rev. D, 81, p. 124036, arXiv: 1004.1284.
  36. Konoplya, R. A. (2018), How to tell the shape of a wormhole by its quasinormal modes, Phys. Lett., B784, pp. 43–49, arXiv: 1805.04718.
  37. Konoplya, R. A. and Molina, C. (2005), The Ringing wormholes, Phys. Rev., D71, p. 124009, arXiv: gr-qc/0504139.
  38. Konoplya, R. A., Pappas, T. and Zhidenko, A. (2020a), Einstein-scalar–Gauss-Bonnet black holes: Analytical approximation for the metric and applications to calculations of shadows, Phys. Rev. D, 101(4), p. 044054, arXiv: 1907.10112.
  39. Konoplya, R. A., Pappas, T. D. and Stuchlík, Z. (2020b), General parametrization of higher- dimensional black holes and its application to Einstein-Lovelock theory, Phys. Rev. D, 102(8), p. 084043, arXiv: 2007.14860.
  40. Konoplya, R. A. and Zhidenko, A. (2011), Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys., 83, pp. 793–836, arXiv: 1102.4014.
  41. Konoplya, R. A. and Zhidenko, A. (2019), Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows, Phys. Rev. D, 100(4), p. 044015, arXiv: 1907.05551.
  42. Konoplya, R. A. and Zhidenko, A. (2022a), How general is the strong cosmic censorship bound for quasinormal modes?, JCAP, 11, p. 028, arXiv: 2210.04314.
  43. Konoplya, R. A. and Zhidenko, A. (2022b), Traversable Wormholes in General Relativity, Phys. Rev. Lett., 128(9), p. 091104, arXiv: 2106.05034.
  44. Konoplya, R. A. and Zhidenko, A. (2023), Overtones’ outburst of asymptotically AdS black holes, arXiv: 2310.19205.
  45. Lima, H. C. D., Junior., Crispino, L. C. B., Cunha, P. V. P. and Herdeiro, C. A. R. (2021), Can different black holes cast the same shadow?, Phys. Rev. D, 103(8), p. 084040, arXiv: 2102.07034.
  46. Mazza, J., Franzin, E. and Liberati, S. (2021), A novel family of rotating black hole mimickers, JCAP, 04, p. 082, arXiv: 2102.01105.
  47. Morris, M. S. and Thorne, K. S. (1988), Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys., 56, pp. 395–412.
  48. Perlick, V., Tsupko, O. Y. and Bisnovatyi-Kogan, G. S. (2015), Influence of a plasma on the shadow of a spherically symmetric black hole, Phys. Rev. D, 92(10), p. 104031, arXiv: 1507.04217.
  49. Randall, L. and Sundrum, R. (1999), An Alternative to compactification, Phys. Rev. Lett., 83, pp. 4690–4693, arXiv: hep-th/9906064.
  50. Rezzolla, L. and Zhidenko, A. (2014), New parametrization for spherically symmetric black holes in metric theories of gravity, Phys. Rev. D, 90(8), p. 084009, arXiv: 1407.3086.
  51. Shiromizu, T., Maeda, K.-i. and Sasaki, M. (2000), The Einstein equation on the 3-brane world, Phys. Rev., D62, p. 024012, arXiv: gr-qc/9910076.
  52. Simpson, A. and Visser, M. (2019), Black-bounce to traversable wormhole, JCAP, 02, p. 042, arXiv: 1812.07114.
  53. Synge, J. L. (1966), The Escape of Photons from Gravitationally Intense Stars, Mon. Not. Roy. Astron. Soc., 131(3), pp. 463–466.
  54. Taylor, P. (2014), Propagation of Test Particles and Scalar Fields on a Class of Wormhole Space-Times, Phys. Rev., D90(2), p. 024057, [Erratum: Phys. Rev.D95,no.10,109904(2017)], arXiv: 1404.7210.
  55. Tsukamoto, N. (2021), Gravitational lensing in the Simpson-Visser black-bounce spacetime in a strong deflection limit, Phys. Rev. D, 103(2), p. 024033, arXiv: 2011.03932.
  56. Visser, M. (1995), Lorentzian wormholes: From Einstein to Hawking, ISBN 978-1-56396-653-8.
  57. Völkel, S. H. and Kokkotas, K. D. (2018), Wormhole Potentials and Throats from Quasi-Normal Modes, Class. Quant. Grav., 35(10), p. 105018, arXiv: 1802.08525.
  58. Wheeler, J. A. (1955), Geons, Phys. Rev., 97, pp. 511–536.
  59. Will, C. M. (2006), The Confrontation between general relativity and experiment, Living Rev. Rel., 9, p. 3, arXiv: gr-qc/0510072.
  60. Will, C. M. (2014), The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, p. 4, arXiv: 1403.7377.
  61. Younsi, Z., Zhidenko, A., Rezzolla, L., Konoplya, R. and Mizuno, Y. (2016), New method for shadow calculations: Application to parametrized axisymmetric black holes, Phys. Rev. D, 94(8), p. 084025, arXiv: 1607.05767.